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ABSTRACT The structure of many complex networks includes edge directionality and weights on top of
their topology. Network analysis that can seamlessly consider combination of these properties are desirable.
In this paper, we study two important such network analysis techniques, namely, centrality and clustering.
An information-flow based model is adopted for clustering, which itself builds upon an information theoretic
measure for computing centrality. Our principal contributions include (1) a generalized model of Markov
entropic centrality with the flexibility to tune the importance of node degrees, edge weights and directions,
with a closed-form asymptotic analysis, which (2) leads to a novel two-stage graph clustering algorithm.
The centrality analysis helps reason about the suitability of our approach to cluster a given graph, and
determine ‘query’ nodes, around which to explore local community structures, leading to an agglomerative
clustering mechanism. Our clustering algorithm naturally inherits the flexibility to accommodate edge
directionality, as well as different interpretations and interplay between edge weights and node degrees.
Extensive benchmarking experiments are provided, using both real-world networks with ground truth and
synthetic networks.

INDEX TERMS Directed weighted graphs, entropy, centrality, graph clustering, random walkers.

I. INTRODUCTION
Centrality, ameasure of node importance, and clustering (also
known as community detection) are two popular techniques
used to study the structure of complex networks.

The goal of this paper is to study these with the flexibil-
ity to modulate the directionality and weights of the edges,
capturing a spectrum of behaviors for a given complex net-
work. A motivating example is the Bitcoin network, where
individuals or nodes are Bitcoin wallet addresses, and edges
represent transactions from one wallet to another: we may
want to identify users interacting with each other, or further
distinguish senders from receivers, or take into account the
transaction amounts, each of these combinations providing
different perspectives on the same network.

To do so, we focus on entropy-based centralities [31], [48].
They are flow-based measures [6], well suited for studying
phenomena such as the movement of funds, e.g., Bitcoins,
among users, where the volume of the flow is conserved.

The associate editor coordinating the review of this manuscript and

approving it for publication was Hocine Cherifi .

We analyze a particular such centrality, which we refer
as Markov entropic centrality, which we then leverage to
propose a versatile flow circulation based graph clustering
algorithm, relying on a random walker [1], [4], [20]. The
algorithm’s basic premise is that random walks originating
at a given ‘query’ node, which we characterize in terms of
its Markov entropic centrality, is more likely to stay confined
within a subgraph which forms a local community containing
the query node, than to visit nodes outside said community.
The probability distribution of a random walker’s visit (and
absorption) at different nodes in the graph is used as a signal
to identify cluster boundaries.

The first part of the paper is dedicated to the analysis
of the proposed Markov entropic centrality, respectively for
unweighted (Section II) and weighted (Section III) graphs.
We characterize it as ‘Markov’, as opposed to the original
path based entropic centrality [48], because our model lever-
ages the randomwalks being absorbed in an abstraction called
auxiliary nodes with a certain absorption probability, and
the future steps of the random walker depends solely on its
current location, irrespective of its past. This corresponds to
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FIGURE 1. A flowchart of the steps at a high level for agglomerative clustering leveraging entropic centrality.

Step 1 in Figure 1, where we provide the big picture of the
overall flow of steps for the exploration of node centralities
and its application to carry out clustering in an agglomerative
manner. In Section II, we analyze the behavior of the Markov
entropic centrality for unweighted graphs as a function of
(a) the absorption probability that the walker stops at given
nodes, and (b) time (or number of steps in the walk). Results
are analytically proven in terms of bounds and a closed form
expression captures the asymptotic behavior of the random
walk probability distribution. We explore as particular cases
when the absorption probability is either a constant at all
nodes, or is dependent on the individual nodes’ degrees —
which in turn makes the model versatile to capture different
situations. This theory is generalized to weighted graphs in
Section III, relying on the concept of weighted entropy to
appropriately interpret edge weights. Section IV contains
the proposed clustering (community detection) algorithm.
The above random walker probability distribution analysis
directly lends itself to the design of a novel graph clustering
algorithm. Foremost, we observe that: (i) nodes with a low
entropic centrality have local clusters where ties are relatively
strong, while nodes tend to have a relatively high entropic
centrality when they either are embedded within a large clus-
ter, or when they are at the boundary of two clusters (and
could arguably belong to either), and moreover, (ii) sharp
changes in the random walker absorption probability distri-
bution signal boundaries of local community structures. This
leads to a two-stage clustering algorithm (corresponding to
Steps 2 and 3 in Figure 1): First, observing that nodes at the
boundary of clusters act as bridges and have high centrality,
we initiate the exploration of meaningful node centric local
communities around nodes with low entropic centrality. This
approach inherits the flexibility of the underlying centrality
model, and is applicable to the spectrum of combinations

(un/directed, un/weighted) of graphs. While we specifically
and exclusively apply our own centrality model to determine
the suitability of query nodes for exploring community struc-
tures, combining it with other complementary approaches to
identify bridge nodes, e.g., [9], [30], and accordingly exclude
them from being query nodes can be readily incorporated
in our community detection framework. Second, the process
is reapplied on the created clusters (instead of the nodes)
to effectuate a bottom-up, scalable, hierarchical clustering.
Working principles behind the heuristics are supported by
formal derivations, and the performance of the algorithms
has been determined with extensive experiments using real
as well as synthetic networks.

Evaluating in general the quality of a clustering algo-
rithm is a debated topic [38], [46], [49]. Complications arise
because of multiple reasons, including that different cluster-
ing algorithms may identify communities which may reflect
different aspects of relationships; there may be multiple
interpretations of relationships, resulting in different ‘ground
truths’ being valid. We thus report benchmarking from a
variety of networks, falling into two categories: (a) synthetic
networks [22], [23], ranging from small graphs (of 100 to
500 nodes) to larger graphs (of 1000 and 4000 nodes), for
which the proposed algorithm fares well and is comparable
with the standard Louvain [5], and (b) real world graphs with
meta-information used to assign a ground truth; these include
the classical karate club [51] and the small cocaine dealing
network [11] to explain our model and validate the corre-
sponding findings, but also the dolphin network [28] and the
American football network [15], for which the performance
of the proposed clustering algorithm is compared with that of
Louvain [5], Infomap [44] and label propagation [2].
Furthermore, clustering of Bitcoin transaction sub-

graphs [32], [33] is performed to explore the versatility of
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our model vis-à-vis the spectrum of choices in interpreting
the directionality and weights of edges. Since no ground truth
is known, we compare the obtained results with an existing
Bitcoin forensics study [41].
Remark 1: All experiments and implementations were

done in Python, using NetworkX [19] and Scikit-Learn [37].
All graphs were drawn with either NetworkX or Gephi [3].
Remark 2: This work builds upon preliminary ideas

explored in Chapter 4 of the doctoral dissertation [40] of the
second author. In contrast to the treatment of the thesis, where
the heuristics are presented and evaluated with experiments,
this article includes rigorous formal analysis that helps under-
stand the underlying principles and thus the rationale of the
design of the algorithms. This is accompanied with additional
experiments to validate the analysis as well as benchmark the
algorithms more exhaustively.

A. RELATED WORKS
Entropic centrality was introduced in [48], to capture the
idea of path-transfer flow. It was then extended to non-atomic
flows in [34], [35] and to aMarkovmodel in [31] by relaxing
the assumption (in [48]) that a random walker cannot revisit
previously traversed nodes. Some of the limitations of [31],
such as the lack of analysis of the centrality measure and no
variation for weighted graphs, serve, in part, as motivations
for this work. We provide, in contrast, a closed form analysis,
which leads to both a precise understanding, and computa-
tional efficiency and scalability of the model. A definition is
proposed for weighted graphs, which is consistent with the
known notion of weighted entropy.

There is a body of work on community-aware centrality
measures, e.g, [13], [14], [18], [21], [27], [43], [47], [52].
These studies span across overlapping and non-overlapping
communities, and determine the most influential nodes. This
in turn has been used to design more effective information
dissemination or immunization strategies in several of the
above mentioned works (see [10] for an overview). Our work
fits within this general premise of considering an underlying
coupling between community structures and node centrality.
However the emphasis of our work is to demonstrate how one
can leverage it in a complementary manner, in identifying the
originally implicit community structures themselves using
such a community-aware centrality measure.

¯A notion of weighted degree centrality has been pro-
posed [36], which also contains an elaborate discussion on
interpreting centrality for weighted graphs. Motivated by
these considerations, we propose a notion of flow-based cen-
trality which is seamlessly adjustable to undirected, directed
and/or weighted graphs. This is in contrast to [31], where
weighted graphs are dealt with by changing the transition
probabilities of the randomwalker as per edge weights, which
is one specific instance within our tunable model.

In [45], two broad families of undirected graph clustering
methods have been identified - (i) those based on vertex
similarity, e.g., distance or similarity measure, adjacency
or connectivity based measures; and (ii) those based on

cluster fitness measures, including density and cut-based
measures, e.g., modularity. In [29], the former are referred to
as pattern based, since these methods go beyond basic edge
density characteristics. They include algorithms relying on
random walkers [1], [4], [20]. Most algorithms for directed
graphs [29] rely on creating an ‘‘undirected’’ representation
of the directed graph considered, which may result in the loss
of semantics and information contained in the directional-
ities. Examples of notable exceptions where the clustering
algorithm is designed specifically for directed graphs are
the information flow approaches of [44], where clusters are
identified as subgraphs where the information flow within
is larger compared to outside node groups, and [20], where
an information flow-based cluster is a group of nodes where
a random walker (referred as surfer) is more likely to get
trapped, rather than moving outside the group. Some random
walker based approaches [1], [4], because of the additional
constraints that they impose on the walkers, are only suitable
for undirected unweighted graphs, unlike our proposed algo-
rithm. Furthermore, the strong coupling of our algorithm’s
design with the Markov entropic centrality allows to initiate
the random walker in an informed manner, in contrast to
[1], [4], which, in absence of any guidance onwhere to initiate
random walks, require more complex constrained random
walkers.

In [31], a radically different approach (adapting [15]) for
community detection is applied, where edges are iteratively
removed, and in each iteration one needs to identify the edge
such that the average entropic centrality over all the nodes is
reduced the most. This requires the computation of entropic
centrality of all the nodes multiple times for the different
resulting graph snapshots from edge removals, and do so
numerically over and over again. Naturally, the approach is
computationally intensive and not scalable. For a specific
undirected unweighted graph, our algorithm took 1.072 sec-
onds to compute the communities, which is multiple orders
of magnitude faster than the 3196.07 seconds needed by the
edge removal algorithm [31] (more details on the specific
experiments can be found in Subsection IV-D). The commu-
nities detected by our approach were also qualitatively better
for the network where the two approaches were compared
head-to-head. Moreover, the authors in [31] noted that their
approach was not useful for community detection in directed
graphs. In contrast, we demonstrate with experiments, that
our approach works also with directed graphs.

B. CONTRIBUTIONS
Our first set of contributions is vis-à-vis entropic centrality.
We provide (i) a generalization of the entropic centrality,
which can be tuned to capture a spectrum of combinations
in terms of the role of the edges’ weights and directionality,
accompanied with (ii) a mathematically rigorous analysis to
understand the role of the model parameters and choose them
judiciously, and ultimately resulting in (iii) a computationally,
significantly efficient and thus scalable model with respect to
prior work.
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The second set of contributions is vis-à-vis graph clus-
tering. The salient aspects of our work comprise the use of
entropic centrality (and underlying analysis) to (i) inform on
whether our approach would yield good quality of clusters
given a graph, and if so, (ii) how to identify good candidate
‘query nodes’ around which initial sets of local community
structures should be explored, which in turn yields (iii) an
effective novel two-stage clustering algorithm even while
using a single random walker. Our clustering algorithm
(iv) amortizes the previous computation of entropic central-
ities in computing these communities, and (v) inherits (from
the underlying centrality model) the flexibility of interpreting
the roles of edge weights and directionality, allowing for
capturing different behaviors of a weighted directed graph
as per application needs. Our approach is thus one of the
few graph clustering approaches in the literature that handles
directed graphs naturally, and additionally, it allows for flex-
ible incorporation and interpretation of edge weights.

