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ABSTRACT The Internet of Things (IoT) and artificial intelligence (AI) based methods for monitoring,
control, and decision support are combined to design of a smart agriculture assistance system. The proposed
system has a sensor pack that provides continuous data capture of temperature records, air and soil moisture
and a camera for obtaining near-infrared (NIR) images of the plant leaves for use with an AI decision support
system. We identify twelve types of vegetation for the study, out of which five disease classes of the tomato
leaves are categorized using a Convolutional Neural Network (CNN). The work also includes experiments
conducted with multiple clustering-based segmentation methods and some features namely Gray level
co-occurrence matrix (GLCM), Local binary pattern (LBP), Local Binary Gray Level Co-occurrence Matrix
(LBGLCM), Gray Level Run Length Matrix (GLRLM), and Segmentation-based Fractal Texture Analysis
(SFTA). Out of several AI tools, CNN proves to be effective in providing automated decision support for
classifying the plant leaf disease types through a cloud server that can be accessed using an app. Extensive
on-field trials show that the system (VGG16 CNN, GLCM and a fuzzy based clustering) is effective in hot
and humid conditions and proves to be reliable in identifying disease classes of certain vegetable types,
certain usable vegetation cover of farmland and regulation of watering mechanism of crops.

INDEX TERMS Artificial intelligence, near-infrared images, CNN, image processing, leaf disease, smart
agriculture.

I. INTRODUCTION
World over agriculture is one such human activity that criti-
cally ensures food supply to the ever-increasing human pop-
ulation. This has necessitated the adoption of technology
and other modern means to enhance the productivity of the
agriculture sector to meet the increasing demand for food
required to sustain the expanding human population all over
the world [1]. With the proliferation of the internet and digital
technology, the agriculture sector has also adopted the best
practices of these developments to explore ways and means
to increase productivity, ensure efficiency, and contribute to
protecting the environment [2], [3]. Lately, the trend has been
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towards using data-aided tools, especially artificial intelli-
gence (AI) based methods that are effective in providing yield
fore-cast, process monitoring, accurate control, and reliable
decision support [4]. The advantage of using AI tools like
Artificial Neural Network (ANN), Deep Neural Network
(DNN), etc., is the fact that these can learn from the surround-
ings, retain the learning and use it subsequently [5].

For a majority of the countries, including India, the use
of pattern recognition and AI-aided tools in agriculture
becomes more pertinent because a sizable section of the
productive workforce is engaged in this sector. Subsequently,
the mechanism embraces precision approaches increasing
efficiency and productivity in agriculture. Over the years,
attempts have been made to use many such techniques,
including identifying deficiencies in the farm produce and
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several other critical areas. In [6], color and pattern anal-
ysis applied to identify multiple deficiencies in paddy leaf
images have been reported. There are also attempts to use
internet of things (IoT) platforms and cloud computing as
aids to farming. Authors in [7] proposed a framework that
combines cloud computing and unified IoT for application in
the agriculture sector. IoT has also been a preferred option
for water flow control in agriculture [8]. It has been com-
bined with pattern analysis techniques for providing smart
agriculture solutions [9], including classification of weeds
[10] and crops disease detection [11], [12]. The applica-
tion of AI-based methods for predictive farmland optimiza-
tion has been reported in [13], a combination of IoT and
machine learning tools for goat monitoring in [14], soil
texture classification using support vector machine (SVM)
by Barman et al. in [15], chlorophyll detection by a class of
learning techniques explored in [16], etc. The performance of
deep learning methods for agriculture has been highlighted
in [17]–[20]. Application of AI based method in combination
of spatio-temporal methods for real life situations have been
reported [21], [22], [26]–[28]. These are some of the recent
works related to the use of AI and IoT tools in agriculture and
certain real-life situations.

