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ABSTRACT Communications resiliency and data distribution assurance has been compromised in highly
competitive, dynamic, and stressing environments with the introduction of off the shelf, high performing
jammers. This paper introduces a novel cognitive communications system that can be fielded on small
attributable platforms; the architecture amalgamates a highly capable environmentally perceptive aperture,
a software defined radio, and sophisticated networking techniques. The proposed cognitive communications
system uses the 5G new radio waveform and applies groundbreaking machine learning methods to facilitate
systems orchestration amongst its subsystems to transfer information effectively between nodes, and across
large-scale multi-hop networks, essential for rapid strike missions. With the challenges imposed by mature
and readily available jammers, a cognitive communications system can be used to maintain and sustain
continuous communications to provide near real-time surveillance and situational awareness updates.
In addition to describing the comprehensive cognitive communications system architecture, a jamming
analysis will be presented. Performance results for an operational use case will be compared to existing
trite architectures consisting of siloed apertures and standard radio systems to demonstrate an improvement
of approximately 10 dB in communications margin with the auspicious technology offering of the cognitive
communications system for low size, weight, and power attributable platforms.

INDEX TERMS Advanced networking, anti-jam, aperture, attributables, cognitive, communications, drones,
machine learning, neural networks, unmanned systems, 5G new radio.

I. INTRODUCTION
Robust communications can be achieved by exploiting spec-
tral and spatial diversity with cultivated aperture technology,
emerging dynamic spectrum access (DSA) capable radios,
and advanced networking solutions that enable connectivity
and interoperability for large-scale, multi-hop networks. Key
to communications resiliency is the assurance of data delivery
by providing reach-back and data distribution to commanders
outside of enemy lines. Small attributable platforms, such as
mini-drones, are promising vehicles to serve as communi-
cations relays to provide increased intelligence, surveillance
and reconnaissance to decision makers at the forefront of
the battlefield. More recently, small attributable platforms
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are replacing locally distributed soldiers near adversaries [1]
due to increased communications and weapons capabilities,
thereby reducing probability of blue force peril [2]. In [3]
maintaining small attributables cooperation and control is
presented where the lack of efficient networking schemas that
can manage communications in rapidly changing environ-
ments are identified as key challenges. [4] describes inherent
problems of network management of such attributable sys-
tems as being time consuming and complicated, thus caus-
ing interoperability issues. Suggested technologies such as
software defined networking (SDN) and network function
virtualization (NFV) may be valuable in overcoming some of
these challenges to provide ubiquitous connectivity to wire-
less devices in the future. SDN introduces a separation of the
control and data planes, where the control plane performs the
logical processing to include network management, and the
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TABLE 1. Comms relay platform & payload requirements.

data plane delivers the packets to the appropriate interfaces.
The separation of these two planes allows for the routing of
traffic intelligently to exploit available network resources [5].
NFV, on the other hand, enables providers to establish many
isolated virtual systems while sharing their physical systems
[6]. While the introduction of different engineered network
topologies for attributable-capable platforms is imminent, for
example, as with microcosm swarm topologies, we propose
to use a cognitive communications system (CCS) architecture
that conducts cutting-edge systems orchestration between its
three segregated subsystems to optimize data distribution and
delivery amongst network participants while operating the 5G
new radio (NR) waveform.

The 5G NR initiative uses modulation, waveforms, and
access technologies that enable the communications system
to meet the demands of high data rate services at low laten-
cies. The waveform format of 5G NR is based on Orthog-
onal Frequency Division Multiplexing (OFDM) and Dis-
crete Fourier Transform spread OFDM (DFT-s-OFDM) with
adaptive modulation including Quadrature Phase Shift Key-
ing (QPSK), 16 Quadrature Amplitude Modulation (QAM),
64QAM, and 256QAM. OFDM gives a respectable spectral
efficiency whilst providing resilience to selective fading and
enabling multiple access capability to be implemented using
OFDM access (OFDMA) [7].

In this paper, small attributable platform requirements for
hosting communications payloads are described. Also, the
innovative CCS architecture which utilizes high-level sys-
tems operations to improve communications between nodes
is outlined.Machine learning techniques are employedwithin
each subsystem to predict aperture and networking behaviors
that influence the way decisions are made to optimize infor-
mation exchanges. Finally, a jamming analysis is presented to
demonstrate the effectiveness of the CCS architecture when
exercising the 5G NRwaveform in its operationally deployed
state. The analysis will be compared to legacy radio systems
which use commercially available technology to highlight the
benefits of such a CCS framework.

