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ABSTRACT The era of big data provides the possibility of precision medicine. The most important idea we
have for cancer is to divide and treat. Theoretically, each person’s cancer should be different, so it is very
necessary to make personalized treatment plans for different cancer patients. Subtype analysis of cancer
can be viewed as a clustering problem, while ensemble clustering techniques are widely followed for their
ability to combine multiple basic clusters into potentially better and more robust clusters. However, the
reliability of the present ensemble clustering methods in cancer subtype analysis still needs to be improved.
Therefore, we propose a double weighted ensemble clustering method (DWEC), which first derives the
similarity matrix of each base cluster based on the local weighting method, and this process can be regarded
as the first weighting based on clusters. Subsequently, the objective of finding the final partitions is regarded
as an optimization problem, and the similarity matrix corresponding to each base cluster is weighted twice
by the block coordinate descent algorithm to solve the optimal partitions result. The best experimental results
were obtained in both labeled datasets and unlabeled cancer gene datasets, validating the superiority of the
method. For cancer subtype analysis, although our proposed method did not show statistically significant
differences in survival distributions of several subtypes in the subtype analysis of glioblastoma multiforme.
However, it performed best in the results of the temporal test for all other four cancer gene data, and therefore,
we conclude that our method is more effective for cancer subtype analysis compared with other methods.

INDEX TERMS Cancer subtypes analysis, ensemble clustering, double weighted ensemble clustering,
similarity matrix, entropy.

I. INTRODUCTION
Cancer is themost complex disease faced by people in today’s
society, and more than 200 types of cancer have been found.
At the same time, due to the dynamic changes of cancer
genes, it is possible that genetic mutations, such as somatic
mutations, copy number variations, altered gene expression
profiles, and different epigenetic variations, are unique to
each cancer. A variety of different molecular profiles can lead
to a phenomenon that each cancer includes several subtypes,
posing a formidable challenge to medical researchers. Each
cancer with a different molecular structure requires a different
treatment approach [1]. The heterogeneity of cancer is an
important feature, which means that during the growth pro-
cess of the tumor, after multiple divisions and proliferations,
its daughter cells showmolecular biology or genetic changes,
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so that the growth rate, invasive ability, and resistance of the
tumor are affected. There are differences in drug sensitivity
and prognosis [2]. It is an important scientific issue in oncol-
ogy research to unearth the molecular subtypes inherent in
cancer tissues and then understand the epigenetic regulation
mechanism. In terms of incidence, the top three cancers are
lung cancer, female breast cancer and colorectal cancer [3].
Data clustering is a very important method in the fields of
data mining and machine learning. Its purpose is to divide
a given dataset into clusters that each share common char-
acteristics [4]. Therefore, the discovery of cancer subtypes
using clustering algorithms has attracted a lot of attention.
This solution can help clinicians develop precise treatments
by combining methods that analyze the different molecular
profiles between cancer patients and healthy subjects [5].
In the past decades of research on clustering algorithms,many
kinds of methods have been proposed [6]–[17], but a major
drawback is that these algorithms are good for data sets with
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specific structures and cannot be applied to all data sets and
are not universally applicable. Therefore, in view of the above
defects, cluster ensemble was proposed and quickly became a
hot research topic. In ensemble clustering, each input cluster
is called a base cluster, and the final clustering result is called
a consensus cluster.

We tried to use ensemble clustering to discover cancer sub-
types, and by ensemble the results of different base clustering
in the same data set, we obtained a more stable result that was
better than other clusters. We can view this problem as an
ensemble clustering problem. A large number of integrated
clustering algorithms have been proposed in the past period
[18]–[29]. The evidence accumulation clustering algorithm
proposed by Fred and Jain is based on the co-association
matrix. First, the connection matrix is obtained by whether
two data objects belong to the same class in the same base
clustering result, and then the connection matrix generated by
each base cluster is combined through a voting mechanism to
obtain The co-association matrix is finally used as the input
of hierarchical clustering to obtain the ensemble clustering
result [30]. However, the quality of base clusters plays a
crucial role in the consistency process, and consistent results
can be compromised by low-quality base clusters. In recent
years, research results on the weight of base cluster members
or selection measurement strategies have emerged one after
another. For example: Li et al. proposed to jointly learn
the data partition weights and the final consensus clustering
connection matrix under the Bregman divergence framework,
proposed a weighted clustering integration scheme, which
weighted data vectors of different dimensions differently to
obtain data clustering [5]. Huang et al. proposed the Normal-
ized Group Consistency Index (NCAI) to assess the quality
of base class clusters in an unsupervised manner, thereby
weighting base class clusters according to their clustering
effectiveness [31]. However, these methods are developed
based on an implicit assumption that all clusters in the same
base cluster have the same reliability. They usually treat each
base cluster as an individual and assign a global weight to
each base cluster, regardless of the diversity of the clusters
within it. However, due to the noise and inherent complexity
of real datasets, different clusters within the same cluster
may have different reliability. It is necessary to respect the
local diversity of the set and deal with the reliability of
different clusters. Recently, D. Huang et al. proposed a new
ensemble-driven clustering effectiveness measure and pro-
posed a locally weighted co-correlation matrix to summarize
the ensemble of different clusters The calculation of inter-
entropy makes it easier for them to get rid of the influence of
low-quality base cluster [28]. The method in the paper [28]
uses a local weighting strategy based on set-driven cluster
validity to refine the co-association matrix, and proposes
the concept of locally weighted co-association matrix. The
locally weighted co-association matrix can be regarded as a
consensus function for cluster weighting, which is obtained
by the local weighted average of the connection matrix of

