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ABSTRACT The prediction of sea surface temperature (SST) is a challenging task, especially for regions
with high SST variability. Such predictions are either achieved by physics-based models, which often yield
poor predictions and are computationally intensive, or by using data-driven methods, which are skillful and
computationally less intensive. However, recent machine learning studies exploring SST prediction have
not included the important meteorological parameters governing SST variability. Therefore, in this study,
we propose various of deep learning (DL) models trained using past meteorological features to predict day-
ahead SST. The proposed models include a deep multilayer perceptron (deepMLP), long short-termmemory
network (LSTM) and spatial 2-dimensional convolutional neural network (spatial 2D CNN). We explore the
potential of the proposed DL models for day-ahead SST prediction across different locations in the Tohoku
region (Japan’s east coast), including in situ validation. Evaluation of these DL models’ prediction skills
suggests that the spatial 2D CNN’s are highly skillful at coastal locations, whereas at offshore locations,
equal prediction skills were noted from the deep MLP and LSTM. We further attempted to improve the
spatial 2DCNN by including past SST features, and such improvisation showed very low errors ranging from
0.35◦C to 0.75◦C and high correlation skill from 0.64 to 0.96. These improved skills were also compared
with persistent model (PM) skills using RMSE and Correlation (RC) phase diagram, where we found that
improved skills are consistently better than PM skills. In addition, we extracted features from the spatial 2D
CNN to understand the reason underlying such improved skills, and we noted that the proposed DL model
successfully captured the major meteorological and oceanic features governing SST variability. This led us
to conclude that the proposed DL models are capable of producing highly reliable SST predictions, and may
be equally applicable to other study regions.

INDEX TERMS Deep multi-layer perceptron (Deep MLP), spatial 2-dimensional convolutional neural
network (spatial 2D CNN), long short-term memory networks (LSTM), deep learning for SST prediction,
meteorologic parameter forced SST prediction.

I. INTRODUCTION
Sea surface temperature (SST) is a crucial factor responsible
for the air-sea flux interactions between oceans and the atmo-
sphere. SST variability strongly controls the local climate
(precipitation changes and marine heatwaves) and marine
ecosystems (potential fishing zones and eddies); thus, its pre-
diction will aid in understanding the probable effects due to
its variability in advance.Methods applied to the prediction of
SST can be broadly classified into twomajor categories. First,
the solution of physics-based energy, momentum, and flux
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equations was used, followed by data-driven techniques. The
major drawbacks of physics-based methods are the complex
assumptions involved in formulating the governing equations,
the need for accurate forcing, and high computational depen-
dencies [1], [2]. In addition, the accuracy of physics-based
methods largely varies over a large spatial domain and may
yield poor predictions [1]. On the other hand, data-driven
techniques are recently becoming very popular as an alterna-
tive in the field of SST prediction due to their less assumptive,
low computational nature and higher predictive skills.

Several previous studies have reported the use of simple
multi-layered perceptron (MLP) models for SST prediction
in various parts of the global ocean. This includesmulti-linear
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regression at a few locations over the Indian Ocean [3], MLP
in the Indian Ocean [3], [4] and tropical Pacific Ocean [5],
support vector machines/regressions (SVM/R) in the north-
east Pacific [6], and tropical Atlantic Ocean [7]. Such past
studies have considered features only from past SST at a
target grid, assuming that future SST values can be predicted
from their own past. Very few past studies have experimented
with a cause-effect approach in SST prediction, including
MLP in the western Mediterranean Sea [8] and random for-
est (RF) at selected locations over the global ocean, including
the eastern coast of Japan [9]. Such cause-effect approaches
were implemented with simple machine learning models
and thus exhibited high errors owing to the non-inclusion
of features from nearby grids around the target location.
Aparna et al. attempted to include features from surround-
ing grids, but only from past SST. Because meteorological
parameters were missing from the features, this study also
exhibited high errors [10]. In recent past, many attempts using
DL models can be noted for SST predictions. This includes
the LSTM network in the Bohai Sea [11], Yellow Sea [12],
Korea Sea [13], gated recurrent unit (GRU) in the Bohai
Sea [14], [15] and Yellow Sea [16], and CNN in the Pacific
Ocean [15], [17].