II. PLATFORM & PAYLOAD REQUIREMENTS
Small attributable platforms are emerging as new vehicles
that can enable a multitude of tasks (e.g., support of commer-
cial disaster recovery operations including wild-fire commu-
nications relays with command centers, etc.). The design and
constraint requirements for a medium size unmanned aerial
vehicle (UAV) are presented in Table 1 as defined in [8].

FIGURE 1. The cognitive communications systems hosted within the
attributable platform provides machine learning influenced interactions
to increase collaboration between the environmentally perceptive
aperture, software defined radio(s), and network controller subsystems.

The payload size, weight, and power (SWAP) require-
ments are crucial metrics that need to be considered when
designing the CCS architecture such that it can fit ade-
quately within the bay of the platform, take advantage of plat-
form power, and not exceed the maximum weight capacity,
which would undoubtedly limit operations. In addition to the
defined requirements above, the payload cost must be sub-
stantially low due to thousands of quantities needed for future
unmanned military operations, such as surveillance activities.
Also, these platforms would serve useful to be armed with
advanced weaponry to support parallel strike missions if they
successfully penetrated anti-access enemy territory.

While there may be hardware resource constraint chal-
lenges (or limitations) with implementing the proposed CCS
architecture on the small attributable based on the payload
requirements, the architecture itself is designed for modular-
ity and scalability. The CCS architecture will be compliant
with OpenMission Systems (OMS)where interfaces between
software services and hardware subsystems will be standard-
ized to allow data to be exchanged across those interfaces
seamlessly. Additionally, with the implementation of stan-
dards, future capability expansions are possible.

III. COGNITIVE COMMUNICATIONS SYSTEM
The CCS architecture is depicted in Fig. 1; it consists of
an environmentally perceptive aperture (EPA) subsystem [9],
DSA capable software defined radio (SDR) subsystem, and a
network controller (NC) subsystem [10].

Here, the wideband EPA functions in concert with an
advanced SDR that can learn from its experiences over time to
determine action and parameter selections to avoid interfer-
ences and operate in anticipation of connectivity challenges.
The EPA subsystem can perform textbook beamforming,
beam steering, and nulling by using learned experiences
gained from interacting with the environment, and by having
an introspective understanding of its own health and element
status. The SDR is a powerful radio which comprises of a
general-purpose processor used to perform signal processing,
modulation and demodulation of the radio signals and can
support different waveforms. The SDR is DSA aware, where
the radio can effectively address spectrum scarcity challenges
by sharing licensed frequency bands amongst users without
any modifications to the radios or services in use [11]. The
NC will use available quality of service (QoS) information,
such as link capacity, throughput, latency, and packet delivery
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FIGURE 2. Functional sequencing consisting of novel machine learning
techniques enable cognition required for an environmentally perceptive
aperture.

ratio provided from the SDR via proxy services, to support
network route recommendations.

Furthermore, the CCS architecture applies machine learn-
ing to predict aperture and network behaviors under cer-
tain pre-trained conditions. The applied cognition improves
link performance, interference mitigation, traffic routing, and
therefore improves quality of experience (QoE) from an
end user’s perspective. Empowering communications with
a robust, resilient CCS architecture will facilitate faster and
more reliable data exchanges between the UAV platforms and
executive leaders.

A. ENVIRONMENTALLY PERCEPTIVE APERTURE
SUBSYSTEM
The EPA subsystem is composed of functional sequencing
components built upon erudite machine learning techniques
that perform designated functions or key roles as shown in
Fig. 2. These roles are defined as planning and design, opera-
tions and management, monitoring, security, and fault detec-
tion. Here, planning and design will acquire data and train the
functions for their intended operations prior to deployment.
Operations and management function will implement a com-
bination of deep deterministic policy gradient (DDPG) with
neural architecture search (NAS) for vigorous, agile opera-
tions [12], [13]. Where the monitoring block will use multi-
scale convolutional recurrent encoder-decoder (MSCRED) to
tailor the data for other functional use (dimensionality reduc-
tion) and to detect anomalies [14]. Finally, both security and
fault detection functional blockswill apply neural networks to
classify known threats or systematic faults. With the growing
complexity of current and future heterogeneous networks,
advanced learning algorithms like the recommendations pre-
sented within this subsystem should be applied to optimize
system performance. The EPA subsystem integrates with
emerging SDR technology to learn from its experiences to
overcome link performance challenges and interference miti-
gation, essential for the rapid expansion of small attributable
platform communications.