The discussion above establishes the importance of
learning-based tools and IoT in the agriculture sector.
As health monitoring of the plants is one of the foremost
tasks in smart agriculture, there are ample scopes to explore
innovative ways to make the farmer’s life easier, especially
in a country like India where agriculture and allied sectors
employ a huge section of the population. Here we describe the
design of a proof-of-concept approach to see the effectiveness
of an arrangement based on multiple sensors and AI based
decision support system used for process monitoring and con-
trol for improving yield of agricultural produce. The proposed
system is part of a precision farming approach where the
application of IoT devices, image processing techniques and
an AI framework are configured to derive decision states and
execute process control to help the farmer to maximize the
produce. In this work, the decision states obtained from the
AI system regarding plant heath triggers a pump for water
sprinkling. The farmer maybe constrained to keep an eye
continuously on a plot of land where certain crops are being
grown. So, for continuous monitoring and deriving decision
states regarding plant health such a set-up is considered to be
effective. It provides an approach to automate certain repeti-
tive tasks and assists the farmer to execute healthy practices
for obtaining better agricultural yield. The IoT system is
required to capture the state of the geographical elements and
facilitate continuous monitoring. A drone might be an exten-
sion of an IoT system. The Landsat images used currently
to validate the ability of the AI system. The Landsat images
can be replaced by real-time feed obtained from a camera
mounted on a drone. Ground truth is that the life of the farmer
is very miserable. So, any arrangement that makes the misery
of the farmer less is always a healthy development. It matters
a lot for populous countries like India.

We report the design of a health monitoring system of
the plants which is based on the calculation of the Normal-
ized Difference Vegetation Index (NDVI) to distinguish the
healthy and non-healthy plants using images that are captured
by a near infra-red (NIR) camera as part of an IoT set-up and
integrated with a learning-aided platform. The low-cost pack
connecting several sensors and the NIR camera forms the IoT
and revolves around a programmed microcontroller linked
to a computer system and subsequently to a cloud server.
Subsequently, the entire framework works together with a
learning-based system that identifies diseased and healthy
leaves. The framework is formulated after conducting a series
of experiments involving clustering, SVM, machine, and
deep learning methods. The work involves experiments with
two clustering-based segmentation methods: K-means clus-
tering (KMC) and Fuzzy C-means (FCM) clustering used to
separate healthy and diseased leaf segments. The specific AI
tools used are SVM, a Multi-Layer Perceptron (MLP) that is
a feed-forward ANN, a Time Delay Neural Network (TDNN)
that is another feed-forward ANN, an Adaptive Neuro-Fuzzy
Inference System (ANFIS) that is a fuzzy-based decision-
making method, and a Convolutional Neural Network (CNN)
that is a popular deep learning tool. The AI aspect of the work
is deployed in a cloud server which can be accessed using
an app. After extensive on-field trials, it has been found that
the system is useful for a class of agricultural produce com-
monly seen in hot and humid conditions of India. Especially,
the deep learning-based decision support system formed
by the VGG16 CNN proves to be effective when used in
combination with Gray level co-occurrence matrix (GLCM)
features and FCM based clustering (which performs seg-
mentation of the region of interest (RoI) of tomato leaves)
and adopted as part of the health monitoring system. The
system is also used to identify effective usable vegetation
cover of farmland. The novelty of the system is the design
of a deep learning-based decision support system formed by
the VGG16 CNN which proves to be effective when used
in combination of GLCM features and FCM based cluster-
ing (which performs segmentation of the region of interest
(RoI) of tomato leaves) and adopted as part of the health
monitoring and process control system which is also used
to identify effective usable vegetation cover of a farmland.
The rest of the paper is organized as follows. In Section 2,
the proposed work is discussed in detail. The results and
discussion have been covered in Section 3. The outcomes
of the work have been summarized in the conclusion
section.

II. PROPOSED WORK
Here, we discuss the details of the plant leaf healthmonitoring
system deployed over an IoT, a cloud server and the decision
states generated using a class of clustering, SVM and learning
aided methods. Before discussing the design and working
of the complete system, some basic notions related to the
different elements of the work are discussed in the sections
below.
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FIGURE 1. Generic IoT setup.

A. THEORETICAL CONSIDERATIONS
In this section, we include brief discussion on some of the
theoretical considerations of the techniques related to the
work. We specially highlight the key aspects of NDVI, IoT,
clustering methods, ANN techniques like MLP and TDNN,
ANFIS, SVM and CNN.

1) NDVI
NDVI is used to differentiate between bare soil and grass
or forest and differentiate between various crop stages etc.
It works using the principle that healthy plants reflect more
near infra-red (NIR) and green light compared to other
colours. So, more is the chlorophyll (healthy sign), more
will be NIR reflection [16]. NDVI is a ratio between the red
(R) and near infrared (NIR) values and is expressed as

NDVI =
NIR− R
NIR+ R

(1)

2) IOT
IoT is meant as a collection of physical devices, sensors,
communication systems, user interfaces, etc., in a connected
state used to provide analytics, process control and real-time
decision support in a range of situations and applications [23].
A generic IoT setup is shown in Fig. 1.

