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ABSTRACT One of the main challenges in wireless power transfer (WPT) devices is performance
degradation when the receiver’s position and characteristics vary. Therefore, the load resistance and receiver
position must be monitored to ensure proper optimization of power transfer. This study proposes a machine
learning (ML) assisted method that estimates the power delivered to the receiver by only using measurements
at the transmitter side. Based on the delivered power estimation, we also propose a method to identify if the
system efficiency is too low, so that the transmitter should be turned off. This activation control method
can be useful in multi-transmitter WPT systems. In addition, we propose an ML method to estimate the
load resistance and the coupling coefficient. Using the proposed method, the characteristics of an inductor-
capacitor-capacitor (LCC)-Series tuned WPT system are successfully predicted only using the measured
root-mean-square and the harmonic contents of the input current. The proposed approach is experimentally
validated using a laboratory prototype.

INDEX TERMS Wireless power transfer, machine learning, coupling strength estimation, load resistance
estimation.

I. INTRODUCTION
Wireless power transfer (WPT) technology is continuously
improving and becoming more common in multiple appli-
cations due to a widespread need among both consumers
and businesses [1], [2]. In particular, the WPT technology
has been recently widely used in biomedical implants [3],
consumer electronic devices [4], and electric vehicle charg-
ing [5], [6] due to its convenience, flexibility, reliability, and
safety.

One of the key challenges in these WPT applications is to
create WPT devices capable of transmitting power to freely
positioned receivers. The estimation of the power delivered
to the receiver is crucial, as the performance degrades when
receiver’s position and characteristics vary. In WPT sys-
tems, the coupling strength between the transmitter (Tx) and
receiver (Rx) is the determinant of efficiency: stronger cou-
pling strength between Tx-Rx allows higher power transfer
efficiency compared to weak coupling. Moreover, the system
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characteristics (e.g., efficiency and transferred power) also
depend on the load impedance, which may vary depending
on the working conditions of the WPT system. For example,
the equivalent load resistance of a battery charger depends
on the state of charge of the battery. Therefore, knowing
the coupling coefficient and load resistance is important for
proper optimization of the system performance.

Several methods for the estimation of the output power,
coupling coefficient, and load resistance have been proposed
in the literature, using voltage and current measurements on
both Tx and Rx sides [7], [8], and using additional detector
coils on both Tx and Rx sides [9]. However, such approaches
need additional sensing devices to detect the presence of
Rx and a data communication channel to transfer data of
the Rx-side measurements to the Tx-side, which increases
costs and complexity. Making such estimations without any
Rx-side measurements can greatly simplify the circuits, min-
imize costs, and increase efficiency.

There have been a few proposed approaches to esti-
mate WPT system parameters only from Tx-side measure-
ments [10]–[17], and a brief comparison of these methods
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is presented in Table 1. These approaches can be broadly
classified to analytical methods [10]–[15], hardware-based
synchronization approaches [16], [17] and machine learning
assisted methods [18], [19].

Typically, in analytical approaches, results of Tx-side mea-
surements are compared with a theoretical model to estimate
WPT link characteristics [10]–[14]. For example, the funda-
mental harmonic components of the input current and voltage
are used to estimate the load voltage or output power in
[10]–[12]. One of the prerequisites of the method proposed
in [10] is to know initial parameter values such as the coil
inductance and parasitic resistances. However, such knowl-
edge of the system is not always available or accurate, which
can lead to measurement errors. A current decouplingmethod
is proposed in [13] to control a bidirectional WPT system
only from the Tx side measurements, where the mutual
inductance is first estimated by varying frequency using a
perturbation and observation method, and then changes in
the load resistance are continuously monitored by using input
current phasor measurements. Such approach can be useful in
single-Tx stationary WPT systems, however, it is not appli-
cable to dynamic WPT or multi-Tx WPT systems.

An activation method for multi-Tx WPT systems is pro-
posed in [14], which calculates the mutual inductance ratios
between Tx-Rx to find the optimal current distribution in
the Tx coils. However, the knowledge of the optimal current
ratios is not sufficient to calculate the required optimal values
of the currents in the coils. To evaluate the power delivered
to the Rx load, one should know the load resistance and the
values of the coupling coefficients. In [15], a mathematical
approach is proposed to estimate the load and mutual induc-
tance based on transmitter-side parameters, e.g., the input
voltage and input current. However, this approach requires
to know primary-side parameters, such as inductance, coil
resistance, and compensation capacitance. Besides, the ana-
lytical method [15] needs current/voltage sensors and cur-
rent/voltage phase sensors to identify the zero phase angle
frequency. Additionally, such analytical methods only con-
sider the fundamental harmonic component, therefore, the
accuracy of estimation can be greatly affected due to the
presence of higher-order harmonics.

A hardware based approach presented in [16] estimates
the coupling coefficient by short-circuiting the active recti-
fier output momentarily. This method introduces additional
control in the receiver side. This study also considered only
the fundamental harmonic of the input current.