each base cluster. However, there is no theoretical guarantee
of optimality for such a simple averaging method.

To address the above issues, this paper proposes a novel
co-clustering framework for determining the optimal clus-
tering of cancer datasets to assist in the analysis of cancer
subtypes. We refer to the local weighting method in [28]
to integrate the entropy and validity of clusters into a
local weighting scheme to improve consistency performance.
A cluster can be viewed as a local area within the corre-
sponding basic cluster. The entropy of each cluster is esti-
mated based on the entropy criterion for the cluster labels
in the entire set. In particular, given a cluster, investigate its
uncertainty by considering how objects within that cluster
are grouped in multiple base clusters. On the basis of cluster
uncertainty estimation, the reliability of clustering is mea-
sured by an ensemble-driven clustering index (ECI). After
obtaining the locally weighted similarity matrix of each base
cluster, the process of integrating the connection matrix of
the base cluster into the final result is regarded as an opti-
mization problem, and a new consensus function is proposed
to construct the final cluster. Figure 1 is the flow chart of the
proposed algorithm.

The main contributions of our method are summarized as
follows:

Our method not only integrates the uncertainty and validity
of clusters into a local weighting scheme, but also fully con-
siders the uncertainty of clusters in the same base clustering.
In addition, a new consensus function is proposed to theoret-
ically support the optimality of the final clustering result.

Multiple experiments are conducted on a large number of
real data and cancer datasets, and the results demonstrate the
superiority of the proposed ensemble clustering method in
terms of clustering quality and efficiency.

The rest of this article is organized as follows. Related
work will be presented in Section 2. The formulation of the
ensemble clustering problem will be given in Section 3. The
ensemble clustering method proposed in this paper will be
introduced in Section 4. Experimental results are reported in
Section 5. Section 6 summarizes the full text.

II. RELATED WORKS
In recent years, with the rapid development of whole-genome
sequencing and bioinformatics technology, cluster analysis of
gene expression profiles has become an important research
topic in the diagnosis of cancer subtypes, which helps to pro-
vide more precise medical treatment for cancer patients. For
example, Ronglai Shen et al. developed an integrated clus-
tering of joint latent variable models called iCluster, which
integrates flexible modeling of associations between different
data types and variance covariance structure in data types
in a single framework, while reducing the dimensionality of
the data set, using an expectation maximization algorithm
Likelihood inference is performed to finally identify can-
cer subtypes characterized by DNA copy number variations
and gene expression [32]. Wang et al. developed Similarity
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FIGURE 1. Flow diagram of the proposed approach.

Network Fusion (snF) to identify cancer by constructing
a network of samples (such as patients) for each available
data type, and then efficiently fusing these samples into a
network that represents the full spectrum of the underlying
data subtype [33]. Li et al. proposed Bregmannian Consensus
Clustering (BCC), which generalizes the loss between the
consensus clustering result and all input clusters from the
traditional Euclidean distance to the general Bregman loss,
and to the weighted and semi-supervised [5]. Xu et al. used
yeast dataset, human serum dataset andArabidopsis dataset to
construct a minimum spanning tree (MST) expressing multi-
dimensional gene expression profiles, and proposed a cluster-
ing algorithm based on MST Cluster these genetic data [34].
Yu et al. proposed a random double-clustering clustering
ensemble framework (RDCCE) for tumor clustering based
on gene expression data. RDCCE uses a randomly selected
clustering algorithm in the ensemble to generate a represen-
tative set of features, and then assign the samples to the corre-
sponding clusters according to the grouping results [25]. Lock
and Dunson et al. proposed an integrated statistical model
that clusters objects individually for each data source. Using
an extensible Bayesian framework, both consensus clustering
and source-specific clustering were estimated and eventually
used in the subtyping of breast cancer tumor samples [35].
Under the current scale of big data, the dimension of data
objects is usually very high, and gene selection is also a
method for clustering. Tang et al. integrated feature extraction
and feature selection into a unified framework and designed
an unsupervised linear feature selection projection (FSP) for
suppressing the effects of noise while making FSP robust to
noise [36]. Tang et al. proposed a multi-view unsupervised
feature selection (MV-UFS) model to preserve diversity and

consensus learning through cross-view local structure, abbre-
viated as CvLP-DCL, which utilizes the shared and discrim-
inative information between different views to Each view
is projected into the label space, and finally discriminative
features can be selected from different views [37].