Using systems engineering best practices, a trade-off anal-
ysis was conducted to evaluate which machine learning tech-
niques would be best suited for each antenna function given

FIGURE 3. Complex trade-off analysis performed for machine learning
methods to be used for antenna ‘roles’ suggests rationale for selection
based on scoring of multiple criteria.

the problem each function needed to solve. As a mecha-
nism for differentiating between alternative solutions, a set
of quantifiable selection criteria was chosen that includes
data set (size, nature, and quality), accuracy, available com-
putation time, and urgency of task to be performed. For a
given set of criteria, not all of them are equally important
in determining the overall value of an alternative for each
function. Such differences in importance are considered by
assigning each criterion a weighting factor that magnifies the
contribution of the most critical criteria. For the purposes
of this trade-off analysis, the subjective value method was
implemented to apply a judgement of the relative utility of
each criterion on a scale one through ten. This was derived
specifically for contested communications application and
may vary dependent on intended applications. The score
assigned was then normalized using the linear maximization
method for simple additive weight trade methodology using
a benefit and cost criteria respectively. Results of the selected
machine learning techniques for their quantifiable selection
criteria for each function are summarized in Fig. 3.

B. SOFTWARE DEFINED RADIO SUBSYSTEM
The SDR subsystem will be DSA aware which will allow
the radio to take advantage of RF sensing to gather and use
spectrum situational awareness (SA) to dynamically select
operational frequencies to transmit and receive communica-
tions on. This capability will run locally within each radio
to swiftly recognize and resolve spectrum congestion and
connect to previously undiscovered networks different avail-
able frequencies. Adaptation is constrained by knowledge of
spectrum regulations that are loaded into the radio to ensure
compliant operations.

C. NETWORK CONTROLLER SUBSYSTEM
The NC subsystem applies perception, learning, reasoning,
memory, and adaptive approaches [15], and can proactively
mitigate congestion using an inference engine. The inference
engine contains both an oracle and a route filter capability.
The inference engine acts as an expert model of the network
traffic in a network, looking at time histories of traffic across
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FIGURE 4. The Network Controller subsystem key tasks can be defined in
terms of the observe, orient, decide, act (OODA) loop framework.

the network links to predict the onset of congestion. Low
priority traffic can be opportunistically re-routed onto under-
utilized links to mitigate congestion before it happens.

The NC subsystem can be most easily described using
the observe, orient, decide, act (OODA) loop framework (as
shown in Fig. 4) for command and control described by John
Boyd in [16]. The observe element of the loop is performed by
the NC ingesting Open Systems Interconnection (OSI) layer
2 and 3 data describing the current state of Internet Proto-
col (IP) traffic flow and network topology. These observations
are provided to the oracle, a predictive machine learning
model within the inference engine. This model has been pre-
trained under a wide variety of network conditions to become
an expert model of network behavior. The orient step is
completed using graph neural network (GNN) to generate
predictions of latency and the load of each communication
link in the network [17]. These predictions are provided to the
route filter within the interference engine. The route filter per-
forms the decide step, populating a congestion-aware route
table which prioritizes low-utilization routes. Once the new
routes have been dynamically adjusted, the router completes
the OODA loop, acting to push low priority packets to seldom
utilized routes in the network, leaving the quickest routes
open for the highest priority traffic.

GNNs use neural networks to learn how relationships
affect interactions, and in turn how those interactions affect
the state of the nodes in the graph as shown in Fig. 5.
Researchers have used these networks to solve n-body
collision problems, networking problems to learn rout-
ing protocols [18], predict jitter and delay [19], optimize
resource allocations [20], and perform distributed transmis-
sion scheduling.