II. ENTROPIC CENTRALITY FOR UNWEIGHTED GRAPHS
Consider a connected directed graph G = (V ,E) with n =
|V | nodes labeled from 1 to n and |E| directed edges, and
a random walker on G, which starts a random walk at any
given node according to an initial probability distribution.
If the walker decides on which node v to walk to, based only
on the current node u at which it currently is (v does not
have to be distinct from u), the random walk is a Markov
chain, which can be modeled by a stochastic matrix P where
Puv is the probability to go to node v from node u, and in
general, Pk gives the transition probability of going from any
state to any other state in k steps, k ≥ 1. We will assume
that every node has a self-loop (a self-loop is needed for the
model to encapsulate the case of nodes with zero out-degree.)
Let dout (u) denote the out-degree of u, which includes the
self-loop as per our model. A typical choice that we consider
in this section is Puv = 1

dout (u)
for every node v belonging

to the set Nu of out-neighbors of u (this is saying that each
neighbor is chosen uniformly at random). Other choices are
possible, and indeed, subsequently in this paper, we shall
consider the case of weighted graphs where the transition
probabilities depend on the edge weights.

A. MARKOV ENTROPIC CENTRALITY
Now, for every node v inG, an auxiliary node v′ is added [31],
together with a single directed edge (v, v′), and a probability
pvv′ to be chosen (the original probabilities puv are adjusted
to the probabilities p̃uv so that the overall matrix remains
stochastic). Once the flow reaches an auxiliary node, it is
absorbed because the auxiliary nodes have no outgoing edges.
This gives a notion of Markov entropic centrality as defined
in [31].
Definition 1: The Markov entropic centrality of a node u

at time t is defined to be:

C t
H (u) = −

∑
v∈V

(p̃(t)uv + p
(t)
uv′ ) log2(p̃

(t)
uv + p

(t)
uv′ ) (1)

Here p̃(t)uv denotes the probability to reach v (for any node v
in V ) from u at time t , where puv′ is the probability to reach
an auxiliary node v′ from u.

A node u is central if C (t)
H (u) is high: when C (t)

H (u) is high,
using the underlying entropy interpretation, this means that
for a random walker starting at node u, the uncertainty about
its destination v after t steps is high, thus u is well connected.

The time parameter t used in the Markov model can also
be interpreted as a notion of locality. It describes a horizon
around the node u, of length t steps. Thus the entropic cen-
trality at t = 1 emphasizes a node’s degree, t being the graph
diameter implies that we are considering a period of time by
when the whole graph can be first reached, and t → ∞

describes the asymptotic behavior over time. Thus C (t)
H (u)

can be regarded as a measure of influence of u over its close
neighborhood for small values of t , and over the whole graph
asymptotically.

Given an n × n stochastic matrix P describing the moves
of a random walker on a directed graph, let us then introduce
n = |V | auxiliary nodes, one for each node v, v ∈ V , with
corresponding probabilities pvv′ = Dvv to walk from node v to
node v′. Thismeans the out-degree of u increases by 1 because
of the addition of u′. Nevertheless, by dout (u), wewill actually
refer to the degree of u before the addition of u′. This creates
the following right stochastic matrix

P̂ =
[
P̃ D
0n In

]
where D = Duu is a diagonal matrix, and P̃ is such that
[P̃,D]1 = 1.We assume that P̃ has for u-th row (P̃u,l)l = (1−
puu′ )(Pu,l)l . Then

∑2n
l=1(P̂)ul = (1− puu′ )

∑n
l=1 pul + puu′ =

1 for every u. This is alternatively written as P̃ = (In − D)P.
The identity matrix In represents the stoppage of the flow
at the auxiliary nodes (an absorption of the flow arriving at
these nodes). To determine the centrality of a specific node u,
we assume an initial distribution that gives a probability of
1 to start at u, and 0 elsewhere.

The definition of Markov entropic centrality was used as
part of a clustering algorithm in [31], and the probabilities pvv′
were explored numerically to optimize the clustering results.
Our first contribution is the following closed-form expression
for the asymptotic behavior of the transition matrix.
Lemma 1: For an integer t ≥ 1 and D 6= 0, we have

P̂t =
[
P̃t (

∑t−1
j=0 P̃

j)D
0n In

]
. (2)

In particular

P̂t =
[
0n (In − P̃)−1D
0n In

]
(3)

when t →∞.
Proof: Formula (2) follows from an immediate compu-

tation. Since P̃,D have non-negative real coefficients, so has

P̃jD, thus (
∑l

j=0 P̃
j)D ≥ (

∑l−1
j=0 P̃

j)D for any l ≥ 1, and the

equality holds if and only if P̃N = 0 for some N . But this N
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must exist when t → ∞, because P̂ is a stochastic matrix,
meaning that the sum of every row must remain 1, while the
coefficients of (

∑t−1
j=0 P̃

j)D increases at every increment of
t ≤ N . Then

P̂N =
[
0n (

∑N−1
j=0 P̃j)D

0n In

]
.

However, since (P̃ − In)(
∑N−1

j=0 P̃j) = P̃N − In = −In, the
matrix (P̃− In) is invertible and we have

∑N−1
j=0 P̃j = −(P̃−

In)−1, yielding (3).
The matrix P̂t in (2) contains a first block P̃t whose coeffi-

cients p̃(t)uv are the probabilities to go from u to v in t steps.
The second block (

∑t−1
j=0 P̃

j)D contains as coefficients the
probabilities to go from u to v′ in t steps, which we denote
by p(t)uv′ . Therefore the probabilities p̃(t)uv + p(t)uv′ in (1) are
obtained from the uth row of the matrix P̂t , by summing the
coefficients in the columns v and v′.When t →∞, the term in
column v becomes 0, and we are left with the term in column
v′, of the form

πuv := p(∞)
uv′ =

{∑
t≥1 p̃

(t)
uvpvv′ u 6= v

(
∑

t≥1 p̃
(t)
uv + 1)pvv′ u = v.

This means that we are looking at the probability to start at u
and reach v in t ≥ 0 steps, and then to get absorbed at v (that
is reaching v′, and then not leaving v′). Asymptotically, the
entropic centrality defined in (1) becomes

C∞H (u) = −
∑
v∈V

πuv log2(πuv).

We discuss next how the choice of the probabilities puu′
to reach an auxiliary node u′ from u influences the random
walker at time t .
Lemma 2: The probability p̃(t)uv to start a walk at u and to

reach v in t steps is bounded as follows:

(1− puu′ )(max
w∈V

(1− pww′ ))
t−1p(t)uv

≥ p̃(t)uv ≥ (1− puu′ )(min
w∈V

(1− pww′ ))
t−1p(t)uv .

Proof: Since p̃uv = (1− puu′ )puv, we have

p̃(2)uv =
∑

w∈out(u)∩in(v)

p̃uwp̃wv

=

∑
w

(1− puu′ )puw(1− pww′ )pwv

≥ (1− puu′ ) min
w

(1− pww′ )
∑
w

puwpwv

= (1− puu′ ) min
w

(1− pww′ )p
(2)
uv ,

p̃(3)uv =
∑
x

p̃ux p̃(2)xv

≥

∑
x

(1− puu′ )pux(1− pxx ′ ) min
w∈

out(x)∩in(v)

(1− pww′ )p
(2)
xv

≥ (1− puu′ ) min
x∈out(u)∩in(w)

(1− pxx ′ ) min
w

(1− pww′ )p
(3)
uv

We observe that the minimization is taken over all walks from
u to v in t steps, or more precisely, over all nodes involved in
such walks, excluding u and v. Certainly, for x in such a walk,
minx(1−pxx ′ ) ≥ minw∈V (1−pww′ ). The other inequality can
be established identically, and thus

(1− puu′ )(max
w∈V

(1− pww′ ))
t−1p(t)uv ≥ p̃

(t)
uv

≥ (1− puu′ )(min
w∈V

(1− pww′ ))
t−1p(t)uv .

Corollary 1: In particular:

1) If puu′ = a < 1 for all u ∈ V , we have p̃(t)uv = (1 −
a)tp(t)uv .

2) If puv = 1
dout (u)

and puu′ = 1
dout (u)+1

, then p̃uv =
1

dout (u)+1
, and

(1− 1
dout (u)+1

)(max
w∈V

dout (w)
dout (w)+ 1

)t−1p(t)uv ≥ p̃
(t)
uv

≥ (1− 1
dout (u)+1

)(min
w∈V

dout (w)
dout (w)+ 1

)t−1p(t)uv .

Proof:
1) All inequalities in the proof of the lemma are equalities

in this case.
2) By definition, p̃uv = (1− 1

dout (u)+1
) 1
dout (u)

=
1

dout (u)+1
.

The case when puu′ = a < 1 is reminiscent of the notion
of Katz centrality. A factor (1 − a)t is introduced so that the
longer the path, the lower the probability. If a is chosen close
to 1, e.g. a = 0.9, then (1 − a)t (e.g. 1

10t ) becomes quickly
negligible. If instead a is chosen close to 0, e.g. a = 0.1,
then it takes longer for probabilities to become negligible
(e.g. ( 9

10 )
50
≈ 0.0051).

The case puu′ = 1
dout (u)+1

instead uses (inverse) propor-
tionality to the number of outgoing edges. Both the upper
and lower bounds given in the proof of the above corollary
depend on the degree of the nodes included in walks from u
to v, and when the walk length grows, the number of distinct
nodes is likely to increase, giving the bounds stated in the
corollary. These bounds depend on the function x

x+1 , which
closely converges to 1, in fact for dout (v) = 9, we already
get 0.9. Therefore, p̃(t)uv is mostly behaving as p(t)uv , except if
dout (u) is small enough (say less than 8).
In summary, the emphasis of the case puu′ = a < 1 is

on the length of the walk, not on the walk itself, while for
puu′ = 1

dout (u)+1
it is actually on the nodes traversed during

the walk, with the ability to separate the nodes of low entropic
centrality from the others.

The bounds of Lemma 2 can be applied to the asymptotic
case.
Lemma 3: The probability πuw =

∑
t≥1 p̃

(t)
uwpww′ to start

at u and to be absorbed at w 6= u over time is bounded as
follows:

(1− puu′ )(
∑
t≥1

(min
x∈V

(1− pxx ′ ))
t−1p(t)uw)pww′ ≤ πuw
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≤ (1− puu′ )(
∑
t≥1

(max
x∈V

(1− pxx ′ ))
t−1p(t)uw)pww′ .

Proof: Recall that πuw =
∑

t≥1 p̃
(t)
uwpww′ is the probabil-

ity to start at u and to be absorbed at w over time. Then

πuw =
∑
t≥1

p̃(t)uwpww′ (4)

= (p̃uw +
∑
t≥2

t−1∑
i=1

p̃(i)uvp̃
(t−i)
vw (5)

+

∑
t≥2

t−1∑
i=1

∑
y6=v

p̃(i)uyp̃
(t−i)
yw )pww′ (6)

and use Lemma 2:

p̃(i)uv ≥ (1− puu′ )(min
x∈V

(1− pxx ′ ))
i−1p(i)uv,

p̃(t−i)vw ≥ (1− pvv′ )(min
x∈V

(1− pxx ′ ))
t−i−1p(t−i)vw

to get
∑

t≥2
∑t−1

i=1 p̃
(i)
uvp̃

(t−i)
vw ≥ (1 − puu′ )(1 − pvv′ )

∑
t≥2

(minx∈V (1− pxx ′ ))t−2
∑t−1

i=1 p
(i)
uvp

(t−i)
vw , and in turn

∑
t≥2

t−1∑
i=1

∑
y6=v

p̃(i)uyp̃
(t−i)
yw

≥ (1− puu′ )
∑
t≥2

(min
x∈V

(1− pxx ′ ))
t−1

t−1∑
i=1

∑
y6=v

p(i)uyp
(t−i)
yw .