To the best of our knowledge, only recent study [17]
considered the effect of the first- and third-order harmonics
in the system analysis to find the output power and mutual
coupling. The authors used the direct quadrature transfor-
mation technique to acquire fundamental and third harmonic
components of the input current. However, in that method,
one should know the values of several parameters (such as
the inductance and resistances of the coils) beforehand to
perform direct quadrature transformation and find the output
power or mutual inductance. Therefore, the characterization

of theWPT system using only Tx-side measurements by con-
sidering higher-order harmonics still remains an important
but unsolved problem.

Some machine learning techniques have been employed
in recent literature [18], [19] to identify WPT characteris-
tics. In [18], the authors proposed to use online and offline
estimation of receiver position by using the knowledge of
transmitter coils impedance and optimal activation pattern
for known receiver position. This approach requires to know
the transmitter parameters and some known position of
receiver beforehand so that it is possible to calculate the
impedance. Additionally, the method proposed in [19] cal-
culates the efficiency of the system and feed it in the ML
estimators. To know the efficiency of the system, one should
calculate/measure the parasitic losses of the inductor and
capacitors which can be inaccurate. Moreover, no ML based
methods have not been proposed to estimate the load resis-
tance, and the effect of higher harmonics in the system has
been ignored.

We think that emerging technologies based on artificial
intelligence can be applied to address these issues. This
paper proposes a simple machine learning assisted method
to estimate the mutual coupling between Tx and Rx, the load
resistance, and the power delivered to the load, using Tx-side
measurements for WPT systems with LCC-tuned Tx. The
measured root-mean-square (RMS) value of the input current
is used to predict the power delivered to the load, and it is used
to decide whether the system operates under high-efficiency
conditions or not. If the system efficiency is too low (either
because of a very low coupling strength or an extremely low
power demand by the receiver), the Tx can be deactivated
to avoid energy losses. The proposed deactivation method
can be useful in multi-Tx WPT systems where the Tx coils
located far away from movable receivers (with low coupling
strengths) need to be deactivated. Next, a machine learning
based method is proposed to estimate the load resistance
and coupling coefficient using the amplitudes and phases of
higher-order harmonics of the input current. Such parameter
estimations can easily be used for controlling of the power
flow to the Rx.

This paper is organised as follows. Section II introduces
example LCC-S tuned WPT systems that we consider in this
paper and provides the necessary analysis of its characteris-
tics. In Section III the proposed machine learning approach is
explained and discussed. In Section IV, the estimation of the
output power and the transmitter activation and deactivation
method are discussed. In Section V, the ML estimation of the
load resistance and coupling coefficient is discussed.

II. ANALYSIS OF LCC-S WPT SYSTEM
A. EQUIVALENT CIRCUIT ANALYSIS
The proposed machine learning method is designed and
tested for an example of an LCC-series compensated WPT
system. This section introduces the system topology and
presents an analysis of its characteristics, highlighting the
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TABLE 1. Comparison with recent literature on WPT characteristic estimation methods only from Tx-side measurements.

FIGURE 1. Schematic diagram of an LCC-series tuned WPT system
powered by a full-bridge converter.

effects of higher-order harmonics and parasitic losses in the
components. The aim of the analysis is to investigate pos-
sibilities of estimating the systems characteristics including
1. power delivered to the load, 2. mutual inductance, and
3. load resistance only from Tx-side measurements.

The LCC-S compensation topology is selected for this
study due to its ability to supply load independent constant
current [20]. The equivalent circuit of the LCC-S WPT sys-
tem is illustrated in Fig. 1, where a full-bridge inverter is
connected to an LCC-compensated Tx coil, and a series
compensated Rx is connected to a load through a full-bridge
rectifier. A dc supply (Vin) is used to drive the inverter.

Typically, the analysis of WPT systems is carried out
within the fundamental harmonic approximation and assum-
ing ideal lossless components [21], [22]. Within these
assumptions, the input current Is,1, the Tx coil current Itx ,1,
and the Rx current Irx ,1 read [23]

Is,1 =
M2Vs
L2s RL

, Itx ,1 = −j
Vs
Lsω0

, Irx ,1 = −
MVs
LsRL

(1)

where Vs is the inverter output voltage (Va-Vb), Ls is the
Tx-side compensation inductor, M is the mutual inductance
between Tx and Rx, ω0 is the fundamental frequency, and RL
is the load resistance. The output power delivered to the load
resistance can be written as

Pout = I2rxRL ≈
M2V 2

s

L2s RL
≈ IsVs (2)

We can see from (2) that the output power is proportional
to the input current Is, assuming the ideal conditions. This
property has been used to estimate the power delivered to
the load using the input current measurement in paper [14].