In order to improve the robustness and stability of cluster-
ing methods, researchers have begun to focus on ensemble
clustering, and there are many ensemble clustering meth-
ods. Pair co-occurrence-based methods typically construct
co-association(CA) matrix by considering the number of
occurrences of two objects in the same cluster across multiple
base clusters. Using the CA matrix as the similarity matrix,
the traditional clustering method can be used to construct the
final clustering result [21], [28], [30] and [38]. Fred et al.
first proposed the concept of CA matrix and proposed the
Evidence Accumulation Clustering (EAC) method. The idea
of evidence accumulation clustering is to combine the results
of multiple clusters into a single data partition, and each
cluster The results are treated as an independent data orga-
nization evidence and consistent data partitions are extracted
from the merged evidence [30]. Wang et al. extended the
EAC method with the construction of the correlation matrix
considering the cluster size of the original clusters and pro-
posed a probabilistic accumulation method [21]. Huang et al.
proposed an ensemble clustering method based on ensemble-
driven clustering uncertainty estimation and a local weighting
strategy. The labels of the clusters in the entire set were con-
sidered through the entropy criterion, and the uncertainty of
each cluster was estimated for weighting. The local diversity
in the ensemble further proposes two new consensus func-
tions [28]. Lourenço et al. proposed a consensus clustering
method based on the EAC paradigm, which is not limited
to clear partitions and takes full advantage of the nature of
the covariance matrix to determine the probabilistic assign-
ment of data points to clusters by minimizing the Bregman
scatter between the observed co-association frequencies and
the corresponding co-occurrence probabilities expressed as
unknown assignment functions [38]. The graph partitioning-
based approach solves the integration clustering problem by
constructing a graph model to reflect the integration informa-
tion. Strehl et al. formalized the clustering ensemble problem
as a combinatorial optimization problem based on mutual
information sharing, and proposed three graph partition-
based ensemble clustering algorithms, CSPA, HGPA and
MCLA [39]. The median division-based approach formulates
the integrated clustering problem as an optimization problem
whose goal is to find a clustering result by maximizing the
similarity between this cluster and multiple base clusters.
Huang et al. introduced the concept of hyperobjects, which
are compact and adaptive representations of integrated data
that greatly facilitate computation. The ensemble clustering
problem is transformed into a binary linear programming
problem by means of a probabilistic formulation. The con-
strained objective function is represented as a factor graph,
and the maximum product belief propagation is used to
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generate solutions that are insensitive to initialization and
converge to the neighborhood maximum [40].

However, the above studies still have significant limita-
tions in practical applications, and the clustering analysis
for cancer gene expression profiles still cannot achieve the
desired results. To this end, we propose a new ensemble
clustering framework for determining the optimal clusters of
cancer datasets by fully combining the ideas based on pair-
wise co-occurrence methods and median-based partitioning
methods.

III. PRELIMINARY
A. ENSEMBLE CLUSTERING
Suppose there is a dataset X = {x1, x2, . . . , xN } consisting
of N data objects, where xi represents the ith data object.
he dataset X is clustered M times to obtain M partitions,
where each partition contains a certain number of clusters.
Formally, we represent the set 5 of M-based clusters as
follows:

5 =
{
π1, π2, . . . , πM

}
(1)

where

πm = {cm1 , c
m
2 , . . . , c

m
nm}, (2)

where 5m represents the mth base cluster in 5, cmi repre-
sents the ith cluster in πm, and nm represents a total of nm

clusters in πm. Each base cluster is a collection of multiple
samples, and different clusters in the same base cluster do
not intersect with each other. The following conditions must
be met here: ∀π j ∈ 5,∪n

m

i=1 c
j
i = X , cji ∩ c

j
k = ∅ s.t. i 6= k .

Assuming Clsm(xi) = cmi , it means that the data xi belongs
to the ith cluster in the mth base cluster. For convenience, all
clusters in the base cluster set 5 are denoted as:

C = {c1, c2, . . . , cnc} (3)

where ci represents the ith cluster, and nc represents a total
of nc clusters in the base cluster set 5, i.e., nc = n1 +
n2 + . . .+ nM .

PerformM times of clustering on the dataset X to obtain M
partitions5 =

{
π1, π2, . . . , πM

}
, and each partition can get

its connection matrix, ie, CM =
{
CM1,CM2, . . . ,CMM

}
.