Therefore

πuw ≥ (1− puu′ )[puw + (1− pvv′ )∑
t≥2

(min
x∈V

(1− pxx ′ ))
t−2

t−1∑
i=1

p(i)uvp
(t−i)
vw

+

∑
t≥2

(min
x∈V

(1− pxx ′ ))
t−1

t−1∑
i=1

∑
y6=v

p(i)uyp
(t−i)
yw )]pww′ ,

(7)

for v an intermediate node between u and w.
The bound can be made coarser, using that (1 − pvv′ ) ≥

minx∈V (1− pxx ′ ):

πuw ≥ (1− puu′ )[puw +
∑
t≥2

(min
x∈V

(1− pxx ′ ))
t−1

t−1∑
i=1

(p(i)uvp
(t−i)
vw +

∑
y6=v

p(i)uyp
(t−i)
yw )]pww′

= (1− puu′ )[puw +
∑
t≥2

(min
x∈V

(1− pxx ′ ))
t−1p(t)uv ]pww′

= (1− puu′ )
∑
t≥1

(min
x∈V

(1− pxx ′ ))
t−1p(t)uvpww′ .

The bounds are well matching the intuition: three compo-
nents mostly influence πuw: the likelihood of leaving u (the
term 1− puu′ ), that of reaching w from u, and that of getting

trapped at w (the term pww′ ). When puu′ = a < 1 for all
u ∈ V , the bounds on πuw are met with equality and we have

πuw = (1− a)
∑
t≥1

(1− a)(t−1)p(t)uwa,

πuu = (1− a)
∑
t≥1

(1− a)(t−1)p(t)uu′a+ a.

Therefore πuw is weighted by (1−a) and a irrespective of the
choice of u,w, and so is the corresponding entropic centrality.
When a grows, πuu grows, thus πuw for w 6= umust decrease
since probabilities sum up to 1 and we have:∑

w

πuw log2(
1
πuw

) = πuu log2(
1
πuu

)+
∑
w6=u

πuw log2(
1
πuw

),

≤ πuu log2(
1
πuu

)+ (1− a) log2(
n−1
1−a ).

The inequality follows from the observation that the second
sum contains n − 1 terms whose sum is at most 1 − a, and
whose maximum is reached when all probabilities are 1−a

n−1 .
Also the function −x log2(x) = −

1
ln 2x ln x is concave and

has a global maximum at x such that− 1
ln 2 (ln x+1) = 0, that

is x = 1
3 , for which −x log2(x) ≈ 0.53074. Thus

C∞H (u) ≤ 0.53074+ (1− a) log2(
n−1
1−a ). (8)

For a given n, this upper bound becomes small when a grows.
The same argument repeated for puu′ = 1

dout (u)+1
shows (part

of) the role of the out-degree of u in its centrality.
In what follows, we will provide some experiments to

illustrate the consequences of choosing puu′ = a < 1, but we
will then focus on the case puu′ = 1

dout (u)+1
for the reasons

just discussed: (1) choosing p̃uv is influenced by the choice
of the walk rather than its length, and (2) πuv depends on the
degrees of u and v rather than on the constant a.

To measure how central the most central node is with
respect to how central all the other nodes are, Freeman intro-
duced the notion of centralization [12].
Lemma 4: Set n = |V |. The asymptotic Markov entropic

centralization defined by

C∞H (G) =

∑
v∈V C

∞
H (v̂)− C∞H (v)

max
∑

v∈V C
∞
H (v̂)− C∞H (v)

where v̂ is the node with the highest Markov entropic central-
ity in V is given by

C∞H (G) =

∑
v∈V C

∞
H (v̂)− C∞H (v)
n log2(n)

when puu′ = 1
dout (u)+1

.
Proof: The maximum at the denominator is taken over

all possible graphs with the same number of vertices. A graph
that maximizes the denominator would have one node with
the maximum centrality, and all the other nodes with a cen-
trality 0 (thus minimizing the terms contributing negatively).
This graph is the star graph on |V | vertices, since the middle
node has |V | outgoing edges, and the |V | − 1 leaves have
none. Therefore all leaves have an entropic centrality of 0,
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and the center v̂ of the star has maximum entropic centrality.
Formally, with |V | = n and putting v̂ in the first row:

P̂ =
[
P̃ D
0n In

]
, P̃ =

[ 1
n+1

1
n+1 . . . 1

n+1
0n−1,1 1

2 In−1,n−1

]
,

D =
[ 1

n+1 01,n−1
0n−1,1 1

2 In−1,n−1

]
.

Then

In − P̃ =
[ n

n+1 −
1

n+1 . . . − 1
n+1

0n−1,1 1
2 In−1,n−1

]
,

and using Schur complement:

(In − P̃)−1 =
[ n+1

n
2
n . . . 2

n
0n−1,1 2In−1,n−1

]
,

so

(In − P̃)−1D =
[ 1

n
1
n . . . 1

n
0n−1,1 In−1,n−1

]
.

Lemma 1 tells us that πv̂v =
1
n for all v and thus its Markov

entropic centrality is log2(n), while C
∞
H (v) is 0 for v 6= v̂.

Definition 2: Given a graphG, label its vertices in increas-
ing order with respect to their Markov entropic centralities,
that is C∞H (vi) ≤ C∞H (vi+1) for i = 1, . . . , n − 1 and puu′ =

1
dout (u)+1

. We define the centralization sequence ofG to be the

ordered sequence

(

∑
v∈V C

∞
H (vi)− C∞H (v)
log2(n)

)i=1,...,n.

It is an increasing sequence, with values ranging from -1
to 1. We already know that the maximum is 1 by Lemma 4.
The minimum is achieved when v1 has centrality 0, and every
other node has centrality log2(n)/n. This is the case if we
consider a graph on n vertices defined as follows: build a com-
plete graph on n−1 vertices, that is each of the n−1 vertices
have n − 1 outgoing edges (including to themselves). Then
add one additional vertex (v1), and an outgoing edge from
every of the previous n− 1 vertices of the complete graph to
this new vertex. The advantage of studying the centralization
sequence is that it captures for every node how central it is
with respect to other nodes, normalized by a factor that takes
into account the size of the graph.

B. A MARKOV ENTROPIC CENTRALITY ANALYSIS OF THE
KARATE CLUB NETWORK
Consider the karate club network [51] (used as an example
in [31]) shown in Figure 2. We use this small social network
comprising 34 members (nodes) as a toy example to illustrate
and validate some of the ideas explored in this paper. The
78 edges represent the interactions between members outside
the club, which eventually led to a split of the club into two,
and are used to predict which members will join which group.
This is an undirected unweighted graph, which is treated as a
particular case of directed graph (dout (u) is the degree of u).
Let P denote the transition matrix such that Puv = 1

dout (u)

FIGURE 2. The karate club network: we show in Figure 3 the path and
Markov entropic centralities (for different values of D and t) for the
nodes 1, 5, 12, 29, 33 and 34. The degrees are respectively
16,3,1,3,12,17.

for every u ∈ V and every neighbor v of u. The work [31]
explores the choice of D (and t) in the context of clustering.
Here, we start by investigating the role of D in terms of
the resulting Markov entropic centrality, for t finite (t =
1, . . . , 6 since the karate club network has a diameter of 5)
and asymptotic (using Lemma 1).

a: Influence of D.
Figure 3 illustrates the Markov entropic centrality C t

H (u) of
the nodes u ∈ {1, 34, 33, 29, 12, 5}1 for different values of
D: for D = aI34,2 with a = 0.001,3 0.2, 0.5, we observe that
C t
H (u) is decreasing and flattening, for all nodes and for every

value of t . This is expected, since, when the probabilities at
the auxiliary nodes are increasing as a constant, the overall
uncertainty about the random walk is reducing (as computed
in (8)). Thus the higher the absorption probability, the greater
the attenuation of the entropic centralities for all nodes. More
precisely, (8) upper bounds C∞H (u) by

0.53074+ (1− a) log2(
33
1−a ) ≈ 5.5715, 4.8238, 3.5529

for a = 0.001, 0.2, 0.5, which is consistent with the numeri-
cal values obtained (≈ 4.8232, 4.1319, 2.9475).
For D such that Duu = 1

dout (u)+1
(shown on the lower

right subfigure), the Markov entropic centralities are more
separated than previously: indeed, a node with small degree
then has a high absorption probability, which induces a large
attenuation on its entropic centrality (as discussed after (8)).
The net effect is a wide gulf in the centrality scores between
nodes with low and high degrees.

b: INFLUENCE OF T
We notice how the centrality of a node is influenced over time
by its neighbors. Consider, for example, the upper left corner
figure for nodes 12 and 5. Node 12 starts (at t = 1) with an
entropic centrality significantly lower than node 5 - indeed
node 5 has three neighbors (dout (5) = 2 neighbors and the

1We choose these specific nodes, since these were studied in [31].
2Note that IM represents the identity matrix of dimension M ×M .
3We cannot use D = 0 since this means no absorption probability. Also

the matrix (In − P̃) in Lemma 1 would have no reason to be invertible.
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FIGURE 3. The Markov entropic centrality C t
H (u) for u = 1,34,33,29,12,5 (from Figure 2)

for t = 1,2,3,4,5,6: on the upper left, D = 0.001I34, on the upper right, D =
1
5 I34, on the

lower left, D =
1
2 I34 and for D such that Duu =

1
dout (u)+1 on the lower right. The dots show

the asymptotic values C∞

H (u).

self-loop), more than 12 which has only one (thus C1
H (12) =

1(1/2) log2(2) including the self-loop). Yet node 12 reaches
a ‘‘bridge’’ (a node of high centrality), namely node 1, at t =
2, and thus for t ≥ 2, its entropic centrality grows, and
eventually ends up being almost as high as that of node
1 itself. In contrast, even though node 5 reaches the same
bridge, it also belongs to a local community within the graph,
inside which a significant amount of its influence (flow) stays
confined. This explains why node 5 ends up having a lower
entropic centrality than node 12 in particular. In the upper
right and lower left plots, we have assigned a significant
volume of the flow to be absorbed at the auxiliary nodes,
which has a net effect of attenuating the absolute values of
entropic centrality for all nodes, i.e., a downward shift and
flattening. This happens for nodes 5, 12, 29 on the lower right
plot, since 1

dout (u)+1
is significant if the node has a low degree.

Taken together with the initial gap among the centralities
of nodes 5 and 12, we thus do not observe the overtake in
these experiments, unlike in the case where the absorption
probability was negligible. We finally observe that C t

H may
vary for small values of t but becomes consistent when t
grows.

c: CENTRALIZATION SEQUENCE
The min and the max of the centralities are 3.0859 and
4.7216, while the mean and the median are 4.07636 and
3.9111. The min, median, mean and max of the central-
ization sequence as defined in Definition 2 are [-0.19467,-
0.03248,0,0.12682]. The values for the above studied nodes
of interest are 0.1226 for 1, 0.1241 for 34, 0.10195 for 33,

0.03485 for 29, -0.17471 for 12 and -0.06289 for 5. In this
list, nodes 1 and 34 are thus considered as most central
(which can be seen from Figure 2) , however centralization
further measures the extent to which they are most central,
e.g. respectively 0.1226 and 0.1241, i.e., ∼ 0.12 from the
mean.