Various past attempts have been made either by simple
machine learning models or by lacking causal parameters in
features. Therefore, high errors were noted for SST predic-
tions in those attempts; further, this raises questions on the
applicability of such methods for longer lead times. In addi-
tion, prediction errors were observed to be biased towards
warm SST in many of these past studies [14], [15], [17].

Therefore, to address this significant research gap, we pro-
pose DL models that consider both meteorological and
oceanic features to predict SST at longer lead times in one
of the high SST variability regions in the northwest Pacific
Ocean near Japan’s east coast, ‘Tohoku’.

The remainder of this paper is organized into five sections.
Section II highlights the various study locations inside the
Tohoku region, Section III describes the datasets used for
training and validation of DL models, Section IV discusses
the formulation of the proposed DLmodels and their parame-
ter optimization, and Section V elaborates the results from the
proposed DL models and their improvisation. In Section VI,
a brief discussion regarding the extracted features from the
CNN, error distribution, and validation with in situ SST
is presented, and Section VII presents the conclusions and
future work of the proposed study.

II. STUDY LOCATIONS
This study focuses on several locations in the Tohoku region
(38◦N–40◦N, 141◦E-144◦E, Fig. 1), which hosts a major
mixture of the Oyashio and Kuroshio currents and thus
exhibits high spatio-temporal SST variability [18]. Therefore,
it is a highly suitable region for evaluating the efficacy of
the proposed DL models for SST prediction. In addition, the
Tohoku region is the most habitable region for major fish
species. Hence, SST predictions with a lower computational

complexity are highly appreciated in the Tohoku region. Var-
ious study locations have been considered, including coastal
waters and offshore regions. In addition, these study locations
are at the fronts of major spatiotemporal SST variability (right
panel of Fig. 1). We also developed the proposed DL model
at the Kuroshio Extension Observatory (KEO) buoy location
(32.3◦N, 144.6◦E) to validate it against in-situ SST. The
in-situ SST data at the KEO buoy are available through.∗1

FIGURE 1. Various study locations in Tohoku region. Loc 1, 4, and 10 are
in coastal region, whereas rest of them are in offshore region. Loc 1-23
the DL models were validated against target SST, whereas at KEO buoy
the validation was performed against in-situ SST.

III. DATA
Two different datasets were used to develop the DL models.
The first is training data mainly utilized as features for DL
models, and the other is the target data used for supervised
training of the DL models.

A. TRAINING DATA
Training data are obtained from reanalysis data, an amal-
gamation from various sources refined by an optimal inter-
polation method; thus, the reanalysis data are very close to
the observed data. This study used the European Center for
Medium RangeWeather Forecast (ECMWF) fifth-generation
atmospheric reanalysis products (ERA5) of global climate
[19] as features for training DL models.

ERA5 data provide several meteorological parameters,
of which important parameters are extracted over the study
locations. These includes the 2m-air temperature, 2m-dew
point temperature, solar radiation, total cloud cover, surface
sensible heat flux, and wind speeds (meridional and zonal).
These meteorological variables are essential to account for
the rapid variability in the SST, e.g., 2m air-temp and dew
point temperature show strong coupling with SST [20], solar
radiation and sensible heat flux govern the major heat source
[21], [22], and wind speed and total cloud cover govern the
cooling [22], without considering that any of these variables
could lead to poor skills [8], [9]. ERA5 data are sufficiently
accurate over the study area to develop DL models [23].
The spatial resolution of the ERA5 data is 0.25◦

× 0.25◦,
and it is available on an hourly timescale. ERA5 data were
downloaded using the ECMWF Climate Data Store API
(CDSAPI) [24]. Meteorological variables were extracted on

∗1:https://www.pmel.noaa.gov/ocs/data/disdel/
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the grids closest to the study locations; thus, DL models were
trained at 0.25◦

× 0.25◦ to account for the wider spatial
domain.