3) CLUSTERING METHODS
These are a type of unsupervised grouping method where,
depending upon some similarity, objects are placed in seg-
ments or classes. Two types of clustering methods are used.
First one is the K-means clustering (KMC) and the second
one is the Fuzzy C-Means clustering (FCMC) [5].

4) FEATURE EXTRACTION METHODS
Features provide a concise and relevant description of an
input image and assist in appropriate decision-making using
classifiers. However, a deep learning networkmay not require
features as feature learning is part of such networks. But
other learning-based classifiers require certain features. For
agriculture produce and plants, a few popular features are
Gray level co-occurrence matrix (GLCM), Local binary pat-
tern (LBP), Local Binary Gray Level Co-occurrence Matrix

(LBGLCM), Gray Level Run Length Matrix (GLRLM),
and Segmentation-based Fractal Texture Analysis (SFTA)
[24]. Further, GLCM forms a composite set using features
like skewness, standard deviation, homogeneity, contrast,
smoothness, correlation, kurtosis, energy, entropy, mean,
variance, and root mean square (RMS) to make the extracts
content-rich. The GLCM feature determines the textural rela-
tionship among pixels and is related to the second-order
statistics. The GLCM features determines how gray scale
intensities are distributed vertically and horizontally and also
in different orientations along the diagonals. With the help
of the GLCM features certain statistics like contrast, cor-
relation, energy and homogeneity can be calculated which
are useful in determining the texture of the image. The LBP
features denote statistical and structural model of the tex-
tual content of images and demonstrate high invariance to
light intensity variations. The LBGLCM feature is generated
by combining LBP and GLCCM algorithms. The GLRLM
feature is obtained from texture representations that con-
tain each pixel’s spatial plane features connected to certain
higher-order statistics. The SFTA algorithm carries out a
fractal-based analysis of the image texture. Skewness is asso-
ciated with a third-order moment and represents a sample’s
deviation from an ideal probability distribution. Standard
deviation represents the deviation of a sample’s statistical
properties from its mean. Homogeneity signifies the variation
a sample may have from its average statistical distribution.
Contrast denotes the pixel intensity variations with regard to
the neighborhood. Smoothness ensures the absence of sudden
variation of pixel intensity.

Correlation is linked with the similarity of pixel variations
between two different images. It can measure the changes in
the pixel intensity within the image compared to the situation
when the variations had not taken place. Kurtosis is a fourth-
order statistic. Energy is associated with localized changes
in an image. Entropy denotes the information richness of an
image. RMS outlines the texture variations occurring in an
im-age and captures the distortions in statistical distributions.

5) ANFIS
The ANFIS is based on the Sugeno-type fuzzy systems
and can be implemented using a multilayered feed forward
structure [25] as shown in Fig. 2.

FIGURE 2. ANFIS structure.
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In Layer 1 (fuzzification), each node generates the mem-
bership grades of a linguistic label. Here a membership func-
tion of the type Gaussian Membership Function (MF) is
used. The Aj and Bj are the linguistic variable with Gaussian
MF. In Layer 2 (antecedent), using any other fuzzy AND
operation, the nodes calculate the firing strength of each
rule. Next, in Layer 3 (normalization), the nodes find out the
normalized firing strength. It calculates ratios of the rule’s
firing strength to the sum of all the rules firing strength. The
nodes of Layer 4 (consequent) compute consequent parame-
ters which are dependent on Layer 3. It is an adaptive layer.
In the Layer 5 (aggregation), the overall output is calculated
where each node aggregates the final output as the sum of
all incoming signals. The layers are linked by connectionist
links which are adaptive and update during each cycle of
learning. The output is compared with the desired goal and
the updating of the weights which multiply the inputs to each
layer is continued till the objective is attained.