The above analysis suggests that changes in the Markov
entropic centralities over time are indicative of local commu-
nities in the graph, with changes in gradient corresponding
to traversal of boundaries from one community to another.
Nodes with low centralization have a low centrality with
respect to both other nodes in the graph and graphs of the
same size, since they are likely to be either isolated or to
belong to a small community (e.g. node 5). While the reverse
argument suggests that nodes with high centralization (e.g.
nodes 1, 33 and 34) are likely to be either bridges or close
to bridges. We will explore and exploit this observation to
design a clustering algorithm in Section IV, where the com-
munity structures are first explored around low centrality
nodes.

d: COMPARISON WITH KNOWN CENTRALITIES
Table 1 compares different centralities. In addition to the
previously mentioned prominent centrality measures, we also
consider load centrality [16] in our experiments, because it
captures the fraction of traffic that flows through individual
nodes (load), considering all pairwise communications to be
through corresponding shortest paths. Both the path and the
asymptotic Markov centralities give the same ranking, it is
similar to the ranking given by the degree centrality CD (with
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TABLE 1. Different centrality measures: CH and C∞

H are the path [48] and
asymptotic Markov entropic centralities (1), CD, CB, CL are respectively
the degree, betweenness and load centralities.

some difference regarding node 5 and 12, which are explained
by the above discussion). The betweenness and load central-
ity agree on their ranking, which is different from the other
ones. These results are not surprising: for a small graph, the
degree heavily influences short paths/walks, explaining the
agreement among CH ,C∞H and CD, but it has little to do with
the betweenness and the load. The same ranking observed
between betweenness and load centrality is expected, since
the latter was proposed to be a different interpretation of
betweenness centrality [16], even though some minor differ-
ences have been identified subsequently [7].

III. ENTROPIC CENTRALITY FOR WEIGHTED GRAPHS
Consider a weighted directed graph Gw = (V ,E), where the
weight functionw : E → R≥0 attaches a non-negativeweight
w(u, v) to every edge (u, v) ∈ E . For a node u ∈ V , let Nu =

{v ∈ V , (u, v) ∈ E} be the set of out-neighbors of u, dout (u) =
|Nu| be the out-degree of u, and dw,out (u) =

∑
v∈Nu

w(u, v)
be the weighted out-degree of u.

A natural way to define a transition matrix Pw to describe a
randomwalk overGw taking into account the weight function
w would be to set Pw,uv =

w(u,w)
dw,out (u)

. It is however known
that adapting centrality measures for unweighted graphs to
weighted graphs in that manner comes at the risk of changing
their meaning, see e.g. [36],and that one way to remedy this
is by the introduction of a weight parameter.

A. WEIGHTED MARKOV ENTROPIC CENTRALITY
In order to capture the weights of the outgoing edges in the
current framework of Markov entropic centrality, we intro-
duce two tuning parameters, a conversion function α :

w(e)→ α(w(e)) and a node weight function µ : v→ µ(v).
The conversion function α : w(e) → α(w(e)) adjusts the

transition matrix Pα(w) such that Pα(w),uv =
α(w(u,w))
dα(w),out (u)

(with
dα(w),out (u) =

∑
v∈Nu

α(w(u, v))) depending on the impor-
tance that weights are supposed to play compared to edges.
The two obvious choices for α are α(w(e)) = 1 for all edges e
(reducing to the unweighted case), and α(w(e)) = w(e)β for
some parameter β. This formulation has the flexibility to give
more or less importance to weights with respect to edges.

To address the issue of defining entropic centrality for
weighted graphs, we need a tuning parameter (e.g., [36])
within the definition of entropic centrality, that maintains the
semantics and meaning of the notion of entropy. We use the
node weight function µ : v → µ(v) and propose the notion

FIGURE 4. The cocaine dealing network [11]: weighted edges are drawn
with quantized girth. Figure 5 shows the (weighted) Markov entropic
centrality of the nodes 2, 27, 20 and 14.

of weighted Markov entropic centrality, which is inspired by
the concept of weighted entropy [17].
Definition 3: The weighted Markov entropic centrality

C t
α(w),H (u) of a node u at time t is defined to be

−

∑
v∈V

µ(v)(p̃(t)α(w),uv + p
(t)
uv′ ) log2(p̃

(t)
α(w),uv + p

(t)
uv′ ), (9)

where p̃(t)α(w),uv is the probability to reach v at time t from
u, for v in V , taking into account the weights α(w(e)) for
every edge in E . Auxiliary nodes defined for the unweighted
case are still present and p(t)uv′ is the probability to reach an
auxiliary node v′ from u at time t , which depends on the
absorption probability matrix D, as in the unweighted case.
The probabilities p̃(t)α(w),uv+ p

(t)
uv′ are obtained from the matrix

P̂tα(w) (using Pα(w) instead of P in Lemma 1).
Before discussing the choice of µ(v), we recall that when

t →∞, as for the unweighted case, the terms in column v of
P̂tα(w) become 0, and we are left with the terms in column v′,
of the form

πα(w),uv :=

{∑
t≥1 p̃

(t)
α(w),uvpvv′ u 6= v

(
∑

t≥1 p̃
(t)
α(w),uv + 1)pvv′ u = v,

asymptotically yielding the entropic centrality

C∞α(w),H (u) = −
∑
v∈V

µ(v)πα(w),uv log2(πα(w),uv).

Lemma 3 holds, therefore, similarly to the unweighted case,
we have that if the probability of absorption is puu′ = a, then
repeating the arguments leading to (8) yields:∑

w

µ(w)πuw log2(
1
πuw

) (10)

= µ(u)πuu log2(
1
πuu

)+
∑
w6=u

µ(w)πuw log2(
1
πuw

),

≤ max
v∈V

µ(v)(0.53074+ (1− a) log2(
n−1
1−a )). (11)

This shows that while maxv∈V µ(v) may increase the overall
centrality, it remains true, as for the unweighted case, that
increasing a just reduces the overall centrality. Therefore we
will continue to use puu′ = 1

dout (u)+1
as absorption probability.

The computation of C t
α(w),H (u) involves a sum over all

nodes v ∈ V , including v = u, and the probability to go
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FIGURE 5. The Markov entropic centrality C t
α(w),H (u) for u = 27,14 (from Figure 4) for

t = 1, . . . ,5: on the upper left, D = 0.001I28, on the upper right, D = 0.2I28, on the lower left,
D = 0.5I and D with Duu =

1
dw,out (u)+1 on the lower right.

from u to every v. The weight µ(v) captures the influence of
the reached node v: if we reach influential nodes v of weight
µ(v) in t time, then u should be more central than if the
only nodes we reach from it have no influence themselves.
We define µ(v) to be µ(v) =

(
dw,out (v)
dout (v)

)γ
if dout (v) 6= 0.

When dout (v) = 0, dw,out (v) = 0 and we set µ(v) = 1. The
weighted Markov entropic centrality (9) gives an influence
which is proportional to the ratio

(
dw,out (v)
dout (v)

)γ
, while γ gives

a way to amplify or reduce this influence.
If all weights are 1, then the ratio simplifies to 1, and we

are back to the non-weighted definition of Markov entropic
centrality (as also with γ = 0). Other possible choices
for µ(v) could be explored, such as µ(v) = log2 dw,out (v)

log2 dout (v)
.

Indeed, log2 dw,out (v) would be the influence that v would
have had over its neighbors in terms of entropic centrality
if it had dw,out (v) neighbors of weight 1, while log2 dout (v) is
the entropic centrality over the neighbors of v, ignoring the
weights.

If the weights are normalized such that the lowest weight
is mapped to 1, the entropic centrality values obtained when
using a non-trivial function for µ(v) will necessarily be at
least as much as obtained with µ(v) = 1.
The centralization as computed in Lemma 4 can be gener-

alized to the weighted case. In the unweighted case, com-
parison was done among graphs with the same number of
vertices. In the weighted case, comparison is done among
graphs with the same number of vertices, with given weights
µ(v). A graph that would give the maximum centrality con-
sists again of a star graph, with center v1, assuming that the

leaves have a self-loop which can be weighted, in which
case dout (vi) = 1 for i 6= 1, and µ(vi) is any weight.
The centrality of the leaves will be zero, but that of v1 will
be
∑n

i=1 µ(vi)pi log2(1/pi). However maximizing this quan-
tity over pi does not have a closed form expression. Loose
bounds can be computed though: 1

n log(n)
∑n

i=1 µ(vi) ≤
maxp1,...,pn

∑n
i=1 µ(vi)pi log2(1/pi) ≤ 0.53074

∑n
i=1 µ(vi)

(see before (8) for a bound on p log2(1/p)).

B. A WEIGHTED MARKOV ENTROPIC CENTRALITY
ANALYSIS OF A COCAINE DEALING NETWORK
We consider the cocaine dealing network [11], a small
directed weighted graph obtained from an investigation into a
large cocaine traffic in New York City. It involves 28 persons
(nodes), and 40 directed weighted edges representing com-
munication exchanges obtained from police wiretapping.

The (weighted) Markov entropic centrality depends on the
choice of the absorption matrix D. We thus start by looking
at how a change in D influences the entropic centralities.
We keep the same choices for D as for the unweighted case,
namely D = 0.001I28, D = 0.2I28, D = 0.5I and D such
that Duu = 1

dw,out (u)+1
,since, if w(e) = 1 for all edges, then

dw,out (u) = dout (u) for all nodes.
In Figure 5, we plot the (weighted) Markov entropic cen-

trality C t
α(w),H (u) for u = 27, 14 for t = 1, 2, 3, 4, 5, 6, for

the 4 choices of absorption probabilities D. For u = 27, 14,
four variations of Markov entropic centralities are consid-
ered: α(w) = 1 and µ(v) = 1 (straight lines), corresponding

to the unweighted case, α(w) = 1 and µ(v) =
(
dw,out (v)
dout (v)

)
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(long dash lines) for the case where the transition matrix P
is used, α(w) = w and µ(v) = 1 (short dash lines) to show
how centrality is computed based purely on Pw, and finally
α(w) = wwithµ(v) =

(
dw,out (v)
dout (v)

)
(dotted lines), for whichPw

is used for the transition matrix, together with the weighted
entropic centrality. Nodes 27 and 14 are different in nature,
in that node 14 acts as a bridge, with high degree compared
to the rest of the other nodes, while node 27 has only one
incoming edge and two outgoing edges. They are chosen as
representatives of nodes of respectively high and low degree
(even though the degree is not the only contributing factor in
the node centrality, it still plays an important role, particularly
for small values of t and more generally in small graphs).
For each of the 4 plots, the 4 upper lines characterize the
behavior of node 14, and the 4 lower lines, that of node
27. We observe that the behavior of the entropic centralities
when µ(v) = 1 are similar to what was already observed
for the karate club network: for D = 0.2I28 and D = 0.5I ,
the centralities are flattened because the path uncertainty is
reduced when the absorption probabilities are increasing (as
shown in (11)), while for D such that Duu = 1

dw,out (u)+1
,

the gap among the centralities is (slightly) increasing. When

µ(v) = dw,out (v)
dout (v)

, both centralities are amplified. Since node
14 has many outgoing edges, with weights including 10, 11,
14 18, 19, the introduction of µ(v) creates a higher ampli-
fication for node 14 than for node 27, whose edge weights
are all less than 5. Zooming at time t = 2 for node 14 and
D = 0.001I28, we notice that the short dashed line has a peak,
before going down. This is explained by the fact that when
α(w) = w and µ(v) = 1, the entropic centrality is that of a
node with degree amplified by the weights, thus creating an
initial jump in the entropy. However at the next time, several
reached nodes have in turn very few (or no) neighbors, and
edges of low weights, and this leads to a saturation effect.
This behavior is less prominent for other choices of D, where
the absorption probability is high, and hence the effect of the
edge weights is attenuated.