IV. MODELING OVERVIEW
Operational modeling examines the architecture from the
perspective of a system operator and other users who are
concerned with accomplishing the tasks for which the sys-
tem is intended. It deals with the environment in which the
system operates, operational scenarios and interactions of

FIGURE 5. Input data and output predictions from Graph Neural
Networks can be used to perform load and capacity balancing across
communication links while minimizing end-to-end network latency.

the participants, the outcomes of employing the system in
various ways, and measures operational performance and
effectiveness [21]. Accordingly, operational modeling can be
used to demonstrate the benefits of deploying such a CCS
architecture within attributable platforms.

For context, an example use case for using the CCS archi-
tecture for interference mitigation is presented in Fig. 6 to
show the importance of its utility, cognition, and subsystem
interactions. Here, Drone-1 infiltrates enemy territory, and
transmits surveillance data to Drone-2 and Drone-3. Drone-
2 or Drone-3 acts as a communications relay and forwards
data to the Operations Center (OC) for processing. Drone-
2 and Drone-3 can communicate freely using 5G NR wave-
form when no interference is present. Red forces quickly
detect the drones in the area of interest, and deploy an omni-
directional, in-band, mature jammer to obfuscate communi-
cations between Drone-1 and its two intended receivers. The
jammer then transmits on the same Receive (Rx) channel / Rx
beam, thereby disrupting the communications and impairing
the OC data collection efforts. The drones equipped with
the CCS architecture by design can sense and characterize
the interference and optimize the aperture parameters for the
communications link while providing beam nulling in the
direction of the jammer. In doing this, the drones can learn to
implement the desired configuration for future deployed jam-
mers as well. Additionally, with DSA aware technology, the
SDRs can modify the given transmit and/or receive frequen-
cies to avoid the spectrum congestion. Also, if other radios
are available that operate at frequencies outside of those being
jammed, the NC can select to route the data using those. The
effect of these coordinated operations between subsystems
within the CCS architecture enabled by machine learning is
the successful receipt of data at the OC at increased rates
during mission execution, even in the presence of jammers.

A. PERFORMANCE ANALYSIS METHODOLOGY
The following methodology was used to assess the jam resis-
tance capabilities of the CCS architecture outfitted on the
drones and its overall performance benefits.

1. 5G NR waveform fundamental link budgets for all
communication paths available were performed. The
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FIGURE 6. Notional operational scenario for mini-drone usage to extract
data from behind enemy lines. Strong interference is present close-in
range to Drone-1 thereby limiting communications reach-back.

analysis assumed a maximum operating frequency of
29.5 GHz, maximum available bandwidth of 850MHz,
and maximum channel bandwidth of 400 MHz as
defined in the 5G NR specification [22].

2. Using the Friis equation for free space transmission,
the jammer to signal (J/S) ratio was computed with the
simplified equation derived below [23].

J
S

= (
PJGJ
PtGt

)(
ds2

dj2
) (1)

Here, J is the jammer signal power at the intended
receiver (dB), S is the transmitter signal power at the
intended receiver (dB), Pj is the jammer output power
(dBW), Pt is the transmitter output power (dBW), Gj
is the jammer antenna gain (dBi), Gt is the transmitter
antenna gain (dBi), dj is the distance from the jammer
to the receiver (m), and ds is the distance from the
transmitter to the receiver (m).

3. Using the jammer bandwidth, calculate the updated
received C/N0 due to the jammer which is a function
of the received C/N0, jammer bandwidth, and the J/S
ratio. This equation computes the effect of the received
jammer to signal power (J/C in equation below) on the
received signal to noise ratio.
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where C is the total average received signal power, N0
is the total noise power spectral density at the receiver,
NRF is the noise power spectral density due to the RF
front end thermal noise, NJ is noise power spectral
density due to jammer, and B is the jammer bandwidth.

4. The margin with the jammer can be computed, by tak-
ing the result in step 3 subtracted from the required
C/N0 obtained for the 5G NR waveform in use.

The methodology above was used to evaluate the physical
layer communications analysis, the available margin with and
without interference present, and repeated to understand the

TABLE 2. Communications link budget analysis.

possible responses from the CCS architecture when exercis-
ing certain machine learning influenced decisions.