The connection matrix is defined as follows.
Definition 1 (Connection Matrix): The connection matrix

CMm that partition πm is an N×N symmetric square matrix,
which reflects whether the two data objects in the division
are grouped into the same cluster. Therefore, CMm can be
used to represent the partitions πm, where the (u, v)th term is
expressed as follows:

CMm
uv =

{
1, if Clsm(xu) = Clsm(xv)
0, otherwise

(4)

B. INFORMATION ENTROPY
In information theory, entropy is a measure of uncertainty
associated with random variables. Joint entropy is a measure
of uncertainty associated with a set of random variables.

Definition 2 (Joint Entropy): For a pair of discrete random
variables (X, Y), the joint entropy H(X, Y) is defined as:

H (X ,Y ) = −
∑

x∈X

∑
y∈Y

p(x, y)log2p(x, y) (5)

where p(x, y) is the joint probability of (x, y). H(X, Y) =
H(X) + H(Y) if and only if two random variables X and Y
are independent of each other. Therefore, given n independent
random variables X1,X2, . . .Xn, then,

H (X1,X2, . . . ,Xn) = H (x1)+ H (x2)+ . . .+ H (xn) (6)

C. EUCLIDEAN METRIC
The Euclidean metric is a commonly used definition of dis-
tance, referring to the natural length of two vectors in an
M-dimensional space.
Definition 3 (Euclidean Metric) The true distance between

two points in M-dimensional space, the distance ED based on
the euclidean metric is defined as:

ED(X ,Y ) =
1
2
‖X − Y‖2

=
1
2
((x1 − y1)2 + . . .+ (xM − yM )2) (7)

when X and Y are N × N-dimensional matrices, then,

ED(X ,Y ) =
1
2
‖X − Y‖2

=
1
2

∑
u∈N

∑
v∈N

(xuv − yuv)2 (8)

IV. DOUBLE WEIGHTED ENSEMBLE CLUSTERING
This paper proposes a double weighted ensemble cluster-
ing method based on local weighting [28]. In this section,
we describe each step of the method in detail.

A. LOCAL WEIGHTING METHOD
Due to the unsupervised nature of clustering algorithms, it is
difficult to know in advance which similarity measure is
correct and reasonable. Different clustering algorithms have
their own scope of application. Due to the difference in
similarity, the clustering results are also different. Therefore,
how to measure the similarity between clusters is the key to
obtain reasonable clustering results. In order to evaluate the
reliability of each cluster, the cluster uncertainty estimation
method based on entropy criterion estimates the uncertainty
of the cluster by considering the cluster labels in the whole
set, and then proposes the concept of ECI to evaluate the
clustering uncertainty and reliability.

As introduced in Information entropy, entropy is a measure
of uncertainty associated with random variables. Each cluster
is a set of data objects. Given two clusters Ci,Cj ∈ C and
Ci,Cj do not belong to the same base cluster, when there are
more overlapping data objects inCi,Cj the value ofH (Ci,Cj)
is smaller. By analyzing the clustering of Ci and C , the
entropy of Ci for the base cluster set 5 can be calculated.
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Definition 4: Given a set 5, the entropy of Ci for the base
cluster set 5 is defined as follows:

H5(ci) = −
∑M

m=1

∑nm

j=1
p(ci, cmj )log2p(ci, c

m
j ) (9)

where

p(ci, cmj ) =

∣∣∣ci ∩ cmj ∣∣∣
|ci|

(10)

where M represents the number of base clusters, nm rep-
resents the number of clusters in the partition πm, and cmj
represents the jth cluster in the mth partition. ∩ denotes the
coincident elements in the two clusters, and |ci| denotes the
number of elements in the cluster Ci.
In summary, p(ci, cmj ) ∈ [0, 1] for any i, j andm, sowe have

H5(ci) ∈ [0,+∞). The entropy of Ci for the base cluster set
5 can reflect how objects in Ci are clustered in other base
clusters in 5. If the objects in Ci belong to the same cluster
in each base cluster, it can be seen that all base clusters agree
to assign the objects inCi to the same cluster, then the entropy
of Ci about 5 reaches the minimum value, namely 0. When
the entropy of Ci with respect to5 is larger, the objects in Ci
are less likely to be in the same cluster.

After obtaining the entropy of each cluster in the cluster
set, we consider the uncertainty of the cluster relative to the
set through the concept of ECI, and add weights to the data
objects within each cluster.
Definition 5: Given a cluster set 5 of M base clusters, the

ECI of cluster Ci is defined as follows:

ECI (ci) = e−
H5(ci)
M (11)

According to Definition 5, since H5(Ci) ∈ [0,+∞), for any
Ci ∈ C , ECI (Ci) ∈ (0, 1]. Obviously, the entropy of Ci for
the base cluster set5 is more The smaller the value, the larger
the ECI value. When the entropy of the cluster reaches the
minimum value, that is, H5(Ci) = 0, its ECI will reach the
maximum value, that is, ECI(Ci) = 1. When the entropy of
the cluster tends to infinity, the ECI of this cluster tends to 0.