6) MLP
The MLP is a multi-layer feed forward ANN which is made
up of one input and one output layer and one or several
hidden layers with log-sigmoid, tan-sigmoid or purely linear
activation functions. A generic MLP architecture is shown in
Fig. 3 [23]. Let X be an input applied to a MLP. Let W1ij be
the weight matrix between input and hidden layer and W2jk
be the weight matrix required to connect the artificial neurons
between the middle layer and the output layer. Here, i keeps
count of number of input samples, j is related to the indexing
of the number of hidden layer neurons and k is linked to the
output layer size. The output of the MLP is expressed as

Yo =
∑K

k=1
fk{

∑J

j=1

∑I

i=1
(X iW1ij + bi)W2jk (2)

Let YT be the target output. The mean square error (MSE) is
expressed as:

E =
1
2

∑P

p=1
(Y po − Y

p
T )

2 (3)

During training, weight update happens following a gradient
descent principle. The weight update expression is given as

W [n+ 1]j = W [n]j + µ
1E

1W [n]
(4)

where µ is the learning rate of the network usually taken to
be a fraction between 0 and 1. The MLP is trained with back
propagation algorithm till it learns the patterns completely.
The choice of hidden layers’ number and the activation
functions depends upon the requirements. In our case we
have used a one hidden layer MLP with one and half times
more numbers of artificial neurons of the input layer. These
activation functions are of log-sigmoid type and are used to
learn the leaf classification patterns.

7) TIME DELAY NEURAL NETWORK (TDNN)
The TDNN is another multi layered feedforward ANN like
MLP but has delayed feed in the input. With this feeding

FIGURE 3. Layout of the MLP.

FIGURE 4. Layout of the TDNN.

method, the TDNN is able to track variations in data due
to time. Like MLP, it also has multiple layers with input,
output and hidden types and is trained with back propagation
algorithm. In our case with have used 1 to 2 numbers of
positive delay to develop time tracking ability of the ANN.
Fig. 4 shows a layout of the TDNN [23]. For the TDNN, the
output and other expressions are same as shown in (2)-(4)
except that the input shall be a combination ofX(n)+X(n+T )
where T denotes the delay used in the input feed layer.

8) SUPPORT VECTOR MACHINE (SVM)
The SVM is a supervised learning-based approach used for
classification and regression. The working of the SVM is
explained using Fig. 5. The discrimination boundary between
the classes is laid by

H0 : w.x i + b = 0 (5)

where input x i is scaled by weight w and aided by the
bias b. It classifies the patterns according to the values asso-
ciated with support vectors across the two sides of the
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FIGURE 5. Working of the SVM.

FIGURE 6. Basic layout of CNN.

hyperplane [5]. Here, each sample value is considered as a
point in n-dimensional spacewith the numerical count of each
pattern representing a particular coordinate. The closeness of
the coordinate to the class-region derived through the use of
support vectors determines the classification of the samples.
In this work, the Gaussian kernel is used for passing the input
x i and generating multi-class states which are subsequently
scaled by the weight w for performing the classification. The
SVM is used as a benchmark technique in this work.

9) CONVOLUTIONAL NEURAL NETWORK (CNN)
The CNN is a deep learning network used for pattern classi-
fication and is constituted by an input, output and a number
of middle layers. These include multiple repetitions of max-
pooling layer, sub-sampling layer, normalization layer, fully
connected layer etc. before connecting to a classification
layer which is normally the output layer (see Fig. 6). The
CNN doesn’t require much of preprocessed and labelled data
while feature learning takes place layer by layer without any
human intervention. The frontend has a number of convolu-
tional masks of varying sizes which take part in data capture
with minute details which greatly enhance its discrimina-
tion and internal hierarchical feature extraction contributing
towards its superior classification capabilities [5].

B. SYSTEM MODEL AND WORKING
The system model of the proposed design is shown in Fig. 7.
The system has both hardware and software components.

FIGURE 7. Block diagram of the proposed design.

Its hardware elements include a Raspberry Pi 3 microcon-
troller, temperature and humidity sensor (DHT11), soil mois-
ture sensor, motor pump with a relay, and a NIR camera.
Further, an MQ-135 gas sensor pack is also connected to
detect spurious gases and initiate certain process control. The
sensors and the camera are connected to the microcontroller
to form an IoT pack connected to a host computer and
subsequently to the internet so that seamless data transfer,
web access, and related processing can occur. There are two
aspects to the design. First, an on-field feed mechanism as
part of which data regarding the leaf of a plant using a NIR
camera, moisture content, and temperature of the surround-
ings are connected using the IoT pack. Next, a user can use a
smartphone application (designed for the purpose) to feed the
related data online to the system. Leaf health of certain com-
mon agricultural produce like cabbage, chilly, cauliflower,
carrot, coriander, cucumber, pumpkin, ginger, potato, tomato,
ladyfinger, and gourd are taken into consideration.