However, this idealized system model is not enough accurate
for the analysis of the system characteristics in practice.
In this work, we will use the currents in different branches
at the nth harmonic frequency, which can be derived as

Is,n = −
Vs,n(RL + nRLσ + jLσnω0)

ω0(−jnRLα + σ (M2(1+ σ )2 + Lα)ω0)
,

Itx,n =
nVs,n(jnLRLσ +M2n4ω0 − L2σ 2ω0)
Lsω0(nRLα + jσ (M2n4 + Lα)ω0)

,

Irx,n =
jMn3Vs,n

−jnRLα + σ (M2n4 + Lα)ω0
(3)

where σ = n2 − 1, α = Ls − Lσ 2, Ltx = Lrx = L, and
Vs,n = 4Vdc/nπ . Vs,n is the nth frequency component of
the output voltage of the inverter with the phase shift δ =
π between the two legs. These high-order harmonic com-
ponents of the currents can be substantial under practical
working conditions. For example, when the coupling coef-
ficient is very low or the load impedance is very high, the
third harmonic component of the input current (i.e., Is,3 ≈
−3jVs/(8Lsω0)) can be significant. Therefore, Eq. (1) may
not be accurate enough if the coupling coefficient varies.
Therefore, it is apparent that the fundamental-harmonic
approximation with ideal lossless components is useful only
as an initial, very approximate model, and it may not be
suitable enough for complete characterization of the power
delivered to the load. Furthermore, when the coil losses
and multiple harmonics are taken into account, the system
model becomes significantly very complex and useless for
estimation the system characteristics. Thus, it is necessary
to develop alternative methods for parameter estimation, and
here we propose a machine-learning approach.

B. MAKING DECISIONS ON TRANSMITTER ACTIVATION
AND DEACTIVATION
When a receiver is far away from the transmitter or the
load resistance is very high (low power demand), the power
transfer will not be effective, and one should turn off the
transmitter. Only when a receiver is enough close to the
transmitter coil, Tx should be activated (turned on). This
control is particularly important in a multi-Tx scenario to
decide which Tx coil is to be activated. In this paper, we train
a machine learning model to determine if any given Tx coil
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FIGURE 2. Block diagram of machine learning process.

needs to be activated or deactivated by analysing the input
current of the front-end compensation inductor.

From Equations (1) and (2) it is seen that the output
power is proportional to the amplitude of the fundamen-
tal harmonic of the input current under ideal conditions.
However, it is expected that the relationship may differ in
practical situations due to nonlinearities and nonidealities.
Moreover, as discussed in Section II-A, higher-order har-
monics of the input current can be dominant (e.g., in case
of very low coupling strength or very high load resistance).
In [24], authors used an equation-based approach to estimate
the output power of the system. However, the estimation error
becomes significant when the load resistance is high or the
coupling strength is low. This problem makes it difficult to
estimate the output power using equation-based approaches.
In such case, a data-driven approach can offer significant
advantages in identification of different characteristics, as it
takes into account nonlinearities and nonidealities, as well as
higher-order harmonics impact on the system performance.
To this end, the proposed machine learning approach is suit-
able for estimation of the power delivered to the load by
analyzing the harmonic content of the input current, allowing
making decisions on transmitter activation depending on the
power transfer efficiency.

III. THE MACHINE LEARNING ASSISTED
CHARACTERISATION METHOD
A. THE MACHINE LEARNING APPROACH
The primary purposes of using machine learning in this appli-
cation are 1. to identify a way to activate and deactivate the

transmitter coils depending on the power transfer efficiency;
2. to estimate the power delivered to the load; and 3. to esti-
mate the load resistance andmutual inductance. The proposed
machine learning approach is based on measurements of only
transmitter-side parameters.

The process of the machine learning approach is illustrated
in Fig. 2. The whole process can be divided into three major
steps: data processing, training, and testing. At first, training
data is generated using LTspice simulation tool and experi-
ments for different combinations of the coupling coefficient
k and load resistance RL values. The data processing stage
consists of several steps such as correcting the data format,
standardizing the data, removing outliers [25], and extracting
features and targets from the raw dataset. Here, featuresmean
the parameters that we use to train the model while targets
refer to the quantities that we want to predict. For instance,
we chose the first five harmonic current components and the
RMS value of the input current as our features, and the output
power Pout, load resistance RL, and coupling coefficient k
as the targets. Once the relevant features and targets are
defined, the feature importance analysis is used to identify
the best suited features to predict the targets. Feature impor-
tance studies are important in predictive modelings, such as
machine learning, because they provide insight into the data,
information about the model, and the foundation for dimen-
sional reduction and feature selection, which can improve the
efficiency and accuracy of predictive models. In this study,
nearly 200 data samples from the experiments are used to
train ML models. Each sample contains first five harmonic
current components and the RMS value of the input current
as features, and the output power Pout, load resistance RL, and
coupling coefficient k as targets. Numerous machine learning
regression models are considered in this study, for exam-
ple, random forest, decision tree, support vector machine,
adabooster with decision tree [26], and XGboost [27]. The
motivation behind using such models is that these models are
interpretable while more advanced models like neural net-
work or deep learning models are hardly interpretable [28].
Moreover, the dataset used in this study is quite small which
is not a good fit for neural network or deep learning models.

After that, training of the dataset using the best features
is done using several machine learning algorithms to find
out the most suitable algorithm. 80 % of the data is kept for
the training process. The first step of the training phase is
to decide if there is a proper receiver in place and if the Tx
should be turned on or off, based on the efficiency of the
system. If the Tx needs to be turned on, further estimation
of the load resistance, and the mutual inductance is carried
out.

During the testing phase, a measurement test point is taken
and the relevant features are extracted. 20%of the data is used
for testing. Then the features are fed into respective training
models to predict the targets. The details of transmitter acti-
vation (or deactivation), and estimation of the load resistance
and coupling coefficient are further explained in the following
section.
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TABLE 2. Parameters details.