B. TARGET DATA
The choice of the target SST is crucial for the development of
DL models. The target SST should have a very high spatial
and temporal resolution; apart from this, it should be very
close to the observations. With these criteria, the choice of
target data was limited to the study area. Satellite data from
Himawari was a possible choice, but it had major tempo-
ral and spatial gaps as the product was available at the L3
level. Another choice was the output of a numerical model
from the Japan Coastal Ocean Predictability Experiment
ver2 (JCOPE2), targeted over the entire northwestern Pacific,
including the proposed study area. JCOPE2 is an operational
nowcast/forecast system that assimilates Himawari-8 satellite
SST data into the JCOPE using a three-dimensional vari-
ational scheme [25]. The resolution of the target data was
0.02◦

× 0.03◦ on a spatial scale, and it was available on
an hourly timescale. The JCOPE2 data are highly in agree-
ment with the ERA-5 reanalysis SST data at selected study
locations and therefore meet the required criteria as a target
SST [25]. Although ERA-5 SST data were available owing
to its low resolution, the JCOPE2 SST data are preferred as
target data.

IV. PROPOSED DEEP LEARNING MODELS
The proposed DLmodels were developed at various locations
shown in Fig. 1 over the Tohoku region. Features of DL
models were governed by past instances of ERA5 reanalysis
data from 2m-air temperature, 2m-dew point temperature,
solar radiation, total cloud cover, surface sensible heat flux,
wind speeds (meridional and zonal), and ocean currents from
JCOPE2. Features were moving-averaged over a window of
2 to 4 h to reduce the noise in the features. Training features
were extracted at the grid closest to the study locations and
surrounding areas, whereas the target SST was interpolated
at study locations using bi-linear interpolation. The duration
of the training and validation data was solely based on the
availability of the target SST. The total duration of the tar-
get SST data was available from 2018-08-01 to 2018-12-31
on an hourly timescale. In total, 3672 h (153 days) were
available, out of which 75% of data was used for training
the DL models, 5% was used for validation of DL model
parameters, and the remaining 20% was used for testing,
and there was no overlap between the training, validation,
and testing datasets. The testing set has approximately 730 h
(30 d), which is sufficient to consider the diurnal variability
in SST [9], [15]. DL models were formulated based on the
number of grids considered for the features (see Fig. 2 for
details). The Deep MLP and LSTM consider features only
from the target grid, whereas the spatial 2D CNN collects
features from neighboring grids surrounding the target grid.
Past hourly instances of meteorological variables, 2m-air
temperature, 2m-dew point temperature, solar radiation, total

cloud cover, surface sensible heat flux, wind speeds (merid-
ional and zonal), and ocean currents constitute the features
of the DL models. SST values alone may not be sufficient
to capture high SST variability, as they are governed more
by other causal variables [2], [8], [9]. The proposed DL
models were targeted for SST prediction at a lead-time of
24-hours. Details of the individual models are explained in
the following sections.

FIGURE 2. Input area/grid used for formulation of DL models using
various meteorological parameters and ocean currents.

A. DEEP MLP
A deep MLP was designed to receive features from a single
target grid, as shown in Fig 2. Various meteorological fea-
tures (2m-air temperature, 2m-dew point temperature, solar
radiation, total cloud cover, surface sensible heat flux, and
wind speeds) and ocean currents at the target grid surrounding
the study location were extracted as features for DL models.
These features were moving averaged to reduce their noise,
and the target SST data of future time steps were considered
for training. All the features were converted into a single
column vector (as shown in Fig. 3) to form an input layer.
This input layer is connected to several deep hidden layers.

FIGURE 3. Deep MLP architecture proposed based on meteorological
parameters and ocean currents as features for SST prediction. Features
were considered from single target grid and stacked together in a single
column vector.

Each deep hidden layer consists of several hidden neurons,
a dropout ratio, regularization, and batch normalization lay-
ers. Drop-out and regularization layers were added to avoid
overfitting during training. The final deep hidden layer is
connected to an output layer consisting of a single neuron.
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The output layer compares the predicted SST from the deep
MLP with the target SST, and adjusts the internal parameters
with respect to the observed error. The training procedure
for the deep MLP was repeated for several iterations until
the desired error was achieved. For each iteration, differ-
ent hyperparameters were used to obtain the generalization
ability.