According to Definition 1, the connectivity matrix reflects
whether two data objects in the partition are grouped into the
same cluster. Combining the concept of ECI, we propose the
E-similarity matrix(ESM) theory, which reflects the possibil-
ity of two data objects being grouped into the same cluster in
the partition.
Definition 6: (E-Similarity Matrix): The E-similarity

matrix is essentially a symmetric matrix. Given a partition
πm = {cm1 , c

m
2 , . . . , c

m
nm}, calculate its ESM The way is as

follows:

wmi = ECI (cmi ) (12)

ESMm
uv =


wmi , if Clsm(xu) = Clsm(xv) = cmi
i, if u = v
0, otherwise

(13)

where cmi represents the ith cluster in the mth partition, wmi
represents the ECI value of the cluster cmi , and ESMuvm

FIGURE 2. Partitions of π1, π2, π3 base clustering.

represents that the data objects xu and xv are clustered to the
same in the mth base clustering possibility of clusters.

We provide an example in Figure 2 and Table 1 to show
the computation of local weights with respect to three basis
clusters. The data set X = {x1, x2, . . . , x14} has a total
of 14 data objects, which are divided into three partitions
π1, π2, π3 after three clustering. The base cluster set5 has a
total of 8 clusters. According to formula (9) (11), the entropy
and ECI of the 8 clusters can be calculated. The results are
shown in Table 1. As can be seen from Table 1, the entropy
values of clusters c11 and c

2
3 are the smallest, which means that

the certainty of this cluster is the largest. The value ofH5(c32)
is the largest, indicating that the certainty of the c32 cluster
is the smallest, that is, the aggregate set has the smallest
support for the cluster to appear in the final clustering result.
According to Definition 6, formula (14) is calculated from the
ECI in Table 1, which represents the ESM that partitions π1,
that is, the possibility that 14 data objects are clustered into
the same cluster in the first base clustering. When any two
data objects in the data set X = {x1, x2, . . . , x14} are grouped
into the same cluster by the base clustering, then the items
corresponding to the two data objects in the ESM are assigned
a value, which is the ECI of this cluster. Figure 3 shows the
ESM corresponding to partitions π1.

FIGURE 3. ESM of partitions π1 according to Definition 6.

B. EUCLIDEAN METRIC BASED ESM WEIGHTED
ENSEMBLE FUNCTION
The ensemble process refers to the process of finding the opti-
mal one among the partitions generated by each base cluster.
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TABLE 1. Entropy and ECI calculations for clusters in the example in
Figure 2.

In this study, we calculated the corresponding ESM i from the
partitions πm generated by each base clustering. Therefore,
there also exists a similarity matrix ESM, corresponding to
the final optimal consensus partition π . In this sense, finding
an optimal ESM is the key to obtain good clustering results.
In general, different base clusters also have different impor-
tance to the final consensus. Therefore, we treat this objective
as an optimization problem. According to Definition 3, this
optimization problem is described as follows:

min
ESM ,w

wiED(ESM ,ESM i)

s.t. ESM=ESMT , ESM > 0, wi ≥ 0,
∑M

i=1
wi = 1

(14)

where ESM is a non-negative symmetric matrix.
ED(ESM ,ESM i) = ED(ESM , {ESM1,ESM2, . . . ,ESMM

})
represents the sum of the Euclidean metric of ESM i corre-
sponding to ESM and each base cluster. wi represents the
contribution of each base cluster in the consensus process.

We use a block coordinate descent algorithm to minimize
the above problem. When we fix one variable, optimization
over another variable can be viewed as a convex problemwith
a unique solution. In order to avoid solving the result wi only
take 1 and 0, we add a regularization term to formula (15).
Definition 7: Calculate the optimal ESM, defined as

follows:

min
ESM ,w

wiED(ESM ,ESM i)+ λ‖W‖2

s.t. ESM = ESMT , ESM > 0, wi ≥ 0,
∑M

i=1
wi = 1

(15)

where λ is the regularization coefficient. When λ

approaches 0, wi only takes 1 and 0. When λ approaches 1,
the value of wi is 1/M , which is the average of all partitions.
According to Equation (8) and Equation (15), we describe

the problem as:

J (ESM ,w)

=
1
2

M∑
i=1

wi
∑
u∈N

∑
v∈N

(ESMuv − ESM i
uv)

2
+ λ‖w‖2 (16)

By fixing w such that ∂J (ESM ,w)
∂ESM = 0, where 0 is an N × N-

dimensional matrix. We can get:

ESMuv =
1
M

∑M

i=1
wiESM i

uv (17)