We then focus on the case where Duu = 1
dw,out (u)+1

, which
depends only on the network setting, instead of other choices
of D which are parameters whose range can be explored one
by one. With this choice of D, we consider the (weighted)
Markov entropic centrality for u = 2, 27, 20, as displayed
in Figure 6. These nodes have outgoing edges with weights
1, 1, 1, for u = 2, weights 4, 3, 1 for u = 27, and weights
2, 1, 1, 1 for u = 20. These nodes are chosen because they
have similar out-degrees, but different weighted out-degrees.
The same 4 scenarios as above are considered. For node 2, its
edge to 10 stops at 10, its edge to 5 has only one connection
to node 23 which has weight 1, and its last edge goes to 25,
which has no connection either, therefore the 4 centralities
are actually of the same quantity, and thus all the 4 lines are
coincident. For node 27, since it has the same out-degree as
node 2, in the unweighted case, it starts at the same centrality
as node 2. However it is even less influential since none of
its own neighbors have neighbors. In the 3rd scenario, its

FIGURE 6. The Markov entropic centrality C t
α(w),H (u) with

Duu =
1

dw,out (u)+1 : for u = 2,27,20 (from Figure 4), for t = 1, . . . ,5 and

for (α(w), µ(v )) = (1,1) (straight lines), (1,
dw,out (u)

dout (u) ) (long dash lines),

(w,1) (short dash lines) and (w,
dw,out (u)

dout (u) ) (dotted lines).

entropic centrality is even lower than in the unweighted case,
which is normal, since in this case, the walk distribution is
not uniform anymore. In the two cases whereµ(v) = dw,out (v)

dout (v)
,

we see a jump in the centrality, explained by theweights of the
outgoing edges which are higher than for node 2. However,
the centrality of node 27 remains below that of 20, whose
weighted out-degree is less than that of 27, but its out-degree
is actually more.

C. INTERPRETING ENTROPIC CENTRALITY WITH A
BITCOIN SUBGRAPH
We next consider a small subgraph extracted from the bitcoin
network comprising 178 nodes and 250 edges. Nodes are
bitcoin addresses, and there is an edge between one node
to another if a bitcoin payment has been made. Since the
proposed Markov entropic centrality measure is suitable for
undirected, directed and weighted graphs, we look at the
chosen bitcoin subgraph in different variations: (i) as an
undirected unweighted graph by ignoring the direction of
transactions, (ii) as a directed unweighted graph by just con-
sidering whether any transactions exists, and (iii) as a directed
weighted graph (with α(w(e)) = w(e), µ(v) = dw,out (v)

dout (v)
) to

capture the effect of transaction amount.
In Figure 7 we show the three variations with nodes col-

ored according to their Markov entropic centrality at t =
∞ (asymptotic). The darker the node color, the higher the
Markov entropic centrality. In subfigure 7a, one node stands
apart, with the highest entropic centrality, which is a node
which is highly connected to other nodes. If we look at
the same node in subfigure 7b, we see that it is not central
anymore: this is because, in the directed graph, this node is
actually seen to receive bitcoin amounts from many other
nodes, so, as far as sending money is concerned, it has
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FIGURE 7. Asymptotic Markov entropic centralities for a 178 node subgraph of the bitcoin network: undirected and
unweighted on the left, directed and unweighted in the middle, directed and weighted on the right (the highest weight
edges are emphasized). The top 10%, next 20%, 30% and remaining 40% nodes in terms of their entropic centrality are
shown in progressively lighter colors.

very little actual influence (however, in the same graph, but
with edge directions reversed, this node would have had the
highest centrality). On the other hand, nodes that were not
so prominent in the undirected graph appear now as impor-
tant. The graph in subfigure 7b highlights nodes which are
effectuatingmany bitcoin transactions. Now one nodemay do
several transactions with little overall bitcoin amount, but we
may want to identify a node that does few, but high amount
transactions. This is illustrated in subfigure 7c. It turns out
that for the subgraph we studied, high centrality nodes in the
unweighted case remain high centrality nodes in the weighted
case, indicating that nodes performing many bitcoin transac-
tions happen also to be those carrying out high overall amount
of transactions.

For the sake of completeness, we provide Kendall-τ
rank correlation coefficients among different variations
of (weighted) Markov entropic centralities for the directed
graph, for t = ∞: for (α(w(e)) = 1, µ(v) = 1) (shown on
subfigure 7b), for (α(w(e)) = w(e), µ(v) = dw,out (v)

dout (v)
) (shown

on subfigure 7c), but also for (α(w(e)) = w(e), µ(v) = 1), and
for (α(w(e)) = 1, µ(v) = dw,out (v)

dout (v)
). The out-degree centrality

is also tested. A Kendall-τ coefficient is a measure of rank
correlation: the higher the measure, the higher the pairwise
mismatch of ranks across two lists. Results are shown in
Table 2. Above the diagonal, coefficients are obtained using

TABLE 2. Kendall-τ coefficients of 5 centrality measures: 4 of them are
the Markov entropic centralities for different values of α(w(e)) and µ(v );
dout is the out-degree centrality. Above the diagonal, coefficients are
obtained using all 178 nodes. Below the diagonal, only 67 nodes are
used, which are in the union of the top 20% nodes for each of these five
centrality measures.

all 178 nodes. Below the diagonal, only 67 nodes are used,
which are in the union of the top 20% nodes for each of
the 5 aforementioned centrality measures. In the given graph,
many (peripheral) nodes have the same (low) entropic cen-
trality, so when all nodes are considered for ranking correla-
tion, the average is misleadingly low. Since high centrality
nodes are often of interest, ranking variations among the
top nodes is pertinent, and we observe that (i) out-degree is
not a good proxy for most entropic centrality variants, and
(ii) the different variations yield significantly distinct sets of
high centrality nodes, corroborating the need for our flexible
entropic centrality framework.

IV. ENTROPIC CENTRALITY BASED CLUSTERING
We next explore whether and how the local communities
inferred from the gradients observed in the evolution of the
entropic centralities as a function of t (see Section II) can be
exploited to realize effective clustering.

The formulas (1) and (9) for the (weighted) Markov
entropic centralities involve the sum of probabilities p(t)uv+p

(t)
uv′

and p(t)α(w),uv + p
(t)
α(w),uv′ respectively. We will use P̂ to denote

the matrix whose uth row contains, in column v, the coeffi-
cient p(t)uv+p

(t)
uv′ in the unweighted case, and p

(t)
α(w),uv+p

(t)
α(w),uv′

in the weighted case. Since the algorithm that we describe
next uses P̂ in the same manner, irrespective of t (though we
will focus on the case t = ∞) or whether there is a weight
function, we keep the same notation P̂.
The proposed algorithm works in two stages: first, we cre-

ate local clusters around ‘query nodes’, and then, we carry
out a hierarchical agglomeration. The choice of query nodes
in our approach is informed by the entropic centrality, which
we describe first (Subsection IV-A), before we elaborate the
algorithm (in Section IV-B).

A. QUERY NODE SELECTION
In the initial step of the algorithm, we look for a cluster
around and inclusive of a specific query node, similarly to [4].
In [4] though, it was not possible a priori to determine suitable
query nodes (e.g., a node could be at the boundary of two
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FIGURE 8. Histogram showing number of nodes (y-axis in log-scale) at which a random
walker is absorbed for given (range of) values of absorption probability (x-axis) for the
178 node Bitcoin subgraph, treated as unweighted and undirected.

clusters, and thus yield the union of subsets of these clusters
as a resultant cluster), and hencemultiple constrained random
walkers were deployed to increase the confinement probabil-
ity of the randomwalks within a single cluster. In contrast, our
choice of query nodes is informed by their Markov entropic
centrality.

Let us first formalize some of the information captured by
the notion of entropy.
Proposition 1: Given the probabilities p1 ≤ p2 ≤ . . . ≤

pm < pm+1 = 1
n = . . . = pm+s < pm+s+1 ≤ . . . ≤ pn, pi ≥

0,
∑n

i=1 pi = 1, and γ > 1 such that
∑n

i=1 pi log2(1/pi) =
log2(n)
γ

, we have:

1) s ≤ n
γ
, and n− m− s ≥ n τ−1

τ
γ−1
γ

for τ > 1,

2)
∑n

i=m+s+1 pi >
τ−1
τ

(γ−1)
γ
⇐⇒

∑m
i=1 pi < 1 − s

n −

τ−1
τ

(γ−1)
γ

.
Proof: Since we ordered the n probabilities by increas-

ing order, wewrite
∑n

i=1 pi log2(1/pi) =
∑m

i=1 pi log2(1/pi)+
s
n log2(n)+

∑n
i=m+s+1 pi log2(1/pi), and

∑n
i=1 pi log2(1/pi) =

log2(n)
γ

for some γ > 1 certainly implies s
n log2(n) ≤

log2(n)
γ

.
Thus there must be s ≤ n

γ
probabilities of the form 1

n (in
particular, if γ > n, s = 0, and likewise, when γ > 1,
s ≤ n−1). In turn, we must have n−swhich is at least n(γ−1)

γ
probabilities shared between p1, . . . , pm and pm+s+1, . . . , pn,
and they must sum up to 1− s

n =
n−s
n .

It is not possible that all n − s probabilities belong to the
group p1, . . . , pm (i.e., < 1

n ), because if all of them were
strictly less than 1

n , we would have at most sn + (n− s)pm <
s
n +

n−s
n < 1 (a similar argument holds for not having all the

probabilities in the group pm+s+1, . . . , pn). More generally,
this is saying that deficiency from 1/n among the p1, . . . , pm
has to be compensated by the pm+s+1, . . . , pn:

m∑
i=1

pi = 1−
s
n
−

n∑
i=m+s+1

pi,

for 0 <
∑m

i=1 pi <
n−s
n , and accordingly

∑n
i=m+s+1 pi varies

from being strictly less than 1− s
n to strictly more than 0.

We can refine these ranges using the number of probabil-
ities we are allowed in each sum. Suppose that among the
n − s probabilities that are left to be assigned, 1

τ
(n − s)

are the probabilities p1, . . . , pm for some τ > 1, and the
rest, namely τ−1

τ
(n − s) ≥ τ−1

τ
n(γ−1)
γ

are the probabilities
pm+s < pm+s+1 ≤ . . . ≤ pn.
For at least τ−1

τ
n(γ−1)
γ

probabilities strictly more than 1/n,
we have:

n∑
i=m+s+1

pi > τ−1
τ

(γ−1)
γ
⇐⇒

m∑
i=1

pi < 1−
s
n
−

τ−1
τ

(γ−1)
γ
.

We apply this proposition to πuv, for a given node u, and
for v ranging over possible nodes in V . Let τ > 1 be a
parameter that decides the proportion of probabilities less
than 1

|V | (the larger τ , the smaller the proportion), and let γ >
1 be a parameter that characterizes how small the Markov
entropic centrality of a node u is (the larger γ , the lower
the entropic centrality). The result says that given γ , there
is a tension between agglomeration of small probabilities on
the one hand and agglomeration of large probabilities on the
other hand: the larger the agglomeration of large probabilities
(as a function of τ and γ ), the lower the agglomeration of
small probabilities, and vice-versa. Furthermore, as γ grows,
it creates an agglomeration of large probabilities which is
detached from that with small probabilities. This suggests that
nodes with a low entropic centrality have local clusters where
ties are relatively strong, while nodes tend to have a relatively
high entropic centralitywhen they either are embeddedwithin
a large cluster, or when they are at the boundary of two
clusters (and could arguably belong to either). Accordingly,
we choose to start identifying local communities by choosing
the low entropic centrality nodes as query nodes.