B. SPATIAL 2D CNN
The spatial 2D CNN model exhibits a major difference in
feature gathering. A spatial 2D CNN gathers features from
the closest grid to the study location, as well as from its
neighbors. The features of spatial 2D CNN are a three-
dimensional matrix with the size of ‘latitudes times longitude
times past_hourly timesteps of 2m-air temperature, 2m-dew
point temperature, solar radiation, total cloud cover, sur-
face sensible heat flux, wind speeds (meridional and zonal),
and ocean currents. A spatial 2D CNN is thus supposed to
extract important features from causal variables governing
SST variability. A three-dimensional feature matrix forms an
input layer for the spatial 2D CNN model, which is further
connected to several convolutional hidden layers. Each hid-
den convolutional layer attempts to extract the features from
the previous convolutional layer. Each convolutional layer is
further connected to the dropout layer with regularization to
avoid overfitting. After several convolutional layers, feature
maps were extracted in a single column vector, which was
further connected to several hidden layers, as in the deep
MLP. The internal parameters of the spatial 2D CNN were
adjusted with respect to the error between the spatial 2DCNN
output and target data. Fig. 4 shows the architecture of the
proposed spatial 2D CNN model.

FIGURE 4. Proposed spatial 2D CNN architecture using spatio-temporal
features around target grid from meteorological parameters and ocean
currents as features for prediction of SST.

C. LONG SHORT-TERM MEMORY NETWORKS
We also developed long short-term memory (LSTM) net-
works, which are a recent form of recurrent neural net-
work [26]. LSTM is an improved recurrent neural networks
enhanced by additional components of the cell state, forget
gate, input gate, and output gate (Fig. 5). We tested the
LSTMmodel’s prediction skills at each location based on past
meteorological features. Similar measures as seen in the deep
MLP case were taken to avoid overfitting by adding drop-out,
batch-normalization layers, and weight regularization.

D. DL MODEL PARAMETER OPTIMIZATION
There are two types of parameters in theDLmodels to be opti-
mized. The first is internal parameters that can be adjusted

FIGURE 5. Proposed recurrent neural network model for SST prediction
trained using past meteorological features at each study location (as in
Fig. 1) based on LSTM [26].

with respect to the observed error between the DL model
output and the target SST. Amean square error based on adam
optimizer was considered to adjust the internal parameters of
the DL model. The second is external or popularly known
as hyper-parameters that cannot be adjusted by the observed
error, but rather fixed by a trial-and-error approach or with
the help of a sophisticated optimization algorithm. In the
current study, the popular but computationally less intensive
and equally effective random search algorithm is used to
optimize the hyperparameters, as the performance of the DL
model is very sensitive to them. Various hyper-parameters
include past time-steps of causal features (2–16 h), mov-
ing average window for features (2–4 h), number of hid-
den/convolutional/LSTM layers (2 to 5), number units in each
hidden/convolutional/LSTM layer (50 to 300), number of
neighboring grids in spatial 2D CNN (2 to 13), filter size in
spatial 2D CNN (1 to 3), dropout ratio (0.15–0.4), and L2
regularization (1e-5 to 1e-2).

V. RESULTS
The results from various proposed DL model experiments
during the testing period of 730 h (30 d) at a lead-time of
24-hours. The performance of the DL model was evaluated
using the root mean square error (RMSE) and the correlation
skill (corr. skill) calculated between the DL model output
and the target SST or in-situ SST. Lower RMSE and higher
correlation. skill values are better, and vice versa.

A. COMPARISON OF PROPOSED DL MODELS
To understand the effectiveness of gathering features from
neighboring grids, the performance of spatial 2D CNN
was compared with deep MLP and long short-term mem-
ory (LSTM) networks at each study location. Fig. 6 shows
a comparison of the DL model predictions against the target
SST at 24-hour lead-time.