Similarly, by fixing the ESM so that ∂J (ESM ,w)
∂w = 0,

the problem is transformed into a linear programming
problem. Then, we can prove that formula (16) con-
verges, J (ESM ,w) ≥ 0 for any ESM and w. By fix-
ing w = wt , the minimization of J (ESM ,w) is con-
vex, ESM t+1 is the optimal solution, and J (ESM t ,wt ) ≥
J (ESM t+1,wt ). Similarly, by fixing ESM = ESM t+1,
we have J (ESM t+1,wt ) ≥ J (ESM t+1,wt+1). Therefore,
we get a monotonically decreasing sequence J (ESM0,w0) ≥
J (ESM1,w0) ≥ J (ESM1,w1) ≥ . . . ≥ 0 . indicating that
formula (17) converges. After finding the optimal solution
ESM through optimization, we use the K-means algorithm
to cluster the ESM to get the final data object labels. Among
them, the input of the K-means algorithm is a vector com-
posed of the similarity between each data object and all data
objects, that is, each column of the ESM.
The Double weighted ensemble clustering algorithm

specifically described as follows:
Input:
• 5 =

{
π1, π2, . . . , πM

}
// M base clustering results

• C = {c1, c2, . . . , cnc}// nc clusters of 5
• k//number of clusters
• λ//regularization coefficient
• ε// precision
Output: labels//the final ensemble clustering result
Step1: Compute the entropy of the clusters in C as

Definition 4.
Step2: Compute the ECI measures of the clusters in C as

Definition 5.
Step3: Compute the ESM set of the partitions in 5 as

Definition 6.
Step4: Optimization ESM in ESM set as Definition 7.
• Initialize wt = [ 1

M ,
1
M , . . . ,

1
M ], t = 0,1 = +∞

• While 1 > ε do:
• t = t + 1
• find the minimum of J (ESM t ,wt ) by fixing wt

• find the minimum of J (ESM t ,wt ) by fixing ESM t

• Compute 1 =
∣∣J (ESM t ,wt )− J (ESM t−1,wt−1)

∣∣
• End while
• Output ESM
Step5: The final result is obtained by clustering ESM

through k-means algorithm.

V. EXPERIMENTS
In this section, we conduct experiments on 10 real datasets
in the UCI database and five cancer datasets from TCGA to
illustrate the advantages of the doubly weighted ensemble
clustering method compared to the state-of-the-art ensem-
ble clustering method. This paper selects new and some
classic clustering algorithms in recent years and com-
pares them with the double weighted ensemble clustering
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algorithm (DWEC). Local Weighted Evidence Accumula-
tion Algorithm (LWEA) and Local Weighted Graph Parti-
tion Algorithm (LWGP) [28], Double granularity weighted
ensemble clustering (DGWEC) [41], Kullback-Leibler Dis-
tance Weighted Bregman Consensus Clustering (KLWBCC)
and Exponential Distance weighted Bregman consensus clus-
tering (eWBCC) [5] were selected as the newly proposed
ensemble clustering comparison algorithms in recent years;
Evidence Accumulation Clustering (EAC) [30], Cluster-
Based Similarity Partitioning Algorithm(CSPA)and Hyper-
Graph-Partitioning Algorithm(HGPA) [39]were selected as
the classic ensemble clustering comparison algorithm;
In addition, k-means [8] and Spectral Clustering(SC) cluster-
ing algorithm [7] were used as basic comparison algorithms.
All parameters involved in the algorithm are set according
to the parameters established in the corresponding literature
experiments, and the performance of the used comparison
algorithm is for reference only. For all ensemble clustering
algorithms, we use 50 partitions generated by K-means clus-
tering algorithm as base clusters, and all evaluation metrics
are averaged 20 times.

A. EXPERIMENTAL COMPARISON OF UCI DATASETS
In our experiments, 10 datasets from the UCI database were
used, namely, Balance, Breast, Glass, Heart, Ionosphere, Iris,
Sonar, Vehicle, Wine and Zoo. All datasets are available
through theUCI official website http://archive.ics.uci.edu/ml/
index.php. The details of the dataset are shown in Table 2.

Mutual information (MI) is a symmetric measure that
quantifies the statistical information shared between two dis-
tributions, which can be seen as the amount of information
contained in one random variable about another random vari-
able, or the amount of information a random variable has
Reduced uncertainty by knowing another random variable.
As the name suggests, normalized mutual information (NMI)
is to put mutual information between [0, 1], which is widely
used to evaluate the quality of clustering. Suppose there are
two random variables (X ,Y ), MI and NMI are defined as
follows:

MI (X ,Y ) =
∑

x

∑
y
p(x, y) log

p(x, y)
p(x)p(y)

(18)

where the joint distribution of random variables (X ,Y ) is
p(x, y), and the marginal distributions are p(x), p(y) respec-
tively. In essence, the mutual information MI (X ,Y ) is the
joint distribution p(x, y) and the relative entropy between the
marginal distribution product p(x)p(y).

