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ABSTRACT To improve the performance, robustness and stability of autotuning the proportional integral
and derivative (PID) parameter, the novel stable particle swarm optimization (NSPSO) is proposed in this
paper. The NSPSO is the combination of the particle swarm and optimization algorithm with the new stable
rule to reconsider the survival of the remaining particle in the search space for handling the instability of
the system. The new rule is proposed based on proving the stability according to the Lypunov stability
theorem. Additionally, to show themethod’s superiority in performance and robustness, the proposedmethod
is compared with the results of simulations with the particle swarm optimization (PSO), the hybrid particle
swarm optimization-grey wolf optimization (PSO-GWO), the whale optimization algorithm (WOA) and the
social spider optimization algorithm (SSO) based on a direct current (DC) motor control system. In the
comparative performance, the various fitness functions are applied, while the comparative robustness and
the changed operation point of the DCmotor are applied. After comparing the methods, the proposed method
obtains better results than the PSO, PSO-GWO, WOA and SSO in both performance and robustness.

INDEX TERMS DC motor, Lypunov stability, optimization, particle swarm and optimization (PSO),
Proportional integral and derivative (PID).

I. INTRODUCTION
The proportional integral and derivative (PID) controller is
commonly applied in many fields, such as in wind energy [1],
robotics [2]–[5], optical networks [6], hydraulics and pneu-
matics [7]–[9], industrial processes [10], vehicles [11], and
power systems [12] because its structure is simple as a result
of its easy implementation, maintenance, and low cost [6],
[13]. Nevertheless, its performance relies on the balancing of
3 parameters: proportional gain (KP), integral gain (KI ) and
derivation gain (KD) [14]. There are parameter effects on the
transient curve. For instance, KP affects the stability of the
transient response, KI affects the steady-state error (ES ) and
the maximum overshoot (OS) and KD affects the improve-
ment for the future response. The conventional method, called
Ziegler-Nichols (ZN), is manually tuned by fixing the operat-
ing point. In practice, the system is operated by the different
operations, and thus, this method is an unsuitable systemwith
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different operations [15]–[18].However, many methods, such
as Cohen-Coon and phase and gain margin methods have
been proposed to overcome the limitations of the conven-
tional methods, but they require experienced designers and
more time for tuning [19].

Earlier, the artificial intelligence (AI) evaluation and
swarm algorithm was commonly applied to optimally tune
PID parameters by continuously minimizing the performance
index until it approached the best system response [19], such
as the ant lion optimizer (ALO) algorithm [20], the gas
brownian motion optimization (GBMO) [21], the bacterial
foraging optimization (BFO) algorithm [22], the improved
sine cosine algorithm [23], the cuckoo search optimiza-
tion (CSO) [7], the bat algorithm [24], the ant colony
optimized (ACO) [25], the genetic algorithm (GA) [26],
[27], the world cup optimization (WCO) [28], the gray
wolf optimization algorithm [12], [29], the kidney-inspired
algorithm [30], the green leaf-hopper flame optimization
algorithm (GLFOA) [31], the improved QUATRE algo-
rithm [32], the fractional-order fish migration optimization
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algorithm (FOFMO) [33] and the particle swarm optimiza-
tion (PSO) algorithm [34].

PSO is widely applied to autotune the PID parameter
because of its effectiveness and efficiency in handling non-
linear and easy implementation [35], [36]. However, it still
has the limitation of falling to the local minima and converg-
ing [37], [38]. Many studies have improved the conventional
PSO by combining it with the advantages of other algo-
rithms, such as the particle swarm optimization algorithm
and the linear-quadratic-regulator (PSO-LQR) [39], the
hybrid particle swarm optimization-Grey wolf optimization
(PSO-GWO) [38], the modified particle swarm optimiza-
tion based on dynamic weight and crossover operator
(MPSO-IPID) [40], and the improved PSO [36]. Neverthe-
less, its performance still depends on the setting of the initial
particle, and thus, the risk of falling into the local minima still
exists [37].

Therefore, this paper proposes the novel stable PSO
(NSPSO) to improve the performance, convergence, robust-
ness and stability of autotuning the PID parameter. The
method is the improved PSO because it adds the process
of determining the survival of the remaining particle in the
search space based on sufficient conditions and re-generating
the new particle corresponding to the survival particle.
To verify the performance, convergence and robustness, the
proposed method is compared with the results of simulations
with the PSO [44], the PSO-GWO [38], the whale optimiza-
tion algorithm (WOA) [45] and the social spider optimization
algorithm (SSO) based on the direct current (DC) motor
system. For comparative performance and convergence, a dif-
ferent fitness function is applied by fixing the operation point
of the DC motor. In the comparative robustness part, the
changed operation of the DC motor is applied, but the fitness
function is fixed. Additionally, the sense of Lypunov stability
is used to prove the closed-loop stability of the sufficient con-
ditions. Hence, the contributions of this paper are as follows:

1. NSPSO is proposed to improve the performance, con-
vergence, robustness and stability of the autotuning
PID parameter. The proposed method is the improved
PSO by reconsidering the remaining particle in the
search space.