The errors in SST predictions at 24-hour lead-time with
deep MLP were observed to be between 1.0◦C and 2.5◦C,
and those from the LSTMmodels were found between 1.0◦C
and 2.25◦C. The poor skills observed in deep MLP are due
to few features, and those from LSTM models are due to
few parameters and the inability to extract useful patterns
from short lengths of past variables compared to spatial 2D.
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FIGURE 6. RMSE comparison between deep MLP, LSTM and spatial 2D
CNN based on RDL models output and target SST. The location numbers
in this figure correspond to those in Fig. 1.

Such poor skills of LSTM in SST predictions have also been
noted at a few locations on the east coast of Japan [9]. The
above-mentioned errors are quite high owing to the non-
inclusion of features from the neighboring grid, but compara-
ble to some of the previous studies that considered a similar
approach as noted in [3], [4], [9]. However, errors from spatial
2D CNN models were limited to 1.0◦C to 1.5◦C, such higher
skill was due to the ability of spatial 2D CNN model’s in
handling the spatio-temporal features from neighboring grids
[17], [18]. From Fig. 6, it is evident that the spatial 2D
CNN experienced fewer errors than the deepMLP and LSTM
at each location. The errors at the offshore locations (Locs
17, 23, and 14) were marginally lower (except Loc 2) and
significantly lesser at coastal locations (Locs 4, 10, and 1).
The lower RMSE at coastal locations was due to the inclusion
of past spatiotemporal causal features from neighboring grids
(especially from wind speed and ocean current), which are
largely responsible for the high variability in SST.

Even though the errors in spatial 2D CNN were less than
those in deep MLP and LSTM, the range of 1◦C to 1.5◦Cwas
still higher considering the usability of such predictions for
various applications such as fisheries and marine ecosystem
management. Therefore, we further attempted to improve
spatial 2D CNN models to reduce these errors.

B. IMPROVISED SPATIAL 2D CNN
To improve the earlier skillful spatial 2D CNN’s, we pro-
pose adding past SST values as an additional feature from
neighboring grids. Thus, the improvised spatial 2D CNN
not only takes features from important causal parameters
(meteorological and ocean currents, as mentioned in the data
section) but also from past SST values, and overcomes the
crucial shortcomings of several past studies.

The performance of the improvised spatial 2D CNN is
depicted in Fig. 7 and Fig. 8 at each location, using a time-
series plot of the target SST against the predictions from
the improved spatial 2D CNN at 24-hour lead-time. Impro-
vised spatial 2D CNN substantially improved the errors in

SST prediction compared with its earlier range (Fig. 6). The
improvised spatial 2D CNN model now observes an RMSE
in the range of 0.35◦C to 0.75◦C, and correlation skills from
0.64 0.96. Such skills are well within the acceptable limits of
usability considering various applications, such as locating
potential fishing zones, eddy detection, and cyclone progres-
sion [1], [2], [5], [17], which were found to be significantly
better in comparison with similar past works where RMSE
values were observed to be higher than 1.0◦C [9], [10], [17].

FIGURE 7. Improvised spatial 2D CNN SST prediction comparison against
target SST for 24-hour lead-time at Loc 1, 2 and 4. Corresponding
correlation skill and RMSE values are mentioned for each location.
Improvised models output captures SST variability very well with no bias
towards high SST.

The lowest error in the improvised spatial 2D CNN
model was observed at Loc 17, and the highest at Loc 2.
Loc 2 showed a sudden increase in depth compared to
nearby locations, due to which the ocean dynamics exhibited
rapid changes and hence showed a higher error. Fig. 7 and
Fig. 8 show that improvised spatial 2D CNN models capture
rapid changes effectively and accurately. This suggests that
improvised spatial 2D CNN models are highly capable of
providing skillful long-lead-time SST predictions.