FIGURE 3. The experimental setup (Oscilloscope traces show the inverter
output voltages Va, Vb, the input current Is, and the output voltage VL).

B. THE EXPERIMENTAL SETUP
The experimental setup shown in Fig. 3 is used for the data
generation of the proposed machine learning approach. Two
Texas Instrument gallium nitrite (GaN) half bridge FET are
used to realize a full bridge inverter. A fixed phase shift angle
between the inverter legs at π has been selected for this study.
However, the same method can be applied for any phase shift
angle of the inverter. A current sensor probe (TCP2020) is
used to measure the RMS of the input current Is. The parame-
ters of the experimental setup are given in Table 2. During the
experiment, the transfer distance and the misalignment dis-
tance are varied within the ranges 5−75 mm and 0− 75 mm,
respectively. The diameter of the Tx and Rx coils is 10 cm.
The position of the receiver is varied to obtain data for
different coupling coefficients ranging approximately from
0.05 to 0.5, and the load resistance RL is varied from 1 � to
100�. In this study, the RMS of the input current, magnitudes
and phases of higher order harmonic contents of the input
current, output power, and efficiency data are recorded for
different combination of RL and k .

During the experimental study, the magnitudes and phases
of the higher harmonics of the input current are extracted
using MATLAB by analysing the input current time depen-
dence from oscilloscope. Note that the resonance of the
experimental setup is around 595 kHz, which is sightly
different from the design frequency of 600 kHz due to
experimental disparities in the tuning circuits. This kind of
behaviour in practical situations can effectively be handled
in machine learning approaches, in contrast to analytical
methods.

FIGURE 4. Features importance for estimating the output power. A1 and
A3 are the magnitudes of the 1st , and 3rd harmonics, θ1 and θ3 are the
phases of the 1st and 3rd harmonics, IsRMS is the RMS of the input
current Is.

TABLE 3. ML models performance for estimating the output power.

IV. ESTIMATION OF THE OUTPUT POWER AND
TRANSMITTER ACTIVATION
This section introduces the proposed method for estimating
the power delivered to the load which is needed to make a
decision whether to turn the power supplies to the Tx coils on
or off.

A. ESTIMATION OF THE OUTPUT POWER
Here, the goal is to estimate the output power Pout using
Tx-side measurements. To find a possible approach, a feature
importance study is conducted to understand which parame-
ters can be useful to estimate the output power. The results
of the study of feature importance are shown in Fig. 4, and it
can be seen that RMS of the input current Is has the highest
importance to estimate Pout.
Figure 5(a) shows the experimentally measured and esti-

mated Pout with respect to RMS of Is. For the measurements,
the coupling strength k and load resistance RL are varied
within the range given in Table 2. We can clearly see that the
predicted output power closely follows themeasured one. The
estimation accuracies for different regression algorithms are
compared in Table 3. The results show that the random forest
algorithm gives the highest average accuracy of 88 % for the
experimental dataset. Figure 6 shows the individual error for
actual vs predict output power. It can be seen that for 90% of
the test data the prediction accuracy is above 95%.

The Pout vs. Is profile in Fig. 5(a) clearly shows two
distinct regions: the high-power region where Pout is linearly
increasing with Is, and the low-power region where Pout
drops sharply with decreasing Is. Interestingly, the efficiency
[see Is profile in Fig. 5(b)] also shows a similar trend: the
efficiency is low in the low-power region and it is high in the
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FIGURE 5. Output power and efficiency variations with respect to the RMS
value of Is. (a) Fitted predictive line of the output power; (b) Efficiency
against the RMS current. Classification of the ‘‘turn-off’’ (in red color) and
‘‘turn-on’’ regions (in green color) is indicated by different colors.

FIGURE 6. Actual and predicted output power for different test data
points.

high-power region. This low-power region is indeed due to
weak coupling or high load resistance (low power demand).
It is also observed that the third harmonic component of
the input current becomes dominant in the low-power region
resulting in this sharp power drop. In fact, understanding all
these effects can be encapsulated by using machine learn-
ing approach to predict the output power. When the output
power drops sharply in the low-power region, the efficiency
also drops sharply. This feature is helpful to understand
when to turn on or off the transmitter. Low output power
or efficiency means that either the receiver is not close to
the transmitter or the load power demand is low. Therefore,
in this case we should turn off the transmitter. In the follow-
ing section, transmitter activation (or deactivation) will be
discussed.

B. TRANSMITTER ACTIVATION
Next, we need to detect the low-power (and low efficiency)
region andmake the decision to turn-on or -off the transmitter.
It can be seen from Fig. 5 that efficiency is high when the
system is operating in the high-power region (marked with
green) while the efficiency drops sharply in the low-power
region (marked with red). Interestingly, the transition from
low power to high power region can corresponds to an elbow
point of the Pout vs. Is curve. The input current at this elbow
point of the curve can be used as a threshold to take the
decision on activation or deactivation of the Tx.