2. The theoretical sufficient condition to determine the
survival particle is proven according to the sense of the
Lypunov stability.

3. To verify the superiority of the performance and
convergence, the comparative simulation between the
proposed method, the PSO [44], the PSO-GWO [38],
the WOA [45] and the SSO based on the DC motor are
appliedwith varying fitness functions, but the operation
of the DC motor is fixed.

4. To verify the superiority of the robustness, the com-
parative simulation between the proposed method, the
PSO [44], the PSO-GWO [38], the WOA [45] and
the SSO based on the DC motor are applied with the
operation of the DC motor, but the fitness function is
fixed.

FIGURE 1. Block diagram of the PID controller.

The organization of this paper is as follows: the PID
controller and fitness function are described in section II,
novel stable particle swarm and optimization is discussed
in section III, a simulation and result analysis is presented in
section VI and the conclusion and discussion are shared in
section V.

II. THE PID CONTROLLER AND THE FITNESS FUNCTION
The proportional integral and derivative controller (PID) are
designed based on the derivative of the difference between
the reference input (R(t)) and the output of the system (Y (t)),
which this paper applies to brushless DC motor; i.e., R(t) is
the reference velocity and Y (t) is the output velocity.

U (t) = KPe(t)+ KI

∫ t

0
e(t)dt + KD

de(t)
dt

(1)

where e(t) is an error which is calculated from the deriva-
tive of R(t) and Y (t). The parameter of the PID controller
is denoted as the proportional gain (KP), the integral gain
(KI ) and the derivative gain (KD). It is the fact that the
controller gains are required to properly design according
to the condition of the system since the behavior of the
system depends on these controller parameters [15]. In this
paper, the novel stable particle swarm optimization (NSPSO)
algorithm is proposed to design the PID controller param-
eter by autotuning. During the process of autotuning, the
fitness function is used to determine the quality. Normally,
the fitness function is utilized by applying a performance
index [19], such as the integral of the absolute error (IAE),
the integral of the time multiplied squared error (ITSE), the
integral of the time multiplied absolute error (ITAE), and
the integral of the squared error (ISE). They are defined as
follows [19]:

IAE =
∫ t

0
|e(t)|dt (2)

ITSE =
∫ t

0
te(t)2dt (3)

ITAE =
∫ t

0
t|e(t)|dt (4)

MSE =
1
t

∫ t

0
(e(t))2dt (5)

ISE =
∫ t

0
e(t)2dt (6)
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where e(t) is the error in a time domain and t is the time. Addi-
tionally, [41] proposed the new fitness function as follows:

J (t) = ωieωiae

∫ t

0
|e(t)|dt + ωise

∫ t

0
e(t)2dt

+ (ωtd (1+ OS(t))(ωr trt (t)+ ωstst (t))) (7)

where ωie, ωiae, ωise, ωtd , ωr and ωs are the weights of the
performance index, such as the integral error (IE), IAE, ISE,
overshoot, rise time (trt (t)) and settling time (tst (t)). OS(t) is
the maximum overshoot.

III. NOVEL STABLE PARTICLE SWARM
AND OPTIMIZATION
A novel stable particle swarm optimization (NSPSO) algo-
rithm is proposed to improve the limitation of the particle
swarm optimization (PSO) in the local minima by adding the
process of regenerating the particle with a bad fitness function
based on the remaining particle with a good fitness according
to the Levy function. The bad and good fitness functions for
each particle is classified by using the acceptance fitness,
which is set by the designer to achieve the design require-
ments. If the fitness function of the particle is more than
the acceptance fitness, the particle is interpreted as the good
fitness function; otherwise, the particle is interpreted as the
bad fitness function.