This is illustrated in Figure 8 for the 178 node Bitcoin
subgraph, treated as unweighted and undirected. We consider
a node with high centrality on the left hand-side, it has
centrality ≈ 5.08297, and one with low centrality on the
right hand-side (with centrality ≈ 1.73539). By high and
low, we mean that both belong to the top 10 nodes in terms
of respective high/low centrality. The histograms show the
probability that a randomwalker is (asymptotically) absorbed
at a node. The y-axis is in logscale. The bins are placed at 0,
1/2|V |, 2/|V |, and then at half the maximum probability (as
observed across the two cases) and the maximum probability.
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In the first bin, for both cases, there are more than 100 nodes
which have a negligible probability of the random walker
being absorbed. As predicted by Proposition 1, for the node
with high entropic centrality, they are less spread apart (and
there are more probabilities close to 1/|V |) than for the low
entropic centrality node, which has, furthermore one high
probability (between 0.3 and 0.6). Such higher probabilities
of absorption at a few nodes in the graph are precisely what
we use as a signal for a local community structure.

This finding is consistent with the observation at the end
of Section II-B, that if there is no significant change in the
entropic centrality over time, then the node belongs to a
small community, while larger entropic centralities indicate
nodes that are well connected (possibly indirectly) to many
nodes rather than being strongly embedded in a particular
well defined community. In Figure 9 we show a scatter
diagram illustrating, again for the 178 Bitcoin subgraph, the
relations between the entropic centrality of a node and the
highest probability of absorption at any node for a random
walker starting at the respective node. We see that nodes
with high centralities have as highest absorption probability,
values below 0.3, while low entropic centrality nodes have
highest absorption probability of more than 0.4. For this
subgraph, the centralization sequence has a minimum of -
0.27962, a maximum of 0.40350, a mean of 0 and a median
of 0.00560. The nodes that are ‘‘circled’’ in red have highest
centralization (centralization values more than 0.18), and
those with lowest centralization (centralization values less
than -0.2) are encircled in blue.

FIGURE 9. On the x-axis, the centrality of nodes, on the y-axis, the value
of the highest probability of absorption at any node, for a random walker
starting at that node (in the 178 node Bitcoin subgraph, treated as
unweighted and undirected). The two vertical bars demarcate the top
30% and 40% of nodes in terms of entropic centrality. Nodes that are
circled have highest/lowest centralization.

The Markov entropic centrality score acts as a good sum-
mary of the detailed probability distributions of absorption
for a random walker starting at different query nodes. Specif-
ically, we see that using low entropic centrality nodes as
query nodes would yield meaningful local clusters precisely
by identifying the nodes at which the random walker is
absorbed with high probability to constitute a local com-
munity. Such communities can then be further coalesced
into larger (and fewer) clusters or re-clustered into smaller
(and more numerous) communities, as deemed suitable, in a

hierarchical manner. We will see, in our experiments, that,
what is a suitable ‘low’ or ‘high’ entropic centrality, depends
on the distribution of the centrality scores. The distribution of
the relative Markov centrality scores for a given graph is thus
also a good indicator of whether the proposed approachwould
be effective for clustering that graph instance, and helps us
reason about whether to use the proposed approach. This is
illustrated with experiments, in particular in Subsection IV-F.

B. ENTROPIC CENTRALITY BASED CLUSTERING
ALGORITHMS
Keeping in mind the above discussion, we describe the first
stage (without the iterative hierarchical process) of clustering
in Algorithms 1 and 2.

Algorithm 1 Probability Distribution Based Graph Cluster-
ing
1: procedure ProbDistClustering(G = (V ,E),N , t)
F N � |V | stands for the top-N most central nodes

2: Compute P̂ and the entropic centrality of all v ∈ V .
3: Assign SHE = {the top-N entropic centrality nodes}.

F Initialization
4: SetQ: nodes in ascending order of entropic centrality.
5: Set Sclust = ∅. F Current clusters

F Global clustering
6: while Q is not empty do
7: Take the query node vq from Q’s head (remove

it).
F Obtain query node centric local cluster

8: Apply a(ny) clustering algorithm on the row
(P̂vq,v)v∈V of P̂ to form the set Sini,vq of clusters.

9: Choose Svq from Sini,vq with the highest average
transition probability (include vq). F vq’s raw cluster

F Prune the raw cluster Svq using Algorithm 2.
10: ProcessRawCluster(Svq , SHE , Sclust )
11: ∀v ∈ Svq , remove v from Q.

F Integrate the local result with the global view.
12: if Svq intersects with any cluster(s) in Sclust then
13: Merge them (update Sclust accordingly).
14: else Add Svq to Sclust .

15: return Sclust

In Algorithm 1, we maintain Sclust as a current global view
of clusters. We start from the lowest entropic centrality node
as a query node, and repeat the process as long as there are
nodes that do not already belong to some existing cluster
(listed in Sclust ).

We consider the transition probabilities from a query node
vq to all the other nodes as per P̂, and carry out a clustering of
these (one-dimensional, scalar) probability values. Lemma 1
shows the existence of (up to) ‘‘three clusters’’, formed by
probabilities of values around 1/|V |, and of values away from
1/|V |, either by being smaller or larger enough. How clearly
defined these clusters are depends on γ : if γ is small, close
to 1, probability values can still be close to uniform, on the
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Algorithm 2 Pruning of the Raw Cluster Svq
1: procedure ProcessRawCluster(Svq , SHE , Sclust )
F most central node list SHE , current cluster list Sclust

2: if vq ∈ SHE then
3: Set {C1, . . . ,Cr } = argmaxC∈Sclust |C ∩ Svq |.
4: if r > 1 then C ′ = rand{C1, . . . ,Cr }
5: else C ′ = C1

6: Svq = Svq\(∪C∈Sclust (C ∩ Svq )\C
′).

7: if |Svq ∩ (SHE\vq)| > 1 then
F Svq contains multiple high entropy nodes beside vq

8: Among nodes in SHE\vq, keep only the node(s)
which have the highest transition probability from vq

F nodes not in SHE are not affected
9: return Svq

other extreme, if γ is large, there may be very few or no value
around 1/|V |, resulting in mostly two clusters. In our imple-
mentation, we use the Python scikit-learn agglomerative clus-
tering to look for this initial set of (up to) three clusters Sini,vq .
Among these clusters, we choose the cluster with the highest
average transition probability from vq. We define Svq to be the
nodes corresponding to this cluster along with vq itself since,
(i) the constituent nodes have similar probabilities for random
walks to end up there when originating from vq (this follows
from the clustering of the probability values), and crucially,
these nodes are considered to comprise the immediate local
community because (ii) this is the largest (in expectation)
such probability.

We consider the absorption probabilities for a random
walker starting at vq to be absorbed at any of the nodes
in Svq , and define the minimum of these values as σ i.e.
σ = minv∈Svq P̂vq,v. Thus, σ can be understood as an effective
threshold (deduced a posteriori) above which the probability
of being absorbed in the local cluster of vq is high enough.
Proposition 2 and its corollary below show that if v belongs
to the local cluster of vq, but w should also belong to the local
cluster of v, then, provided that the absorption probability pvv′
at v is not too large (pvv′ ≤ σ ), w will also belong to Svq ,
together with v.
Proposition 2: The probability πuw =

∑
t≥1 p̃

(t)
uwpww′ to

start at u and to be absorbed at w 6= u over time is lower
bounded by:

p̃uwpww′ + πuv
πvw

pvv′
,

Proof: We have that πuw =
∑

t≥1 p̃
(t)
uwpww′ is the

probability to start at u and to be absorbed at w over time.
We start again with (6):

πuw

= (p̃uw +
∑
t≥2

t−1∑
i=1

p̃(i)uvp̃
(t−i)
vw +

∑
t≥2

t−1∑
i=1

∑
y6=v

p̃(i)uyp̃
(t−i)
yw )pww′

≥ (p̃uw +
∑
t≥2

t−1∑
i=1

p̃(i)uvp̃
(t−i)
vw )pww′

= (p̃uw +
∑
s≥1

p̃(s)vw
∑
i≥1

p̃(i)uv)pww′ = p̃uwpww′ +
πuv

pvv′
πvw.

The above derivation relied on a Cauchy product and by the
invocation of Merten’s Theorem where

∑
i≥1 p̃

(i)
uv → πuv,∑

s≥1 p̃
(s)
vw → πvw, and both sequences (p̃(i)uv)i, (p̃

(s)
vw)s are

absolutely converging to 0.
Corollary 2: Given that the probability πuv to start at u and

to be absorbed at v is more than a threshold σ , and that the
probability to start at v and to be absorbed at w is also more
than σ , if pvv′ ≤ σ then πuw ≥ σ .

Proof: Suppose πuv, πvw ≥ σ , then by the above
proposition:

πuw ≥ p̃uwpww′ + πuv
πvw

pvv′
≥ πuv

πvw

pvv′
≥
σ 2

pvv′
.

So, pvv′ ≤ σ implies πuw ≥ σ . Note that this reasoning
is iterative, namely if we now consider that from u, we got
absorbed at w, but also from w, we got absorbed at y, with
πyw ≥ σ , then

πuy ≥ p̃uypyy′ +
σ 2

pww′

and again pww′ ≤ σ implies πuy ≥ σ .
If the query node vq is a low entropic centrality node, it is

expected that once a cluster Svq is formed, nodes belonging
to Svq are unlikely to be high centrality nodes themselves.
Otherwise, vq would have inherited the influence and it would
not be a low centrality node itself. However, if the relative
difference between what are considered low or high entropic
centrality is not high, then several well connected nodes
may get clubbed together in the clustering process, further
bringing in many other nodes, coalescing a large group of
nodes in the early stage of the clustering. Likewise, if the
query node vq belongs to a pre-designated group of high
entropic centrality nodes SHE , then there is a risk that it may
inadvertently merge multiple clusters which one may want to
be separate. In Figure 10 we illustrate one of these scenarios
with a toy example, where an initial cluster seeded at the
query node ‘A’ inadvertently includes high centrality nodes
’X’, ’Y’, ’Z’, which would thwart the possibility to identify

FIGURE 10. Toy example motivating the need for a pruning stage
(Algorithm 2).
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the desired smaller communities. These motivate the addition
of a pruning algorithm described inAlgorithm 2, whichworks
as follows.

If the query node vq is a high entropic centrality node,
then we check the intersection of Svq against existing clusters
from Sclust , and in case there are non-trivial intersections, and
yet there is no unique cluster with which there is a largest
intersection, we retain only one of the largest clusters as Svq
chosen randomly, since it otherwise risks merging clusters
which ought to be distinct. Otherwise, we retain as Svq the
nodes from the largest intersection, as well as nodes that were
in no intersection, but discard the rest. Irrespective of the
query node, if there are multiple pre-designated high entropic
centrality nodes in Svq (other than vq), we retain among these
only the ones to which the transition probability from vq is
highest. This pruned list is given to Algorithm 1, where it is
checked against existing clusters in Sclust , and if there is any
intersection, then they are merged, otherwise, Svq is added
as a new cluster in Sclust . Note that the pruning mechanism
introduces an element of randomization in our algorithm.
As such, all the reported results in this paper are based on
ten experiment runs. For all but one of the graphs used in
our experiments, the conditional statement which introduces
the randomization was in fact never triggered, and thus the
results are produced in a consistent fashion. Only some vari-
ations of the 178 nodes Bitcoin subgraph (results shown
in Figure 13) triggered the conditional statement: When it
was treated as undirected and unweighted, the conditional
statement was triggered but nevertheless resulted in same
clusters across the ten experiment runs. For the same graph
treated as directed but unweighted, the randomization yielded
distinct but very similar cluster results (F-score 0.982 among
the distinct results), and one of these result instances is shown.