NMI (X ,Y ) =
2MI (X ,Y )

H (X )+ H (Y )
(19)

where H (X ) is the definition of entropy in Equation 5.
The application of normalized mutual information in this

paper, the reference [28] is defined as follows:

NMI (π ′, πG) =

∑n′
i=1

∑nG
j=1 log

nijn
ni ′nGj√∑n′

i=1 ni
′ log nj ′

n

∑nG
i=1 n

G
j log

nGj
n

(20)

FIGURE 4. Number of times ranked first.

FIGURE 5. Number of times ranked in the top three.

where π ′ is the clustering result of the experiment, πG is the
clustering result of the truth, n is the number of data objects,
n′ is the number of clusters in π ′, and nG is the cluster in πG,
n′i is the number of data objects in the ith cluster in π ′, nGj is
the number of data objects in the jth cluster in πG, nij is the
ith cluster in π ′ and the number of data objects in common in
the jth cluster in πG.
Table 3 reports the NMI scores of different ensemble

clustering methods based on the 50th K-means algorithm as
base clustering. Deepening font in each line is the maximum.
As shown in the table, the DWEC method obtains the best
value among the NMI scores of each ensemble clustering
method for the five datasets of Balance, Glass, Heart, Vehicle
and Zoo. In addition, Figure 4 and Figure 5 respectively show
the number of times that each method obtains the first and the
top three in the NMI scores of the 10 datasets. Our proposed
DWEC method achieves 5 firsts and 7 firsts, which is the
best among many existing methods. It shows that the DWEC
method has higher accuracy and robustness.

B. EXPERIMENTAL COMPARISON OF THE TCGA
CANCER DATASET
To make our research more meaningful, we now take the
real cancer gene dataset as the research object. We selected

VOLUME 10, 2022 41483



X. Zhang, H. Huo: Double Weighted Ensemble Clustering for Cancer Subtypes Analysis

TABLE 2. Experimental data set description from UCI.

TABLE 3. Comparison of NMI values between DWEC algorithm and other algorithms on 10 real UCI datasets.

five cancers with high global incidence: Glioblastoma mul-
tiforme (GBM), Breast invasive carcinoma (BIC), Kidney
renal clear cell carcinoma (KRCCC), Lung squamous cell
carcinoma (LSCC) andColon adenocarcinoma (COAD) from
The Cancer Genome Atlas (TCGA). TCGA is a project
overseen by the National Cancer Institute and the National
Human Genome Research Institute to apply high-throughput
genome analysis techniques to help people have a better
understanding of cancer. Complete understanding, thereby
improving the ability to prevent, diagnose and treat can-
cer. TCGA data requires complex preprocessing, and for-
tunately, the dataset provided by the article [33] can meet
our research conditions. Among them, each type of cancer
provides three types of gene expression (mRNA, miRNAs
and methylation): mRNA is short for messenger RNA, and
RNA expression measured by RNA sequencing is transcribed
from DNA; MicroRNAs (miRNAs) are small endogenous
non-coding RNA molecules, the amount of RNA expres-
sion detected by microRNA sequencing; methylation refers
to the degree of DNA methylation, as measured by methy-
lation chips. The data preprocessing process is described
in detail in the paper [33]. All datasets are available at
http://compbio.cs.toronto.edu/SNF/SNF/Software.html.

Glioblastoma multiforme dataset: This dataset contains
215 samples with dimensions of 12042, 534 and 1305 for
mRNA, miRNAs and methylation, respectively.

Breast invasive carcinoma dataset: This dataset contains
105 samples with dimensions of 17814, 354 and 23094 for
mRNA, miRNAs and methylation, respectively.

Kidney renal clear cell carcinoma dataset: This dataset
contains 122 samples with dimensions of 17899, 329 and
24960 for mRNA, miRNAs and methylation, respectively.

Lung squamous cell carcinoma dataset: This dataset con-
tains 106 samples with dimensions of 12042, 532 and
23074 for mRNA, miRNAs and methylation, respectively.

Colon adenocarcinoma dataset: This dataset contains
92 samples with dimensions of 17814, 312 and 23088 for
mRNA, miRNAs and methylation, respectively.

Different conclusions can be drawn due to the use of differ-
ent types of gene expression. For example, usingmiRNAs and
methylation it is possible to profile different cancer subtypes.
Therefore, this study combined the gene expression of three
different types of five cancers, respectively, to obtain five
datasets. The details of the dataset are shown in Table 4.

TABLE 4. Experimental data set description from TCGA.