The PSO was proposed according to the behavior of bird
swarming by Eberhart and Kennedy. In each iteration of the
PSO, the best solution is found based on the vector of the
velocity and the position of each particle, which evaluates
the quality according to the fitness function by moving the
particle in the searched space [39]. In the searched space with
dimension D, the number of particles N in iteration ith with
the term local best position or (pbest) is stored in the memory
with format pi = (pi1, pi2, . . . , pND). The best position of the
whole particle (gbest) is stored in the memory with format
pg = (pg1, pg, . . . , pgD) [42]. The velocity is updated as
follows:

v(t + 1)di = v(t)di + c1 × r1 × (p(t)di − x(t)
d
i )

+ c2 × r2 × (p(t)dg − x(t)
d
i ) (8)

The position is updated as follows:

x(t + 1)di = x(t)di + v(t + 1)di (9)

where r1 and r2 are random numbers with the range [0,1],
c1 is the cognitive learning factor and c2 is the social learning
factor. For implementing the PSO, the flow chart is shown
in Figure 2.

In Figure 3, the NSPSO is proposed by combining the
PSO and the process of determining the survival of the
remaining particle in the search space based on the fitness
function to prevent the local minima in the PSO. The process
of determining the survival of the remaining particle in the
search space determines the weak particles and deletes them
from the search space. Then, the new position particles are

generated according to (9) and v(t + 1) is replaced with the
Levy optimization function as follows [46]:

v(t + 1) = [
(1+ β − 1)! × (sin 1.5π2 )

( 1+β2 − 1)! × β × 2(β−12 )

1
β

(10)

where β is the constant that this paper set to be 1.5. Addition-
ally, the process of checking the stability of the new particle
is added by determination according to (12) as Theorem 1.
Theorem 1: Each time t generates a new particle in the

search space with dimension d as follows:

k(t) = 2(c1p(t)dg + c2p(t)
d
g ) (11)

each new particle is determined based on the equation as
follows:

C(t) ≤ 7k(t)+ 4c1c2R(E(t)+ G(t)) (12)

where E(t) = 1
3 (e

3(t)e3(t − 1)) + ξ (t)(e(t) + e(t − 1) +
e(t−1)+e(t)
ξ (t−1) ), ξ (t) = e(t)e(t − 1), G(t) = (1 + OS(t)(trt (t) +

tst (t))) + (1 + OS(t − 1)(trt (t − 1) + tst (t − 1))), e(t) is the
error at time t, OS(t) is the maximum overshoot, tst (t) is the
settling time and trt (t) is the rise time.

Proof: To verify the stability of generating a new parti-
cle, the Lyapunov function is defined as follows based on (7):

V (t) = ωieωiae

∫ t

0
|e(t)|dt + ωise

∫ t

0
e(t)2dt

+ (ωtd (1+ OS(t))(ωr trt + ωstst )) (13)

The difference in time between (t−1) and (t) of the Lyapunov
function is written as follows:

1V (t) = V (t)− V (t − 1) (14)

Therefore, (13) is as follows:

1V (t) = ωieωiae

∫ t

0
|e(t)|dt + ωise

∫ t

0
e(t)2dt

+ (ωtd (1+ OS(t))(ωr trt (t)+ ωstst (t)))

−ωieωiae

∫ t

0
|e(t − 1)|dt − ωise

∫ t

0
e(t − 1)2dt

− (ωtd (1+ OS(t))(ωr trt (t − 1)+ ωstst (t − 1)))

(15)

1V (t) = 1|e(t)| +
1e3(t)

3
+1(1+ OS(t − 1))

× (trt (t − 1)+ tst (t − 1))) (16)

1V (t) = 1|e(t)| +
1e3(t)

3
+1trt (t)+1tst (t)

+1OS(t)trt (t)+1OS(t)tst (t) (17)

We consider1e(t),1trt (t),1tst (t) andOS(t) according to (8)
given that r1, r2 = 1. The equation is as follows:

1e(t) = 1e(t)+1[2c1p(t)di − 2c1e(t)+ c2x(t)di
− 2c2e(t)] (18)

Given that k(t) = 2(c1x(t)di + c2x(t)
d
i ) as follows:

R =
1

4c1c2
−

1
2c2
−

1
2c1

(19)
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FIGURE 2. The flow chart of PSO.
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FIGURE 3. The flow chart of the NSPSO.
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Hence the equation is as follows:

1e(t) = 4c1c2R(e(t)+ e(t − 1))+ k(t) (20)

We consider 1trt (t) based on (8) as follows:

1trt (t) = 1trt (t)+1[2c1p(t)di − 2c1trt (t)+ c2x(t)di
− 2c2trt (t)] (21)

(19) is written as follows:

1trt (t) = 4c1c2R(trt (t)+ trt (t − 1))+ k(t) (22)

We consider 1tst (t) based on (8) as follows:

1tst (t) = 1tst (t)+1[2c1p(t)di − 2c1tst (t)+ c2x(t)di
− 2c2tst (t)] (23)