Having identified localized query-node centric community
structures, in the second stage, we agglomerate these to iden-
tify clusters at different degrees of granularity. A single stage
of agglomeration is almost identical to the initial clustering
process described above, with the following subtle changes.
The cluster results from the previous step are considered as
the new nodes.We still only use thematrix P̂, and hencewe do
not (need to) explicitly define edges connecting the clustered
nodes. The new coalesced nodes are assigned an entropic
centrality value corresponding to the average of the entropic
centrality of their constituent nodes. For transition probabil-
ities across clustered nodes (say C̄ and C̃), we considered
the minimum, mean and maximum transition probabilities
amongst all node pairs u ∈ C̄, v ∈ C̃ as per P̂. Finally, we dis-
card a specific agglomeration in case the resulting agglomer-
ated cluster would not result in a (weakly) connected graph.
Our experiments indicate that the best clustering results are
obtained using the minimum transition probabilities, as such,
we only report the corresponding results in the upcoming
subsections.

A back of the envelope estimate of the computational
complexity of the clustering process is as follows. The com-
putation of P̂ is the most expensive (one time) operation,

comprising an O(n3) matrix inversion and an O(n2) matrix
multiplication. Subsequent computation of entropic centrality
for a single node is an O(n) summing of a column of the
matrix, repeated for all nodes, yielding another O(n2) opera-
tion, making (the first) step numbered ‘2’ in the pseudo-code
of Algorithm 1 the most expensive step of the process. Sub-
sequent steps involve operations like sorting, set intersection
and merger, clustering of scalar values, for all of which many
O(n2) and lower complexity algorithms exist. Likewise, the
agglomerative step uses (significantly) smaller graphs. The
absorption probability values for random walkers from all
possible query nodes to all destination nodes needs to be
stored, which leads to a memory complexity of O(n2) for
the proposed clustering process. In practice, large graphs are
sparse. Heuristics for fast, or even distributed computation of
matrix inverses, for example [26], [50], can be leveraged to
attain significantly reduced computational cost, and improve
scalability of our approach.

C. CLUSTERING OF THE KARATE CLUB NETWORK
We consider the karate club network [51] (see Figure 11 for
the cluster results), to illustrate and analyze the workings
of the clustering algorithm with a toy example with known
baseline, before studying larger graphs. In Figure 11b, the
initial set Sini,vq of clusters is shown along with the dendro-
gram for agglomeration, and Figure 11c shows the final clus-
ters. Clustering obtained using the edge removal technique
(20 iterations) from [31] is shown in Figure 11a for compar-
ison. We also show the time evolution of some of the nodes
with highest asymptotic entropic centrality, and the node with
the lowest asymptotic entropic centrality in Figure 12 (this
is in addition to Figure 3 where we demonstrated the time
evolution of certain nodes too), to illustrate the behavior of
nodes which are bridges, at the interface of the clusters and
at the periphery of the network. This top-down clustering
approach follows the idea of edge removal from [15], but
using the reduction of average Markov entropic centrality to
determine which edge to remove.

While it is visually apparent that our approach yields better
clustering, we quantify this based on the ground truth [51]
using F-score [39]. The result obtained with our approach
has a F-score of 0.884 while the one obtained with [31] has a
F-score of 0.737.

We furthermore benchmark the computation time: the edge
removal based clustering approach [31] took 14.154 sec-
onds, while our final result of 2-clusters were computed in
0.026 seconds. These experiments were run on a 64-bit PC
with x64-based Intel(R) Xeon(R) CPUE5-1650 0@3.20GHz
processor and 16 GB RAM. This is easily explained: in
our algorithm, the transition probability matrix P̂ needs to
be computed only once. In contrast, even within a single
iteration, the edge removal algorithm [31] needs to recompute
the said matrix for every graph instance created by removal
of each possible edge, to determine which edge to remove,
and this exercise is then repeated in every iteration. That
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FIGURE 11. Clustering of the karate club network: using the edge removal clustering of [31] on the left, and the proposed algorithms in the
middle (stage 1) and on the right (stage 2, with agglomeration).

FIGURE 12. Time evolution of entropic centrality of the three nodes with
the highest centralities (nodes 3, 34, 1 respectively), node 14, which
visually appears in the graph to be at the border of the clusters (and has,
in fact, the seventh highest centrality) and the node with the lowest
entropic centrality (node 17).

accounts for the huge discrepancy in the computation time,
and demonstrates the computational efficacy of our approach.

D. CLUSTERING OF BITCOIN SUBGRAPHS
We apply our proposed clustering algorithm to variations
(un/directed, un/weighted) of the 178 node Bitcoin network
subgraph [32] and report the results in Figure 13. The results
obtained using the edge removal algorithm [31] on the undi-
rected unweighted graph variant is shown on Figure 14.
Unless otherwise stated, we use as a parameter N = 53,
essentially considering SHE to comprise the top 30% entropic
centrality nodes (see the sensitivity analysis below).

While it is visually clear from Figure 13 that we obtain dif-
ferent clusters depending on the scenario considered, Table 3
confirms this by reporting F-scores [39] across the graph
variants. Also, the effect of the parameter µ (without the
transition probabilities being altered by edge weights) is
rather low. This reinforces an underlying motivation of our
work, namely that which graph variant (un/directed and/or
weighted) to study is application dependent, and hence hav-
ing one graph clustering algorithm that works across all vari-
ants is beneficial.

TABLE 3. Pairwise F-score among clusterings achieved for different graph
variants. Legend — UU: undirected & unweighted; Dx,y : Directed with

α = x , and µ = 1 if y = 1, else µ =
dw,out (v )

dout (v ) if y = M; UUer : edge
removal algo [31].

The clusterings of the undirected unweighted graph found
by our algorithm in 1.072 seconds (Figure 13) and by the
edge removal algorithm in 3196.07 seconds (Figure 14) are
very different (F-score of 0.125). Our algorithm visually
yields (more) meaningful results, though in the absence of a
ground truth, this assertion remains subjective. The agglom-
eration process in our algorithm could have been continued
beyond the final result shown here, as indicated by the
associated dendrogram. The edge removal based clustering
was stopped at the 50th iteration, after which no further
average entropy reduction was observed with any single edge
removal.

When to stop agglomerating is typically purpose depen-
dent and as such, often determined as per users’ discretion
(see, e.g., [8] for more discussions on cluster validation). The
second row of Figure 13 shows various stages of agglom-
eration, the dendrogram for agglomeration is given for the
1st and 3rd row. There are many community structures that
repeat across the considered scenarios, andmost of the cluster
boundaries can be traced back to the high entropy nodes
(Figure 7), yet there are also subtle differences, e.g., in the
weighted directed graph, there are instances of single isolated
nodes, which stay isolated for several iterations of agglomer-
ation because of weak (low weight) connections.

Sensitivity analysis. For each graph variant, the size of
SHE was varied to comprise 10%, 20%, 30% and 40% of
the top entropic centrality nodes. For the unweighted and
weighted directed graph, the F-score between clusterings
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FIGURE 13. Clustering of the 178 node bitcoin subgraph (results obtained in 1.072, 1.077 and 1.123 seconds
respectively): 1st row - undirected unweighted graph, 2nd row - directed unweighted graph, 3rd row - directed

weighted graph (α = 1, µ =
dw,out (v )

dout (v ) ).

FIGURE 14. Clustering by iterative edge removal [31].

obtained with 10% and the others are 0.824 and 0.989 respec-
tively, while all the other pairs have F-score of 1. This sug-
gests very consistent results in these cases, irrespectively

of the choice of |SHE |. However for the unweighted undi-
rected graph, |SHE | has a significant impact, with the F-score
between 20% and 40% being the lowest at 0.626, while the
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FIGURE 15. Clustering of a Bitcoin subgraph involved in the
Ashley-Madison extortion scam [41].

best score of 0.912 is obtained between 30% and 40%. This
justifies the use of the top 30% entropic centrality nodes for
the reported results. Looking back at Figure 9, we observe that
considering only 20% for the size of SHE means including a
number of query nodes with relatively low highest probabili-
ties, while between 30% and 40%, these highest probabilities
are not changing significantly, which is consistent with the
observed variations in sensitivity.

We next consider another Bitcoin subgraph, but this time,
we use a specific subgraph [33] of 4571 nodes, constructed
around Bitcoin addresses suspected to be involved in the
Ashley-Madison extortion scam [41]. The result of the clus-
tering algorithm is shown on Figure 15 and Figure 16: (1) the
graph was considered once unweighted (the emphasis is thus
on node connections), once weighted (to capture the amount
of Bitcoins involved), (2) the asymptotic Markov entropic
centrality was used (we have no specific diameter of interest),
(3) the top 30% nodes with the highest centrality are chosen
as high centrality nodes SHE , (4) five agglomeration iterations
were performed for clustering the unweighted graph, and one
for the weighted variant.

On Figure 15, showing the overall unweighted graph, there
are three visually obvious main clusters: the upper green
cluster, the purple cluster on the right, and the grey cluster
on the left. The first observation is that the grey color here
only represents nodes whose cluster size is too small to be
significant (only 5 iterations were performed), they are thus
kept in grey so as to make the other clusters more visible. The
green and purple clusters are easily interpreted: each contains
one Bitcoin address that is a hub for all its neighbors.

We then zoom into the central clusters, shown on
Figure 16a. The actual relationship among the constituent
wallet addresses in a cluster can be determined e.g. by using
blockchain.com/explorer. We observe a green clus-
ter near the middle (boxed). In our layout, we have isolated
one of the constituent nodes (on the right, encircled), to show

that the nodes in this collection have multiple mutual con-
nections, as expected among nodes within a cluster. We see
that the encircled node above the boxed group has also been
assigned to the same cluster. This node is in fact connected to
several of the other clusters that have been identified with our
algorithm, and is one of the high centrality nodes, which lies
at the interface of clusters. It happens to have been assigned
to the green cluster, since each node is assigned to at most
a single cluster. Some of the nodes in the (boxed) cluster
were previously identified to be suspect addresses involved
in the Ashley-Madison data breach extortion scam [41]. The
resulting clusters thus help draw our attention to the other
nodes which have been grouped together, since it indicates
that Bitcoin flows have circulated among them, for their
relationship with the already known suspected nodes to be
investigated further.

Zooming into the weighted graph gives a very different pic-
ture: since the amounts of Bitcoin involved drive the cluster-
ing in this case, we prominently see two clusters highlighting
nodes dealing with high volume of Bitcoins. This confirms
an expected behavior from scammers, which consists of col-
lecting few Bitcoins from many addresses to avoid attention.
Combining both clustering results however correlate nodes
that are likely to be involved in the scam, together with nodes
dealing with high volume of Bitcoins. For example, this could
be a direction to consider for Bitcoin forensics: nodes appear-
ing in clusters by interpreting the graph in bothmanners could
possibly be involved in aggregating scam money, since they
stand out both in terms of the volume of Bitcoin they handle,
and in terms of the frequency of interactions with multiple
suspected wallet addresses.