The difference between the TCGA dataset and the UCI
dataset is that the former has no labels, so we cannot use the
normalized mutual information in Section 5.1 to evaluate the
quality of the clusters. Here we use −log2p in logrank-test
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FIGURE 6. Survival curves of DWEC method and Spectral Clustering (SC) clustering algorithm for GBM dataset clustering
results. (a) DWEC method (b) Spectral Clustering clustering algorithm.

FIGURE 7. Survival curves of DWEC method and Spectral Clustering clustering algorithm for BIC dataset clustering results.
(a) DWEC method (b) Spectral Clustering clustering algorithm.

FIGURE 8. Survival curves of DWEC method and Spectral Clustering clustering algorithm for KRCCC dataset clustering
results. (a) DWEC method (b) Spectral Clustering clustering algorithm.

as the evaluation criterion for clustering results of different
methods to evaluate the significance of differences in survival
information among different subtypes [42]. The application
of log-rank test in this study is to compare the survival curves
between multiple groups to study whether the difference in

survival distribution among multiple groups is statistically
significant. Suppose there are i survival distributions. H0 is
defined as the null hypothesis that all survival distributions
are the same. In this study, we take p ≥ 0.05 as H0, and
the difference of i survival distributions is not statistically
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TABLE 5. Comparison of −log2p values between DWEC algorithm and other algorithms in log-rank test on 5 TCGA cancer datasets.

FIGURE 9. Survival curves of DWEC method and Spectral Clustering clustering algorithm for LSCC dataset clustering results.
(a) DWEC method (b) Spectral Clustering clustering algorithm.

FIGURE 10. Survival curves of DWEC method and Spectral Clustering clustering algorithm for COAD dataset clustering
results. (a) DWEC method (b) Spectral Clustering clustering algorithm.

significant under the condition that H0 is established, that is,
when −log2p ≥ 4.32, H0 is rejected. −log2p the larger the
value, the better the clustering effect.

In the study [33], by reviewing numerous literatures, the
experiment divided glioblastoma multiforme into 3 subtypes,
breast invasive carcinoma into 5 subtypes, kidney renal clear
cell carcinoma is divided into 3 subtypes, lung squamous cell
carcinoma is divided into 4 subtypes, and colon adenocar-
cinoma is divided into 3 subtypes. This study will use this
conclusion as the number of clusters for different datasets.

Table 5 reports the values of −log2p in the log-rank test
of DWEC and ten contrasting algorithms on the TCGA can-
cer dataset. Deepening font in each line is the maximum.
As shown in Table 5, for the time series detection of GBM, all

methods except the LWGP method satisfy theH0 hypothesis,
indicating that there is no significant difference in the survival
distribution among the groups of the clustering results. For
the BIC, KRCCC, LSSS and COAD datasets, the DWEC
method proposed by us is superior to other methods, indi-
cating that the clustering results of the DWEC method have
greater differences in survival distribution among the groups,
and the results are more reliable. On the whole, the DWEC
method has the best clustering effect, and the SC clustering
algorithm has the worst effect. Figure 6 - Figure 10 show
the survival curves of each group by the DWEC method and
the SC algorithm for GBM, BIC, KRCCC, LSSS and COAD
datasets, respectively. Survival curves are used to describe the
survival status of several groups of patients. The horizontal
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axis of the survival curve is the observation time, and the
vertical axis is generally the survival rate. Each point on the
curve represents the patient’s survival rate at that time point.
In general, the greater the distance between the curves, the
greater the difference in the prognosis of patients in each
group, and the easier it is to make statistical differences.
As shown in the figure, the DWEC method has significant
advantages over the SC clustering algorithm.

VI. CONCLUSION
This paper proposes a double weighted ensemble clustering
algorithm. First, according to the local weighting method,
the similarity matrix of each base cluster is obtained. The
problem is then transformed into a convex optimization prob-
lem, and the optimal similarity matrix is obtained by a block
coordinate descent algorithm. Finally, theK-Means algorithm
is used on the basis of the similarity matrix to obtain the final
partitions result.

Due to the high latitude characteristics of cancer gene
data, higher requirements are placed on clustering accuracy.
The DWEC method is weighted twice and aims to improve
the clustering accuracy. We conduct extensive experiments
to demonstrate the large superiority of DWEC algorithm in
terms of clustering quality. First, a large number of experi-
ments are conducted on the labeled UCI dataset. By compar-
ing the NMI values of various algorithms, the results show
that ourmethod performs best comparedwith existing ensem-
ble clustering methods. On the clinical side, these algorithms
are used for clustering of cancer genes to analyze cancer
subtypes. Through experiments on five common cancers in
TCGA, and comparing the time series detection results of
each clustering algorithm, the effectiveness of our method is
verified.

In the next step, we plan to apply our consensus clustering
framework to large-scale data from the World Health Orga-
nization, such as analyzing potential links between public
health expenditures and life expectancy in countries, potential
factors affecting suicide rates in countries, etc.
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