From (19), the equation is as follows:

1tst (t) = 4c1c2R(trt (t)+ tst (t − 1))+ k(t) (24)

We consider 1OS(t) based on (8) as follows:

1OS(t) = 1OS(t)+1[2c1p(t)di − 2c1OS(t)+ c2x(t)di
− 2c2OS(t)] (25)

From (19), the equation is as follows:

1OS(t) = 4c1c2R(OS(t)+ OS(t − 1))+ k(t) (26)

We replace (20), (22), (24) and (26) to (17) as follows:

1V (t) = 4c1c2R(
e3(t)
3
+ e2(t)e(t − 1)+ e(t)e2(t − 1)

+
e3(t − 1)

3
+ e(t)+ e(t − 1)+ trt (t)+ trt (t − 1)

+OS(t)trt (t)+ OS(t − 1)trt (t − 1)+ tst (t)

+ tst (t − 1)+ OS(t)tst (t)+ OS(t − 1)tst (t − 1))

+ 7k (27)

We consider the Lyapunov stability theorem in each sampling
time t . In the case of1V (t) ≤ 0, the new particle is generated
according to (12), and thus, the stability of the closed-loop
control system of the NSPSO is verified.

IV. AN ANALYSIS OF THE SIMULATION AND RESULTS
To verify the performance, robustness and convergence of
the proposed method, the results of the simulation compared
between the proposed method, the particle swarm optimiza-
tion (PSO) [44], the hybrid particle swarm optimization-grey
wolf optimization (PSO-GWO) [38], the whale optimization
algorithm (WOA) [45] and the social spider optimization
algorithm (SSO) are presented per the DC motor. For
robustness, the minimized cost function according to (7) is
applied. During the simulation, each algorithm for compari-
son is executed based on execution time with 2 seconds and
100 iterations.

FIGURE 4. The structure of the DC motor [43].

TABLE 1. Point of operation of the DC motor.

FIGURE 5. The comparison of the performance based on a fitness
function as (2).

A. DC MOTOR MODELING
The structure of the DC motor shown in Figure 4 is based
on electrical and mechanical principles. In [43], the step of
deriving the mathematics model of the DC motor as (28) is
shown by the consideration of producing the torque under the
armature current as follows:

G(s) =
K

(Las+ Ra)(Jms+ B)+ KbK
(28)

Ra is the armature resistance, Jm is the inertia torque of the
motor, K is the torque of the motor, B is the motor friction
constant and kb is the constant of the electromotive force.
In this paper, Jm is 0.0004 kg.m2, B is 0.0022 N .m.s/rad and
Kb is 0.05 V .s. Ra and K are varied with 4 cases, as shown in
table 1, to verify the robustness [43].

B. NUMERICAL SIMULATION
To verify the performance and convergence of the autotun-
ing PID parameter, the comparative simulation between the
proposed method, the PSO [44], the PSO-GWO [38], the
WOA [45] and the SSO are performed according to fitness
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FIGURE 6. The comparison of the performance based on a fitness
function as (3).

TABLE 2. A summary of the comparison of convergence.

functions (2), (3), (6) and (7). To verify the system per-
formance, the comparative results of the transient response
based on each fitness function are shown in Figures5-8, while
the comparative results of the convergence curve based on
each fitness function are shown in Figures 9-12. The results
of KP, KI and KD and minimizing the fitness function are
summarized in Table 2. The results obtained for the tran-
sient response analysis are shown in Table 3. Additionally,
Table 4 shows the summary of the characteristic convergence
which is the evaluated speed for each algorithm to approach
the best fitness function with (29)-(30) according to [15].

µ =

∑N
i=1 f (Ji)
N

(29)

σ =

√√√√ 1
N

N∑
i=1

(f (Ji)− µ)2 (30)

TABLE 3. A summary of the comparison of the transient response.

TABLE 4. A summary of characteristic convergence.

FIGURE 7. The comparison of the performance based on a fitness
function as (6).

where f (Ji) is the result of fitness function for each particle
and N is the number of particle.

To verify the robustness based on the fitness function as (7),
the comparative simulations of transient response analysis
with 4 cases as shown in Table 1 by changing the oper-
ation point of DC motor for each algorithm are shown in
Figures 13-16 and summarized in Table 5.
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FIGURE 8. The comparison of the performance based on a fitness
function as (7).

FIGURE 9. The comparison of the convergence based on a fitness
function as (2).

FIGURE 10. The comparison of the convergence based on a fitness
function as (3).