The random sampling consensus (RANSAC) algorithm is
used to identify the high-efficiency region by estimating the
linearity of the Pout vs. Is curve. The RANSAC algorithm is
a well-known machine learning method to identify linearity
and outliers in the data set [29]. Here, we find the threshold
point using the RANSAC algorithm by identifying the elbow
point of the Pout vs. Is curve. The threshold value of the
input current identified by the RANSAC algorithm is the
determinant for the decision to turn the transmitter on or
off. We can see that the turn-on region is characterized by
efficiency higher than 60 %, which verifies the efficacy of
the proposed method.

In this way, we can estimate the output power and decide
whether we should activate or deactivate the Tx coil based
only on Is measurements. This method can also be useful
in multi-transmitter WPT systems. In the following section,
we will discuss a method of estimating the coupling coeffi-
cient and load resistance.

V. ESTIMATION OF THE COUPLING COEFFICIENT AND
LOAD RESISTANCE
Next, the machine learning algorithm is further developed
with experimental data for estimation of the coupling coef-
ficient and load resistance. The experimental setup described
in Section III-B is used for the data generation and validation
of the proposed approach.

A. FEATURE STUDY OF THE MACHINE LEARNING
METHOD
It is clear from the discussion in Section II-A that the esti-
mation of the coupling coefficient and load resistance indi-
vidually is not straightforward using analytical approaches.
Therefore, a frequency domain analysis is carried out to
understand the effects of different operating frequencies
rather than the resonance frequency. For example, Fig. 7
illustrates the frequency response of the input current for a
selected set of configurations. At the resonance frequency,
the phase angle of the input current is always zero regardless
of the load or coupling values. Therefore, if the system is
working at the resonance frequency, the phase angle of the
input current cannot be used to estimate k or RL. On the other
hand, when the operating frequency is slightly lower or higher
than the resonance frequency, the phase angle of the input
current is different for different k andRL combinations, which
can be used to estimate the load resistance and coupling
strength separately. When the system is operating at a slightly
higher frequency than the resonance (the inductive region),
the switching losses of the inverter become lower [30].

Thus, in this study, we chose to operate the system at a
slightly higher frequency than the resonance frequency. The
working frequency at 605 kHz is chosen while the resonance
frequency is 595 kHz. Once the working regime is different
from the system resonance, analytical methods become very
complex and not practically useful for the estimations of
system parameters. This is yet another reason to introduce a
data-driven approach to accurately predict the characteristics
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FIGURE 7. Frequency-domain analysis of the fundamental harmonic
magnitude and phases of the input current Is for different load
resistances and coupling strengths.

of a WPT system only from the Tx-side measurements,
which can effectively account for various nonlinearities and
nonidealities.

Next, we chose a set of features related to the input current
for estimations of the coupling coefficient and load resistance
including amplitudes of first and third harmonic components
of the input current (A1 and A3, respectively), phase of the
first and third harmonic components of the input current
(θ1 and θ3, respectively), the RMS of the input current Is, and
the output power estimated from the output power estimation
model in previous section Poutest . Next, a feature impor-
tance study is carried out based on well-known sckit-learn
random forest regression algorithm to find the appropriate
features [31].

Besides, the measurement of the harmonic phases can
be experimentally challenging. By considering the measure-
ment complexity, three different cases are considered for
the estimation of coupling coefficient and load resistance:

FIGURE 8. Features importance on experimental results for estimating
the coupling coefficient, where A1 and A3 are the magnitudes of the
1st and 3rd harmonics, θ1 and θ3 are the phases of the 1st and 3rd

harmonics. The RMS of the input current Is and the estimated output
power Poutest from the output power estimation model.

case A – all the features considered, case B – 3rd harmonics
phase is discarded from the features, and case C – both the
phases of the 1st and 3rd harmonics are discarded. The per-
formances of the estimation for different cases and different
prediction objectives are discussed in the following sections
in detail.

B. COUPLING COEFFICIENT ESTIMATION
Figure 8 shows a feature importance chart for different case
scenarios of coupling coefficient estimations. It can be seen
that Poutest has the highest importance for all the cases for
coupling coefficient estimation. The accuracy of the estima-
tion varies depending on the number of features used in the
model.

Several machine learning algorithms including random
forest, adabooster with decision tree, and XGboost have been
trained to estimate the coupling coefficient using the features
shown in Fig. 8. The average accuracy of predictions is shown
in Table 4, which will be discussed in detail in Section V-D.
Among the used models, adabooster with decision tree shows
the best performance with 92% average accuracy for estimat-
ing the coupling coefficient. Figure 10(a) shows the actual
and predicted coupling coefficient test data points for all
the three cases using adabooster with decision tree model.
Even in the worst case scenario, the accuracy is higher than
80%. This means that we can accurately predict the coupling
coefficient using the proposed machine learning approach.
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FIGURE 9. Features importance of experimental results for estimating the
load resistance. A1 and A3 are the magnitudes of the 1st and 3rd

harmonics, θ1 and θ3 are the phases of the 1st and 3rd harmonics. The
RMS of the input current Is, the estimated output power Poutest from the
output power estimation model and kest from the coupling estimation
model.

A detailed discussion on the prediction accuracy and the
practicalities is presented in Section V-D.