VI. DISCUSSION
In the proposed study, long lead time SST predictions were
attempted using various DL models. Several previous stud-
ies have attempted SST prediction based only on a time-
series approach [3], [4], [15]. The major limitation of such

40414 VOLUME 10, 2022



K. R. Patil, M. Iiyama: Deep Learning Models to Predict Sea Surface Temperature in Tohoku Region

FIGURE 8. Same as Fig.7 but for Loc 10, 14, 17 and 23.

an approach is its inability to capture rapid changes in SST
variability, especially at coastal locations. Therefore, to over-
come these limitations, the proposed study combined spatio-
temporal features from past meteorological data along with
oceanic parameters. Various DLmodels have been developed
for this purpose, in which deep MLP and LSTM consider
features from a single target grid, and spatial 2D CNNmodels
gather the features from neighboring grids. We further ana-
lyze the skills from the proposed models and discuss their
validationwith in-situ SST at the KEO buoy, comparisonwith
persistent models (PM), extraction of trained feature maps
from the first convolution layer, and error distribution at each
location in further subsections.

A. VALIDATION OF IMPROVED MODELS WITH IN-SITU SST
An improvised spatial 2D CNN model was also developed at
the KEO buoy location to validate its predictions against in
situ SST data. The improvised spatial 2D CNN at the KEO
buoy was trained from past meteorological and JCOPE2 SST
features, whereas in-situ SST was kept aside for validation
purposes. In this validation, we found that the RMSE from the
improvised models was very low around 0.26◦C, and a high
correlation skill of 0.97 (Fig. 9). Such superior skills strongly

FIGURE 9. In-situ validation of improvised spatial 2D CNN model
prediction at KEO buoy at 24-hr lead-time, exhibiting very high prediction
skills.

suggest that improvised spatial 2D CNN models can capture
the ocean dynamics at various locations.

B. IMPROVED SKILLS IN SPATIAL 2D CNN AND
COMPARISON WITH PM
In comparison to the deep MLP and LSTM, the spatial 2D
CNN models outperformed significantly at coastal locations
and marginally at offshore locations (Fig. 6). Even though
such errors were comparable with those of earlier studies,
this margin was high considering the applications of such
SST predictions. To further enhance the performance of
the proposed DL models, past spatiotemporal SST values
were added along with meteorological features and ocean
currents.

A significant improvement in the RMSE was noted after
the addition of past spatiotemporal SST values as additional
features. The errors from the improved spatial 2D CNN’s
were reduced from 1.0◦C-1.5◦C to 0.35◦C-0.75◦C. To under-
stand the comparison of predictive skills from improvised
spatial 2D CNN against PM skills, we introduced an RMSE
vs. corr. skill based two-dimensional space diagram (RC).
In the RC diagram, the skills are plotted for each location.
Along the x-axis, the higher the correlation, the point moves
towards the right; similarly, along the y-axis, the point moves
towards the bottom. Therefore, in general, an improvement in
the RC diagram can be noted with points moving towards the
bottom-right corner. In Fig. 10, the RC diagram between the
improvised model and PM skills is depicted, and the move-
ment of skills from the improvised models in the bottom-
right corner suggests the superior skills of improvised spatial
2D-CNN compared with PM, except at Loc 2.

C. FEATURE MAPS FROM IMPROVED SPATIAL 2D CNN
Feature maps from CNN’s are essential tools for analyzing
the connection between the training features and target data
(Fig. 4). These feature maps are the outputs of the interme-
diate convolutional layers. This helps to understand how the
training features are transformed into convolution layers to
output the desired predictions, in this case, the hourly SST at
a particular location. For this purpose, we analyzed the feature
maps for Loc 23 and compared them with training features.
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FIGURE 10. Comparison of improvised spatial 2D CNN with PM skills at
each location. The movement of points towards the bottom right corner
denotes the skill improvement. Improvised models show significantly
better skills than PM at each location except at Loc 2.

In Fig. 11a, the training features from past meteorolog-
ical and oceanic features used for the prediction of the
108th SST data point during the testing period are shown.
The trained features extracted from the first convolutional
layer are shown in Fig. 11b. The different training features
were merged into common and separate features. For exam-
ple, the meridional wind (v-wind) component (Fig. 11a) was
captured by filter number 2 in Fig. 11b. Similarly, zonal wind
(u-wind) is captured in filter numbers 4 and 5, SST in filter
number 23, meridional current (v-curr) in filter number 24,
and dew point temperature in filter number 25. At Loc 23,
where Oyashio cold currents and wind majorly govern mix-
ing (Fig. 1); therefore, among the various training features,
SST, zonal and meridional wind, and meridional currents are
found to dominate over the other. Thus, CNN can efficiently
extract the required spatial meteorological and oceanic fea-
tures and merge them to pass on to further convolutional
layers.