Initially, through certain on-field visits, training samples
covering healthy, diseased, and dead leaves numbering at
least 1000 of each of the twelve vegetable types are cap-
tured using the NIR camera. Data bootstrapping techniques
(Fig. 8) are used to increase each type’s training and testing
set volumes when required. Simultaneously the reading of the
temperature, moisture, and the surrounding gaseous contents
are recorded both using the IoT pack and manually. The
NDVI value for each type of leaf sample is calculated and the
health state labeled. Accordingly, the associated temperature,
moisture, and gaseous surrounding attributes are embedded
into a file used with the cloud-based learning system. These
physical parameters are required for process control like
running a water pump etc., as per the vegetation require-
ments. But the main focus is on designing a learning-based
system for monitoring plant health. Here we have explored
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FIGURE 8. Bootstrapping method to increase data samples for training.

the effectiveness of SVM, MLP, TDNN, ANFIS, and CNN
in carrying out the training and subsequently providing clas-
sification for different leaf states for the twelve identified
types of vegetables. The benchmark experiments are carried
out with the tomato plant. The NDVI values are calculated
using certain steps. First, using the NoIR camera, a visible
leaf of a plant is captured. Next, the NoIR image is split
into R, G, B, and NIR planes from which NDVI values
of individual planes are calculated. An average of all these
values is taken from this representation, which becomes the
required NDVI value. For a healthy leaf, the NDVI value is
0.96, the diseased has a value of 0.42, and a dead leaf has
a value of −0.02. These are taken for apriori classification
and labeling of the leaf samples. Now taking the values of the
sensor, separate training cycles are carried out for each of the
selected learning-based systems.

The updated states of the learning along with the classifi-
cation decision details are held in a database. An application
for the user has been designed using the Blync app to hold
the data coming from the field sensors and interfaces in a
cloud server. The images of the plant leaves are taken, prepro-
cessed (for noise removal, enhancement, etc.), and subjected
to segmentation. Clustering techniques like KMC and FCM
are used for this purpose. Next, features using GLCM, LBP,
LBGLCM, GLRLM, and SFTA are extracted and applied
to SVM, MLP, TDNN, ANFIS, and CNN for carrying out
the classification. Further, features like skewness, standard
deviation, homogeneity, contrast, smoothness, correlation,
kurtosis, energy, entropy, mean, variance, and root mean
square (RMS) are considered a composite set derived from
the GLCM and used extensively to make the process robust.
The processing logic is summarized in Fig. 9.

Further, the learning-based systems use the sensor feeds
to automate the process of watering the plants keeping an
eye on threshold set. The sensors continuously provide the
readings regarding the temperature and the humidity sensor of
the surroundings and the soil moisture state. The combination
of these three readings is used to decide upon the triggering
of the water pump and the duration. All probable conditions
involving the temperature, humidity and soil moisture and
association with the watering requirements are ascertained
beforehand for a particular crop type and applied to the
learning system. These time dependent sensor feeds are learnt
and the mapping with the watering states are established by
the learning systems.

FIGURE 9. Process logic of plant leaf classification.

TABLE 1. Experimental parameters.

III. EXPERIMENTAL DETAILS AND RESULTS
Extensive experiments have been carried out to check the per-
formance of the proposed design. The relevant experimental
specifications are summarized in Table 1.

The experiments are carried out taking into account these
experimental specifications covering pre-processing method,
segmentation approach, features considered, classifiers used,
parameters necessary and details of data applied to train the
learning aided decision support system. A GUI has been
developed for applying the samples into the system. The
outputs of each stage can be obtained using the GUI while
the system processes and generates responses. After carrying
out the pre-processing operations like noise removal and
enhancement (Fig. 10), and re-sizing in some cases, image
segmentation is carried out using two clustering techniques
which have already been mentioned above.

Weighted moving average filtering provides 8 to 12%
improvement in terms of peak signal to noise ratio (PSNR)
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TABLE 2. Accuracy (Acc), IOU and PA performance of KCM and FCM clustering approaches used for segmentation.

values compared to spatial filtering during noise removal.
Similarly, histogram processing consistently yields 9% better
results in terms of PSNR compared to enhancement oper-
ations using filter masks. The fuzzy based segmentation
approach related to FCM provides better segmentation per-
formance (segmented portion + GLCM feature + classifier)
as observed from the experimental results (Table 2).