B. PERFORMANCE ANALYSIS RESULTS
Considering the 29.5 GHz frequency band with 400 MHz
carrier bandwidth for exercising the 5GNRwaveform, and an
EPA equivalent isotropic radiated power (EIRP) of 20 dBW
(RF power of 1 mW and 50 dBi antenna gain), we can derive
the physical layer analysis as computed in Table 2. Here,
atmospheric loss was set at an arbitrary value of 5 dB to
account for the loss affect expected at higher frequency bands.
The results indicate that there is sufficient margin to close
each link without interference present.

Next, consistent with steps 2 – 4 from the Performance
Analysis Methodology section, the communications link
margin results can be used as inputs into the jamming anal-
ysis. An omni-directional, in-band jammer with an EIRP
of 30 dBW and instantaneous bandwidth of 150 MHz is
introduced to interrupt the communication exchange between
Drone-1 and Drone-2 and/or Drone-1 and Drone-3. The
results are presented in Table 3; results demonstrate how
mini-drones without an integrated CCS architecture would
be vulnerable to deployed and fielded jammers. The jammer
can disrupt the communication platform receivers which are
using siloed apertures/antennas or standard radios such that
the exchange of communications is halted between the drones
that are close-in range which significantly impact the OC’s
data collection process.

The CCS architecture can apply cognition by using coor-
dinated systems interactions among its subsystems to opti-
mize the communication link. Fig. 7 depicts a decision flow
chart for a CCS-enabled drone transmitting to another CCS-
enabled drone.
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TABLE 3. Jamming analysis without CCS architecture.

FIGURE 7. High-level coordinated systems operations with machine
learning capable subsystems promotes effective communications.

Some techniques that the CCS can implement are define
as nulling out of interference using adaptive beamforming
methods, and if multiple interference sources exist, the seg-
menting of the EPA’s EIRP based on the number of the
gain required to close the link can be considered. Also, the
CCS can exercise DSA by changing frequencies or transmit
/ receive channels to avoid spectrum congestion for in-band
jammers. If multiple SDRs are available on the payload, the
NC subsystem can seek an available communications link
based on radio link resources and knowledge of the interfer-
ence. Other techniques such as adjusting the data rate of the
selected waveform to maximize range may be handy as well,
or switching waveforms if alternatives are available for com-
munications. To validate the significant offering of the CCS
architecture, the jamming analysis was repeated where we
assumed the drones were equipped with a CCS architecture.
In this example, as the jammer is coming into position, the
drones detect some of the degradation to communications and

TABLE 4. Jamming analysis with CCS architecture.

can recognize it as an enemy jammer. Using the knowledge
gained on the jammer’s position, a null can be applied in the
direction of the jammer by using the EPA subsystem, thereby
suppressing the victim receiver gain in the direction of the
jammer. Table 4 provides updated results which yield positive
communications margin for all communication path options.

Coupled with the fact that the CCA architecture meets or
exceeds the platform and communication payload require-
ments, and the promising empirical results, the CCS archi-
tecture is an optimal selection for small attributable platforms
deployed in highly contested environments.

V. CONCLUSION
A novel CCS architecture influenced by machine learning for
attributable platforms which uses the 5G NR waveform to
relay intelligence, surveillance, and reconnaissance to deci-
sion makers at the forefront of the battlefield was described.
The architecture combines a highly capable EPA, a SDR,
and resilient networking techniques. The CCS architecture
and its hardware assets meet the SWAP requirements given
for a medium size UAV and the communications payload.
This paper described the system architecture and the machine
learning application to designated functions within each sub-
system, and the importance of systems orchestration to trans-
fer information effectively between nodes, and across large-
scale multi-hop networks. Operational modeling was per-
formed to demonstrate the performance benefits of the CCS
when presented with the challenges imposed by mature and
readily available jammers. Performance results compared to
existing commonplace architectures showed favorable results
with the use of the CCS where an average improvement
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of 10 dB in communications margin was reported thereby
maintaining the flow of information distribution from the data
collection source to the processing center.

Future work will develop the selected machine learning
algorithms as enablers for the CCS architecture. The CCS
architecture will be integrated onto drones and staged in a
testbed that applies a realistic operating environment to assess
the immediate performance benefits for given use cases and
will validate the interactions for collaborative systematic
operations and decision making between the cognitive sub-
systems.
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