C. LOAD RESISTANCE ESTIMATION
The features importance chart to estimate load resistance is
shown in Fig. 9 for all three case scenarios. Here, the esti-
mated coupling coefficient kest obtained from the coupling
coefficient estimation model described in Section V-B is also
used as an additional feature to estimate the load resistance.
It can be seen from Fig. 9 that kest , A3, and θ1 have the highest
importance for load resistance estimations.

Similar to the coupling coefficient estimation, for training
to estimations of the load resistance, the features from all
three cases are fed into several different algorithms including
random forest, adabooster with decision tree, and XGboost.
The average accuracy of predictions are shown in Table 4
that will be discussed in details in Section V-D. Among the
used methods, adabooster with decision tree shows the best
performance with 88% average accuracy for estimating the
load resistance. Figure 10(b) shows the actual and predicted
load resistance test data points for all the three cases using
adabooster with decision tree model. It can be seen that out
of 9 test points, 7 have accuracy higher than 80%, while
for case C when we omit all the features of phases of the
input current, 6 test points out of 9 have accuracy higher than
70%. Thus, the proposed machine learning approach can esti-
mate load resistance of the receiver with a decent accuracy.

FIGURE 10. Actual and predicted (a) coupling coefficient and (b) load
resistance for different test points from adabooster with decision tree
model.

The prediction accuracy will be discussed in the following
section.

D. DISCUSSION OF RESULTS
It is clear from the above results that different features of
the input current can be used to estimate the characteristics
of the WPT system. However, measurement complexity of
different features can be different. Especially the measure-
ment of the phases of the 1st and 3rd harmonics could be
challenging in applications and may require expensive mea-
surement devices. In this study, three cases are considered to
provide options to choose features depending on the appli-
cation criteria. For example, if the application requires static
wireless charging with a highly accurate estimation, then case
A would be the wise choice. However, if the application is
dynamic charging with moderate prediction accuracy, then
case B or C would be the way forward. As we know that
in dynamic charging the receiver would move frequently,
so the available time to estimate k and RL would be quite
short. In such case, by eliminating measurement of phases
can reduce the estimation time, with a slight compromise on
the prediction accuracy. For example, the average prediction
accuracy of k for the cases A, B, and C are 92%, 91%, and
88%, respectively. Therefore, coupling estimation accuracy
is reduced only by 4% in case C. On the other hand, the
estimation accuracy of load resistance for the cases A, B,
and C are 88%, 85%, and 80%, respectively. Here, case C
show 8% reduction of prediction accuracy, however, it is only
3% for case B. The average accuracy of all machine learning
models to estimate coupling coefficient and load resistance
based on different cases is shown in Table 4.
Therefore, we can conclude that machine learning assisted

methods can be used to accurately predict the coupling coef-
ficient and the load resistance without any receiver sensors.
By using the proposed estimation method, it is possible to
estimate the position of the receiver and, based on this knowl-
edge, the nearby transmitters can be activated and farther
away transmitters can be turned off.
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TABLE 4. Average accuracy to estimate coupling coefficient and load
resistance with different features.

VI. CONCLUSION
In this paper, we have proposed a machine learning approach
to estimate the power delivered to the load, the coupling coef-
ficient, and the load resistance by using identified transmitter-
side parameters. In addition, we introduced a classification
allowing transmitter turn-on or -off decisions based on effi-
ciency considerations. The random forest algorithm has been
found to offer 90% accuracy of the output power predic-
tions. The RANSAC model has been used to classify the
turn-on and turn-off regions for the transmitting coils by
identifying the elbow point at the output power-input current
curve. Adabooster with decision tree based regression model
has the highest accuracy of 88% and 92% in estimations
of the load resistance and coupling coefficient, respectively.
To enable free positioning of the receiver, knowing the cou-
pling strength is crucial, and the adabooster with decision
tree model has the minimum error to estimate that. The
outcomes of this work can be used for dynamic tracking of
the load status and the coupling of the transmitting coil with
the receiving coil in various WPT systems. Importantly, only
measurements of transmitter parameters are required, which
makes the proposed process simple and straightforward with-
out the need for extra data communication from the receiver
side.

REFERENCES
[1] C. Yang and K. Tsunekawa, ‘‘Study of WPT system for charging portable

devices on a desk,’’ in Proc. 10th Int. Symp. Antennas, Propag. EM Theory
(ISAPE), Oct. 2012, pp. 320–324.

[2] S. Y. R. Hui,W. Zhong, and C. K. Lee, ‘‘A critical review of recent progress
in mid-range wireless power transfer,’’ IEEE Trans. Power Electron.,
vol. 29, no. 9, pp. 4500–4511, Sep. 2014.

[3] A. K. R. Rakhyani, S. Mirabbasi, and M. Chiao, ‘‘Design and optimization
of resonance-based efficient wireless power delivery systems for biomedi-
cal implants,’’ IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 1, pp. 48–63,
Feb. 2011.

[4] H. Hoang, S. Lee, Y. Kim, Y. Choi, and F. Bien, ‘‘An adaptive technique to
improve wireless power transfer for consumer electronics,’’ IEEE Trans.
Consum. Electron., vol. 58, no. 2, pp. 327–332, May 2012.

[5] C. C. Mi, G. Buja, S. Y. Choi, and C. T. Rim, ‘‘Modern advances in
wireless power transfer systems for roadway powered electric vehicles,’’
IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6533–6545, Oct. 2016.