This is because of the fact that the randomness and minor
variations in the pixels of the leaf samples are handled well
by the fuzzy attributes in the approach. The classifiers pro-
vide outputs in terms of true positive (TP), true negative
(TN), false positive (FP) and false negative (FN). The ratio
between the sums of TP and TN (TP+TN) and TP, TN,
FP and FN (TP+TN+FP+FN) in percentage gives accuracy.
Further, as the segmentation block plays a very significant
role in determining the reliability of the proposed system,
its performance is ascertained in terms of Intersection over
union (IOU) and Pixel Accuracy (PA). The IOU and PA
values are obtained using

IOU =
TP

TP+ FP+ FN
(6)

PA =
TP

TP+ FN
. (7)

The average values of IOU and PA obtained from both
the segmentation methods used with the classifiers are shown
in Table 2. Moreover, the clustering-based approach is used
for selecting the region of interest (RoI) which is reinforced
using manual labelling. The clustering based RoI selection
can be used to automate the class labelling process. This is
shown in Fig. 11. The GLCM algorithm enables calculation
of contrast, correlation, energy, homogeneity, mean, standard
deviation, entropy, RMS, variance, smoothness, kurtosis and
skewness values (Fig. 12) which are applied to a benchmark
SVM classifier. The classifier not only classifies in terms of
healthy and unhealthy leaves but also detects disease attacks
like bacterial spot, blight, septoria, spider mites and yellow
leaf curl. These are common disease associated with tomato
plants.

The classification has also been carried out with MLP,
TDNN, ANFIS and CNN. In case of the deep learning-based
recognition, the CNN based VGG16 model is taken for the
purpose of classifying the leaf disease. The configuration of
the VGG16 is shown in Fig. 13.

The maximum time consumed by each of the learn-
ing based methods while training with the full comple-
ment of training data is shown in Table 1. While the
CNN based VGG16 model takes the maximum time, it is
robust, doesn’t require additional feature learning, provides

FIGURE 10. Image processing operations over a diseased leaf.

consistent accuracy and demonstrates the best ability to han-
dle variations in the input. The SVM takes least amount of
time to train but reliability performance with samples not
within the extended data set is the worst amongst the methods
considered for the work. The multi layered feature transform
taking place in case of the CNN based VGG16 model enables
detailed capture of the relevant content and hence provides
the best results despite a higher requirement of training time.
However, the testing time for all the methods are nearly equal.

The model has a classifier layer at the end which is pre-
ceded by a block formed by three fully connected layers two
of which have a length of 4096 and the last layer has a length
of 1000. The classification layer is formed by a soft-max layer
with log-sigmoid activation function. The main body of the
VGG16 CNN is formed by five repetitions of two blocks of
3 × 3 convolution mask and a layer of 64 rectified linear
unit (ReLU) activations followed by a 2 × 2 max-pooling
layers. This thick block carries out the feature learning from
the input samples. Experiments are carried out using the fea-
ture set and also by feeding the images directly. The soft-max
layer is initially provided with labelled class data for carrying
out the learning. In another set of experiments the approach
is made automated by using the FCM to generate the RoI
from the leaves which are used as targets for classification.
Fig. 14 shows a training time accuracy performance generated
using the feature set.

This accuracy (number of correct pixel classification com-
pared to the total number of pixels of an image sample
expressed in percentage) of around 95% (Fig. 14) in the case
of tomato leaf samples for the five different disease types
is generated after seven epochs of training with a batch size
of 50 which is repeated for about 500 training samples. The
average performance with all the identified plant types and
class groupings suffers a bit but is over 94%.When the images
are used as input, the training takes over ten times more
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FIGURE 11. GUI showing pre and post pre-processing, segmentation and
selection of region of interest operations over a diseased leaf.

FIGURE 12. Feature values of disease affected region from GLCM
algorithm.

cycles, but accuracy performance is improved to 96% with
no dedicated feature extraction block requirements. The per-
formance obtained with the validation set is better compared
to the training set. This is because the validation data set
has better diversity than the training dataset. During training,
the AI system completely becomes familiar with the training
data set. Hence, the training dataset loses diversity, but the
validation dataset is formed using bootstrapping technique
which has greater diversity. Learning-based systems work
well with datasets where there is diversity. The experimental
results of the various experiments are explained below.

The accuracy performance of the segmentation block is
shown in Table 2. The KCM and FCM approaches are
used to extract out the leaf segments of the tomato leaf
samples. For these segments, features are extracted using
the GLCM approach and classification using SVM, MLP,
TDNN, ANFIS, and CNN classifiers. Except for ANFIS in
all the classifiers, the FCM based segmentation contributes
towards improved performance. In the case of CNN, there
is a 2% improvement while in cases of SVM, MLP and the
TDNN there is 1%better result due to the use of the FCM. The

FIGURE 13. VGG16 CNN used for plant leave disease.