D. EFFECTIVENESS IN CAPTURING LOW SST
Sudden cooling of ocean water was noted at a few study
locations, for example, Locations 1, 10, 14, and 17. This
was due to the rapid mixing of currents and changes in
bathymetry. Usually, physics-driven models and many past
DL methods exhibit a high bias for cold SST and low bias
for warm SST because warm SST is more persistent than
cold SST. The cold SST arises owing to the sudden change in
meteorological and physical factors; hence, it does not persist
for long periods. It is highly beneficial to capture such rapid
variability in SST, as it could govern the potential location
of the fishing zone or maintain a low-pressure zone during
cyclones. Hence, it is very important that the prediction of
such a low SST be as accurate as the total study period. With
the improvised spatial 2D CNN, we noted a similar accuracy
in the low SST in comparison with the error observed during
the complete testing period (Fig. 7 and 8).

FIGURE 11. (a) Training features from past four hours surrounding Loc
23 for 108th data-point during testing period (Ref. Fig. 8). Center pixel in
the above figure corresponds to the Loc 23, and the x-axis and y-axis
represents the latitudes and longitudes, resp. Training features are
normalized within −1 to +1 range, and darker shades represent strong
features. (b) Feature maps corresponding to Fig. 11a from first
convolutional layer for the improved spatial 2D CNN model for predicting
24-ahead SST at Loc23. Extracted feature maps resemble the important
training features, e.g. Filt #2 – vWind, #4,5 – uWind, #23 – SST,
#24 – vCurr and #25-DewPtTemp.

E. ERROR DISTRIBUTION
To understand the nature of the bias in improvised spa-
tial 2D CNN predictions, we further investigated the error
distribution between the target SST and improvised spatial
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FIGURE 12. Probability distribution function of error at each location.
Large number of errors are concentrated between −0.5◦ to 0.5◦ C,
suggesting that high errors are less likely to occur.

2D CNN predictions. Fig. 12 shows the probability distribu-
tion function of the error for each location. It can be noted
that, large number of errors do concentrate at the center
within a range of −0.5◦C to 0.5◦C. This suggests that CNN
predictions do not exhibit large errors, and hence, are more
reliable.

VII. CONCLUSION
• Among the proposed deep learning models, the deep
MLP and LSTM showed high errors at coastal locations,
whereas equal prediction skills were noted at offshore
locations.

• The inclusion of more spatio-temporal features from the
surrounding grids significantly reduced the errors in the
spatial 2D CNN, especially at coastal locations.

• To further improve the spatial 2D CNN, spatio-temporal
past SST features were added, which helped them sur-
pass the PM prediction skills (Fig. 10).

• Various important features pertaining to the inputs sur-
rounding the study area were effectively noted by the
improved spatial 2D CNN, as shown in Fig. 11a and
Fig. 11b. This suggests that the applicability of the
proposed improvised models in other study areas will
result in similar skills in SST prediction, exhibiting high
variability in SST.

• The peculiar feature of improvised spatial 2D CNN is
the non-biasedness of prediction skills towards warm
SST. Such important observations were missing in past
studies on SST prediction [14], [15], [17].

• The future work of the current study is to consider high-
resolution input features and more oceanic parameters
(e.g., sub-surface temp) in a large spatial domain instead
of a few locations. Because the proposed method is
highly adaptive and efficiently captures the high SST
variability, it is possible to cluster similar variability
SST locations and collectively develop a DL model for
each cluster. This significantly reduces the computa-
tional cost during trainingwhen the proposedDLmodels
are applied over a wide spatial domain.

• When applied to the spatial domain, the proposed frame-
work will be highly useful for estimating potential fish-
ing zones [27], probable movements of the progressing
cyclone [28], knowing expected heatwaves, and detect-
ing eddies [29].
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