[6] T. Kan, R.Mai, P. P.Mercier, andC. C. Mi, ‘‘Design and analysis of a three-
phase wireless charging system for lightweight autonomous underwater
vehicles,’’ IEEE Trans. Power Electron., vol. 33, no. 8, pp. 6622–6632,
Aug. 2018.

[7] S. Hu, Z. Liang, Y. Wang, J. Zhou, and X. He, ‘‘Principle and applica-
tion of the contactless load detection based on the amplitude decay rate
in a transient process,’’ IEEE Trans. Power Electron., vol. 32, no. 11,
pp. 8936–8944, Nov. 2017.

[8] D. Kobayashi, T. Imura, and Y. Hori, ‘‘Real-time coupling coefficient
estimation and maximum efficiency control on dynamic wireless power
transfer for electric vehicles,’’ in Proc. IEEE PELS Workshop Emerg.
Technol., Wireless Power, Daejeon, South Korea, Jun. 2015, pp. 1–6.

[9] A. Azad, A. Echols, V. Kulyukin, R. Zane, and Z. Pantic, ‘‘Analysis,
optimization, and demonstration of a vehicular detection system intended
for dynamic wireless charging applications,’’ IEEE Trans. Transport. Elec-
trific., vol. 5, no. 1, pp. 147–161, Mar. 2019.

[10] X. Meng, D. Qiu, M. Lin, S. C. Tang, and B. Zhang, ‘‘Output voltage iden-
tification based on transmitting side information for implantable wireless
power transfer system,’’ IEEE Access, vol. 7, pp. 2938–2946, 2018.

[11] S. Mukherjee, V. P. Galigekere, O. Onar, B. Ozpineci, J. Pries, R. Zeng,
and G.-J. Su ‘‘Control of output power in primary side LCC and secondary
series tuned wireless power transfer system without secondary side sen-
sors,’’ in Proc. IEEE Energy Convers. Congr. Expo. (ECCE), Oct. 2020,
pp. 5532–5536.

[12] Z. H. Wang, Y. P. Li, Y. Sun, C. S. Tang, and X. Lv, ‘‘Load detection
model of voltage-fed inductive power transfer system,’’ IEEE Trans. Power
Electron., vol. 28, no. 11, pp. 5233–5243, Nov. 2013.

[13] Y. Liu, U. K. Madawala, R. Mai, and Z. He, ‘‘Primary-side parameter
estimation method for bidirectional inductive power transfer systems,’’
IEEE Trans. Power Electron., vol. 36, no. 1, pp. 68–72, Jan. 2021.

[14] P. Jayathurathnage and F. Liu, ‘‘Optimal excitation of multi-transmitter
wireless power transfer system without receiver sensors,’’ in Proc. IEEE
PELS Workshop Emerg. Technol., Wireless Power Transf. (WoW), London,
U.K., Jun. 2019, pp. 25–28.

[15] Y.-G. Su, L. Chen, X.-Y. Wu, A. P. Hu, C.-S. Tang, and X. Dai, ‘‘Load and
mutual inductance identification from the primary side of inductive power
transfer system with parallel-tuned secondary power pickup,’’ IEEE Trans.
Power Electron., vol. 33, no. 11, pp. 9952–9962, Nov. 2018.

[16] Y. Yang, S. C. Tan, and S. Y. R. Hui, ‘‘Fast hardware approach to determin-
ing mutual coupling of series–series-compensated wireless power transfer
systems with active rectifiers,’’ IEEE Trans. Power Electron., vol. 35,
no. 10, pp. 11026–11038, Oct. 2020.

[17] J. Liu, G. Wang, G. Xu, J. Peng, and H. Jiang, ‘‘A parameter identification
approach with primary-side measurement for DC–DC wireless-power-
transfer converters with different resonant tank topologies,’’ IEEE Trans.
Transport. Electrific., vol. 7, no. 3, pp. 1219–1235, Sep. 2021.

[18] T. Bai, B. Mei, L. Zhao, and X. Wang, ‘‘Machine learning-assisted wire-
less power transfer based on magnetic resonance,’’ IEEE Access, vol. 7,
pp. 109454–109459, 2019.

[19] H. Shen, P. Tan, B. Song, X. Gao, and B. Zhang, ‘‘Receiver position
estimation method for multitransmitter WPT system based on machine
learning,’’ IEEE Trans. Ind. Appl., vol. 58, no. 1, pp. 1231–1241, Jan. 2022.

[20] Z. Pantic, S. Bai, and S. M. Lukic, ‘‘ZCS LCC-compensated resonant
inverter for inductive-power-transfer application,’’ IEEE Trans. Ind. Elec-
tron., vol. 58, no. 5, pp. 3500–3510, Aug. 2011.

[21] C. Xiao, D. Cheng, and K. Wei, ‘‘An LCC-C compensated wireless
charging system for implantable cardiac pacemakers: Theory, experiment,
and safety evaluation,’’ IEEE Trans. Power Electron., vol. 33, no. 6,
pp. 4894–4905, Jun. 2018.