FIGURE 14. Training time performance of the VGG16 CNN.

fuzzy-based approach of capturing the segment details helps
to extract the segments better. The use of the fuzzy-based
image segmentation also helps in finer discrimination even if
there might be a very small amount of variation for extraction
out the leaf’s healthy and diseased sections, which adds to the
improvement in the performance of the classifiers.

Another set of results are generated to show the effective-
ness of the features. We have used GLCM, LBP, LBGLCM,
GLRLM, and SFTA features to derive decisions regarding
the health state of the plants. For about 500 tomato leaf
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TABLE 3. Accuracy performance of feature sets with a few identified
classifiers as part of health monitoring of tomato leaf samples.

samples sets of five different features, their combinations are
extracted and applied to SVM, MLP, TDNN, ANFIS and
CNN classifiers. This is calculated for a number of trials for
the samples used during training and testing. The average
accuracy performances are recorded and are shown in Table 3.

The healthy and diseased extracts segmentation is done
using the FCM approach, showing improved performance,
as noted in Table 2. It is seen that the best performance
with GLCM is obtained from CNN, giving 94% accuracy,
while with SVM, MLP, TDNN, and ANFIS, the variations
are between 84 to 87%. With LBP features, there is minor
performance improvement with SVM, MLP, TDNN, and
ANFIS but no change with the CNN. There is a minor
performance fall with LBGLCM and GLRLM features with
SVM and MLP classifiers compared to LBP, while with
TDNN, ANFIS and CNN, there are no changes in accuracy.
The SFTA features show minor improvement in accuracy
with SVM and MLP classifiers, but the performance is con-
stant with TDNN, ANFIS, and CNN. A few combinations
of features are explored, out of which GLCM + GLRLM,
GLCM+SFTA, and GLCM+GLRLM+SFTA show varia-
tions in performances, as shown in Table 3. The CNN and
in many cases the ANFIS show very little variation in perfor-
mance despite changes in the features and the use of combina-
tions. Since the GLCM feature with FCMbased segmentation
and classification using CNN gives the best performance, this
combination (FCM+GLCM+CNN) is used as the standard
combination for the subsequent work.

As the proposed system is intended to help the farmers,
an additional characteristic incorporated into it is its ability to
identify farm vegetation and the geographical distribution of
the surroundings. Most agricultural lands are surrounded by a
range of vegetation and other geographical elements. During
rainy seasons, the distribution of thick vegetation, normal
vegetation, vegetation cover less soil, water, and others (not
falling into these four) vary. Certain weed types grow very
fast and harm agricultural produce. With it comes insects and
other life forms. So, the distribution of geographical elements
around farmland and its monitoring using an IoT system is
essential for the effective management of farmland. The IoT
system is required to capture the state of the geographical
elements and facilitate continuous monitoring. A dronemight
be an extension of an IoT system. The Landsat images are
currently used to validate the ability of the AI system. The

FIGURE 15. Red band and NIR band images obtained as part of
vegetation estimation.

TABLE 4. PDR with varying pack sizes of sensors with Bluetooth, physical
and Wi-Fi connectivity.

Landsat images can be replaced by real-time feed obtained
from a camera mounted on a drone. The VGG16 network is
trained with Landsat satellite data to classify thick vegetation,
normal vegetation, and vegetation cover less soil, water, and
others (not falling into these four). NVDI threshold values
are calculated for use with the system to derive the class
decisions for these classes. From the satellite images band4
(Red channel) and band5 (Near Infrared band) (Fig. 15),
contents of a particular area are generated, which are next
used to calculate the NDVI values.

The NDVI image of an area is obtained, which forms the
basis of estimating the total vegetation cover of the area. The
image dataset consists of 9627 samples separated into a 60:40
ratio where 60% of them have been used for training, and
40% applied for model evaluation. With a batch size of 50,
the model took seven epochs completed over 35 seconds on a
cloud-based GPU. In this effort, the weights and the features
of the datasets are obtained through different processes which
amounted to over two hours of computation. A separate val-
idation set generated using bootstrapping method is applied
for validating the VGG16 network after training. The output
of the FCM+NVDI+CNN combination for a set of experi-
ments related to vegetation estimation is shown in Fig. 16.