According to the comparative performance, the proposed
method provides better performance than the PSO [44], the
PSO-GWO [38], the WOA [45] and the SSO for all fitness
functions except the fitness function in (7). Figures 7-11
show the effectiveness of the proposed method compared

FIGURE 11. The comparison of the convergence based on a fitness
function as (6).

FIGURE 12. The comparison of the convergence based on a fitness
function as (7).

FIGURE 13. The comparison of robustness based on the operation of
case 1.

with others approaches. It is necessary to note that although
the proposed method may provide the maximum overshoot
greater than that of the PSO [44], the value of overshoot can
be reduced by increasing the number of iteration of tuning.
For the comparative convergence based onminimizing the fit-
ness function, the proposed algorithm provides better results
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FIGURE 14. The comparison of robustness based on the operation of
case 2.

FIGURE 15. The comparison of robustness based on the operation of
case 3.

FIGURE 16. The comparison of robustness based on operation of case 4.

than the other algorithms. Regarding the comparative result of
characteristic convergence as Table 4 caused by Figures 9-12,
the proposed method has the shortest time approaching the
optimal value compared with other algorithms such as the
PSO [44], the PSO-GWO [38], the WOA [45] and the SSO
for all fitness functions with the same initial value.

For comparative robustness by changing the operation
point of motor, the proposed method provides better results

TABLE 5. A summary of the comparison of robustness.

than the PSO [44], the PSO-GWO [38], the WOA [45] and
the SSO for all operation points based on transient response
analysis and convergence. For example, according to the
operation point as case 1 and regarding Figure 13, the pro-
posed method obtains the better transient with no steady state
error, less settling time and less rise time, while the transient
response of the PSO [44] and the PSO-GWO [38] are slowly
approaching the steady state. In addition, the WOA [45] and
the SSO provide more settling time and rise time than the
proposed method.

With respect to the comparative performance and robust-
ness based on the DC motor control system, it is clear
that the proposed NSPSO is effective in autotuning the PID
parameter.

V. CONCLUSION AND DISCUSSION
The new method to autotune the PID parameter called the
novel stable particle swarm optimization (NSPSO) algorithm
is proposed in this paper to improve its performance, conver-
gence, robustness, and stability. To check the performance
and convergence, the comparison simulation based on DC
motor is applied with different fitness functions such as
IAE, ITSE, IST, OS, RT and ST. To test the superiority of
robustness, the comparative simulation based on DC motor
is applied with different operating points of DC motor, and
finally the stability is tested according to the sense of Lya-
punov stability. As seen in the comparative simulation based
on the DC motor, the proposed method provides a grater
result for performance, convergence and robustness than the
PSO [44], the PSO-GWO [38], the WOA [45] and the SSO
due to a reconsideration of the suitability of the remaining
particle in the search space according to (12), which proves
the stability according to the sense of Lypunov stability. This
is included in the process of NSPSO for a newly generated
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new particle, while the other algorithms only try to modify
the value of each particle in the search space. In other words,
the performance of other algorithms depends on the initial
value of each particle. Sometimes, in the unstable system,
their value in the search space approaches the local min-
ima. Therefore, the proposed method can handle unstable
systems with respect to internal operation changes, and thus,
the proposed theory can be claimed to perform in practical
applications. The case of instability from external noise has
not yet considered in this paper; however, this issue will be
considered in our future research work by proposing the new
algorithm of autotuning based on an unpredictable term.

APPENDIX A NOMENCLATURE
Abbreviation Description
ES Steady state error
OS Maximum overshoot
R Reference input
Y Output of the system
e Error of system
pbest Local best position
gbest Best position of the whole particle
v Velocity of particle
J Fitness function
x Position of particle
c1 Cognitive learning factor
c2 Social learning factor
ωie Weights of IE
ωiae Weights of IAE
ωise Weights of ISE
ωtd Weights of overshoot
ωr Weights of rise time
ωs Weights of settling time
β Levy constant
d Current dimension
p Particle in the seareced space
K Torque of the motor
Ra Armature resistance

APPENDIX B SYSTEM AND SIMULATION SETTING
Abbreviation Description Value
Jm Inertia torque of the

motor
0.0004 kg.m2

B Motor friction con-
stant

0.0022 N .m.s/rad

kb Constant of the
electromotive force

0.05 V

KP Proportional gain 0≤ KP ≤2
KI Integral gain 0≤ KI ≤2
KD Derivation gain 0≤ KD ≤1
t Time of tuning in

each iteration of
tuning

2 s

D Dimension of
searched space

3

N Number of particles 50
ith Iteration 100
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