[22] J. Zhang and F.Wang, ‘‘Efficiency analysis ofmultiple-transmitter wireless
power transfer systems,’’ Int. J. Antennas Propag., vol. 2018, pp. 1–11,
Jul. 2018.

[23] W. Kim and D. Ahn, ‘‘Efficient deactivation of unused LCC inverter for
multiple transmitter wireless power transfer,’’ IET Power Electron., vol. 12,
no. 1, pp. 72–82, Jan. 2019.

[24] F. Farajizadeh, D. M. Vilathgamuwa, P. Jayathurathnage, and G. Ledwich,
‘‘Estimation of the transferred power in LCC compensated wireless power
transmitters with the use of PWM-synchronized sampling technique,’’
IEEE Trans. Transport. Electrific., vol. 8, no. 1, pp. 710–722, Mar. 2022.

[25] M. Z. H. Jesmeen, J. Hossen, S. Sayeed, C. K. Ho, K. Tawsif, A. Rahman,
and E. Arif, ‘‘A survey on cleaning dirty data using machine learning
paradigm for big data analytics,’’ Indonesian J. Elect. Eng. Comput. Sci.,
vol. 10, no. 3, pp. 1234–1243, Jun. 2018.

[26] 1.11. Ensemble methods. Accessed: Apr. 8, 2022. [Online]. Available:
https://scikit-learn/stable/modules/ensemble.html

[27] Python API Reference—XGBoost 1.5.2 Documentation. Accessed: Apr. 8,
2022. [Online]. Available: https://xgboost.readthedocs.io/
en/stable/python/python_api.html

40504 VOLUME 10, 2022



S. A. Al Mahmud et al.: ML Assisted Characteristics Prediction for WPT Systems

[28] N. Burkart and M. F. Huber, ‘‘A survey on the explainability of supervised
machine learning,’’ J. Artif. Intell. Res., vol. 70, pp. 245–317, Jan. 2021.
[Online]. Available: https://jair.org/index.php/jair/article/view/12228

[29] S. Debnath, A. Banerjee, and V. Namboodiri, ‘‘Adapting RANSAC SVM
to detect outliers for robust classification,’’ in Proc. Brit. Mach. Vis. Conf.,
Swansea, U.K., 2015, pp. 168.1–168.11.

[30] J. A. Sabate, V. Vlatkovic, R. B. Ridley, and F. C. Lee, ‘‘High-voltage, high-
power, ZVS, full-bridge PWM converter employing an active snubber,’’ in
Proc. 6th Annu. Appl. Power Electron. Conf. Exhib. (APEC), Mar. 1991,
pp. 158–163.

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
‘‘Scikit-learn: Machine learning in Python,’’ J. Mach. Learn. Res., vol. 12,
pp. 2825–2830, Dec. 2011.

SHAMSUL AREFEEN AL MAHMUD received
the B.Sc. degree in electrical engineering from
United International University, Bangladesh,
in 2015, and the M.Sc. degree in autonomous
systems from Aalto University, Finland, and from
the KTH Royal Institute of Technology, Sweden,
in 2020. Currently, he is pursuing the Ph.D. degree
with the Department of Electronics and Nanoengi-
neering, School of Electrical Engineering, Aalto
University. His main research interest includes

electronics and wireless power transfer systems.

PRASAD JAYATHURATHNAGE (Member, IEEE)
received the B.Sc. degree in electronics and
telecommunications engineering from the Univer-
sity of Moratuwa, Sri Lanka, in 2009, and the
Ph.D. degree in electrical and electronic engi-
neering from Nanyang Technological Univer-
sity, Singapore, in 2017. He is working at the
Queensland University of Technology, Australia,
and the Rolls-Royce-NTU Corporate Labora-
tory, Singapore. He is currently a Postdoctoral

Researcher with the School of Electrical Engineering, Aalto University,
Espoo, Finland. His research interests include high-frequency power con-
verters, wide-band-gap devices, and wireless power transfer.

SERGEI A. TRETYAKOV (Fellow, IEEE) received
the Diploma degree in engineering, the Ph.D.
degree in sciences, and the D.Sc. degree in radio-
physics from Saint Petersburg State Technical
University, Saint Petersburg, Russia, in 1980,
1987, and 1995, respectively. From 1980 to 2000,
he was with the Department of Radiophysics, Saint
Petersburg State Technical University. He is cur-
rently a Professor of radio science with the Depart-
ment of Electronics and Nanoengineering, Aalto

University, Espoo, Finland. He has authored or coauthored six research
monographs and over 300 journal articles. His current research interests
include electromagnetic field theory, complexmedia electromagnetics, meta-
materials, and microwave engineering. He was the Chairperson of the Saint
Petersburg IEEE TRANSACTIONS ON ELECTRON DEVICES, IEEE TRANSACTIONS

ON MICROWAVE THEORY AND TECHNIQUES, and the Antennas and Propagation
Chapter, from 1995 to 1998, and the General Chair of the International
Congress Series on Advanced Electromagnetic Materials in Microwaves
and Optics (Metamaterials) and the President of the Virtual Institute for
Artificial ElectromagneticMaterials andMetamaterials (Metamorphose VI),
from 2007 to 2013.

VOLUME 10, 2022 40505