Certain experiments have been carried out to see the effec-
tiveness of the IoT arrangement. Experiments involving the
packet delivery ratio (PDR) with sensor pack sizes varying
between 4 and 16 and connected via Bluetooth, Wi-fi, and
physical connection have been carried out. There are one
temperature and one moisture sensor in each sensor pack and
a NoIR camera connected to a Raspberry Pi microcontroller.
This arrangement is for one plant. The system’s effective-
ness has been tested by connecting the sensor packs to the
controller computer in numbers between 4 and 16 to form a
robust IoT arrangement. The effectiveness of the arrangement
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TABLE 5. Outcomes of statistical trials involving recall, specificity, type I and type II errors, F1 score, micro F1 and macro F1 values involving leave disease
recognition (C1) with GLCM features and FCM segmentation and geographic distribution identification (C2) using SVM, MLP, TDNN, ANFIS and CNN
classifiers.

FIGURE 16. Percentage distribution of different classes of geographic
content extracted as part of vegetation estimation.

is checked in terms of PDR, and the results are summarized
in Table 4. The physical connectivity has the best PDR, while
Bluetooth links prove to be less reliable.

We have performed certain statistical experiments to ver-
ify the experimental reliability and real-time robustness in
on field conditions. The results are summarized in Table 5.
It includes the outcomes of statistical trials involving recall,
specificity, type I and type II errors, F1 score, micro F1 and
macro F1 values involving leave disease recognition (C1)
with GLCM features and FCM segmentation and geographic
distribution identification (C2) using SVM, MLP, TDNN,
ANFIS and CNN classifiers.

A summary of the performance of the proposed approach
and its comparison with certain previous research is included
in Table 6. As discussed above, the techniques reported
in [22] and [15] have been reproduced and applied to per-
form plant health monitoring. These are compared with
those obtained with pre-trained VGG16 CNN + GLCM and
VGG 16 CNN taking the complete leaf sample as input (with-
out features) as discussed above. With around 9000 samples,
the experiments are carried out, and the average results are

TABLE 6. Summary of results and comparison.

reported. The samples are divided into a 60:40 ratio, with 60%
used for training and 40% used for testing. Samples have light
intensity variations, and noise-related distortions assumed to
be identical to those seen due to faulty sensor pickup. The
training time associated with the VGG16 CNN while feeding
the complete image andwith no feature is considerably higher
compared to the case when features are used. The difference
is at least two times less in the case when features are used.
But when no features are used, the associated computation
cycles are saved, and the design complexity is lowered. How-
ever, it increases the computational workload of the CNN,
but if the weights are trained separately, and one cycle is
completed successfully, subsequent iterations become less
intensive. The average results clearly indicate the advantage
of the proposed approach.

IV. CONCLUSION
Here, we have discussed the design of a smart agriculture
assistance system that is based on IoT and learning-based
decision making. The proposed system has a sensor pack
that obtains a readout of temperature, moisture of the air,
and the soil and a camera that captures NIR images of
the plant leaves. The sensor readings are used to obtain
continuous monitoring and to regulate a small-scale water
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sprinkling mechanism. Further, the images obtained from the
NIR camera are used to train a set of learning-based tools
that help monitor the health of the plant leaves. We identify
twelve types of vegetation for the study, out of which five
disease types of the tomato leaves are categorized into five
different types using a pre-trained VGG16 CNN. The work
includes experiments conducted with two clustering-based
segmentation methods, namely KMC and FCM, which sep-
arates the healthy and diseased leaf segments and features,
including GLCM, LBP, LBGLCM, and GLRLM SFTA. Spe-
cific AI tools like SVM, MLP, TDNN, ANFIS, and the
VGG16 CNN are trained to provide automated decision
support for the classification of the plant leaf disease types
through a cloud server that can be accessed using an app.
Extensive on-field trials show that the system is effective
in hot and humid conditions, especially the FCM, GLCM
feature, and the VGG16 CNN proves to be reliable.

Further, the system has been found to be effective in
identifying certain usable vegetation cover of farmland and
regulation the watering mechanism of crops. The system
proves to be effective in identifying the disease type of cer-
tain agricultural products. It proves reliable in discriminating
thick vegetation, normal vegetation, vegetation cover less
soil, water, and others (not falling into these four) controlling
the water spaying mechanism associated with the complete
framework. An expanded version of the work with certain
added features shall be an effective aid of the farmers.
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