E. BENCHMARKING WITH SYNTHETIC GRAPHS
In the previous subsection, we looked at the clusterings that
the algorithm provides with Bitcoin subgraphs, for which no
ground truth is available. In order to benchmark our proposed
algorithm rigorously, we thus further experiment with graphs
for which some form of ground truth is assumed.

An acknowledged concern in the research community is
that a unique objective benchmark to compare graph cluster-
ing algorithms is not feasible [38], [49]. Different algorithms
may yield different clusters for a given graph, that may each
be meaningfully interpreted based on distinct contexts. Con-
versely, in the real world, connections may have been induced
as a consequence of multiple causes (contexts), and using the
meta-data representing a subset of these contexts to determine
a ‘ground truth’ for the resulting graph may not be accurate.
Furthermore, there may be implicit or explicit hierarchical
community structures in the graph, or the communities may
be fuzzy, and a clustering algorithm may find clusters at a
coarser or finer granularity than the one considered as the
ground truth.

Synthetic graphs (e.g [23]) are considered to alleviate the
issue of the lack of a unique and objective ground truth. Yet
such synthetic graphs may not carry all the characteristics and
associated complications of a real network.
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FIGURE 16. Zoom in of the Ashley-Madison extortion scam (Bitcoin transactions induced) graph.

FIGURE 17. Clusterings of synthetically generated networks with mixing probability µ = 0.1.

Considering the merits of benchmarking with graphs with
ground truth, but also the inherent limitations associated with
any particular instance(s) of real or synthetic (family of)
graph(s), we study a wide range of graphs with assumed
ground truth. We next discuss our experiments with synthetic
graphs, before studying some real graphs in the following
subsection.

The principal idea of generating synthetic graphs with a
known ground truth is to first create isolated subgraphs (with
certain properties such as a given node degree distribution)
that represent the ground truth communities. Then, rewiring
of a fraction of the connections is carried out to establish
cross community links, such that, probabilistically, a 1 − µ
fraction of links are with nodes within the same community,
while a fraction µ (mixing probability) of connections are
with other nodes. Though this rewiring process itself might
affect the neighborhood of individual nodes to an extent that

it materially changes the community it actually belongs to
(particularly for high values of the mixing probability µ),
the original allocation of the communities is considered to
continue to hold, and is treated as the ground truth. For the
reported experiments below, we used synthetic benchmark
graph instances randomly generated using NetworkX.

For sanity check and to manually (visually) interpret the
results, we start the benchmarking with small graphs and
a small value of µ = 0.1. The clusters identified by our
algorithm for synthetic graphs with 100, 300 and 500 nodes
are shown in Figure 17 for µ = 0.1. Visually, we see that
the algorithm yields meaningful clusters. We also determine
the F-score with respect to the ground truth as determined
by the network generation process, and across the different
networks we observe very good (0.9 or above) F-score val-
ues. For the 100 nodes graph, one can visually see certain
nodes, particularly in themiddle group being allocated cluster
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FIGURE 18. Scatter plots of F-scores for large-scale benchmarking of our Entropy based graph clustering approach with randomly
generated synthetic graphs comprising 1000 and 4000 nodes respectively for a wide range of inter-cluster linkage µ characteristics
are shown. Modularity optimization based Louvain [5] community detection algorithm is also shown to provide a point of
comparison.

labels that mismatch, explaining the relatively lower score of
0.9 among these graph instances. For the 500 nodes graph
instance, the isolated nodes had distinct labels in the ground
truth. Some other misattributions can also be seen visually,
explaining the relatively lower score of 0.909. The 300 nodes
graph instance had disconnected components, which might
have made it easier to identify relevant communities, yielding
a noticeably high score of 0.973.

We next extend our study with larger scale experiments
both (i) in terms of graph size (1000 and 4000 nodes) and
(ii) in terms of range ofµ values representing different extents
of cross-community linkages. We show the scatter plots of
observed F-scores for our Entropy based graph clustering
algorithm. For a point of reference, we also provide the results
observed for clustering with Modularity optimization [5]. For
relatively smaller values of µ, perfect clustering is obtained
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FIGURE 19. The dolphin network.

FIGURE 20. Clusterings of the dolphin network.

by [5] while near perfect clustering is also obtained by our
approach. For the rest of the spectrum of µ values, perfor-
mance of both the approaches varies to certain extent (more
so in the larger graphs with 4000 nodes), but overall both
algorithms yield good results, e.g., F-score is consistently
higher than 0.8 for µ < 0.3, and the deterioration of the
F-score with increasing µ is gradual, rather than sharp. Fur-
thermore, while the performance varies across different graph
instances, very high (absolute values of) Pearson’s correla-
tion coefficients between F-score and µ (precise correlation
coefficient r values are indicated in the figures) indicate a
good degree of consistency in the behaviour for both the
algorithms. From individual data points, we observe that
among the two algorithms, there is no clear winner, and
each outperforms the other for some graph instances across
most of the µ value ranges. These large-scale benchmark-
ing experiments with randomly generated synthetic graphs
demonstrate the efficacy of our proposed approach on its
own. While the original objective of our proposal was to

investigate a new way to carry out graph clustering rather
than to necessarily compete with existing approaches, the
comparison using synthetic graphs with one of the popu-
lar existing approaches further demonstrates that the qual-
ity of clustering results obtained by our approach is in fact
comparable.

F. BENCHMARKING WITH REAL WORLD GRAPHS
Since synthetic graphs may not exhibit all the nuances of
communities occurring in the real world, we complement
our study with benchmarking experiments using networks
with known ground truth, namely, the dolphin network [28]
and the American college football network [15] which were
previously used in the work [31] that we extend. Moreover,
we extend the comparative aspect of our evaluation, and to
that end we compare our approach with other popular com-
munity detection algorithms, namely, InfoMap [44], label
propagation [2] and Louvain clustering [5].
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1) CLUSTERING OF THE DOLPHIN NETWORK
We consider the dolphin network [28], an undirected
unweighted social network where bottlenose dolphins are
represented as nodes and association between dolphin pairs
are represented as links. The network comprises 62 nodes
and 159 links, and it was noticed that the dolphin community
splits into two communities [28] comprising 20 nodes and
42 nodes. We use this as the ground truth.

In Figure 19a, we show the network structure and the
corresponding relative (that is, normalized by the maximum
observed value) Markov entropic centralities: the darker the
node color, the higher the relative centrality. Figures 19b and
20f respectively depict the relativeMarkov entropic centrality
(fractional, bucketed) distribution and the scatter diagram
of the absolute entropic centrality score (x-axis), versus the
maximum absorption probability at any node (y-axis) for a
random walker starting from the given node.

The histogram indicates that it would be more meaningful
to choose the clustering parameter SHE to include the top
50%-70% (instead of ≈ 30%, as used in the previous experi-
ments) since more than 60% of the nodes have normalized
entropy value above 0.7. The scatter diagram helps us see
that, indeed, taking the top 30% nodes for SHE would mean
including many nodes whose highest probability is relatively
small, while there are few such nodes for the threshold at 60%
(the vertical line demarcates the top 60% nodes on the right).
The result obtained with two iterations of the algorithm is
shown on Figure 20a, next to clustering results obtained using
InfoMap [44], Louvain [5] and label propagation [2] (with
their default parameters). We observe visually that the pro-
posed clustering produces a better result compared to other
clusterings. This is confirmed by computing the F-score [39]
for each clustering result against the ground truth: the F-score
of the proposed algorithm is 0.858, in contrast, it is 0.545 for
InfoMap, 0.565 for Louvain, and 0.657 for label propagation.
These three community detection techniques also find more
than two clusters. From Figure 20, we also visually infer that
the other clustering results could be improved if agglomer-
ation techniques were applied to the smaller communities
located on right hand side of the dolphin network. In fact,
it could be argued that even though the group of dolphins split
in two groups (which is the basis of the ground truth), it does
not preclude the existence of further smaller communities
within those two split groups, which could then be what is
being detected by these algorithms.

2) CLUSTERING OF THE AMERICAN COLLEGE
FOOTBALL NETWORK
We next consider the American college football net-
work [15], an undirected unweighted network representing
the Division-I football games from Fall 2000. A team is
represented as a node, and a game between two teams is
represented as a link between two nodes. There were in
total 115 teams and 613 games. Teams were divided into
12 conferences, and teams in the same conference frequently

FIGURE 21. The American College football network [15] is shown (darker
the color, higher the relative entropic centrality score). The histogram of
the normalized (by the maximum) centralities distribution for the same
network is also shown.

had games against others. We treat the 12 conferences as the
network’s ground truth, comprising 12 clusters.

Figure 21 shows the network and the corresponding, rela-
tive (that is, normalized by the maximum entropic centrality
value), Markov entropic centralities: darker the color, higher
the relative entropic centrality score.We observe that a major-
ity of nodes have normalized entropic centrality between
0.2 to 0.4. This helps us to identify our clustering parameter
SHE to determine the set of high entropy nodes deemed as
center/border of a cluster. Accordingly, we chose SHE to
comprise the top 50/60/70/80% entropic centrality nodes.
We registered F-scores against ground truth as 0.273, 0.406,
0.409, and 0.517 respectively. The scatter diagram showing
the (absolute) entropic centrality and the maximum absorp-
tion probability at any node for a random walker starting at
corresponding nodes is shown in Figure 23 (left). The vertical
line in the diagram shows the demarcation for SHE for 80%.
Unlike for the dolphin network, there is barely any node with
distinctively high probability. The threshold of 80% separates
a few nodes with both slightly highest entropic centrality and
highest probability. The result with F-score 0.517 is shown in
Figure 22a. We stop at the first iteration since our clustering
technique is a bottom-up approach, which means that second
iteration will produce fewer number of clusters. Based on
the ground truth (Fig. 22f), we notice for our algorithm a
similar behavior as was observed with the other algorithms
for the dolphin network, namely: the algorithm coalesced
several of the ground truth communities to create larger com-
munities. By extracting the largest three subgraphs of these
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FIGURE 22. Clusterings of the American College football network.

FIGURE 23. Scatter diagram with the entropic centrality of nodes on the x-axis, and on the y-axis, the maximum
absorption probability at any node for a random walker starting at that node: the American college football network
(left), and the EU mail network (right).

larger communities and re-applying the algorithm on each
of these subgraphs (again with parameter SHE consisting of
the top 80% entropic centrality nodes), we obtained a new
group of clusters, shown on Fig. 22b, with a significantly
improved F-score of 0.811. The overall computation time
was a total of 0.221 seconds. We compare this with results
obtained with InfoMap [44] (F-score of 0.904 and total time
of 0.013 seconds), Louvain [5] (F-score of 0.823 and total
time of 0.002 seconds), and label propagation [2] (F-score of
0.796 and total time of 0.001 seconds) as shown in Figure 22
along with ground truth. In the ground truth [15], a cluster

with yellow color and another cluster with crimson color
spread their members out over the network. Considering this
anomalous ‘ground truth’, ours, as well as other clustering
techniques, produce very good results. InfoMap has the high-
est F-score, Louvain has similar F-score to our clustering
technique, and label propagation has the lowest F-score.

Finally, we considered the European email network [25]
representing email communication in a large European
research institution, amongmembers that belong to 42 depart-
ments (thus 42 clusters). The corresponding scatter diagram
is shown on the right of Figure 23. Looking at the scatter
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diagram from left to right, we find a few nodes with entropy
0. These are isolated nodes with no edge. Then there is a
small group with entropies varying between 4 and 6, and
finally, on the right, the bulk of nodes have entropies more
than 6 and highest probability less than 0.3. This suggests that
the proposed algorithm will have difficulties in identifying
clusters, since choosing SHE to include the large right group
gives too many clusters, but either iterating or taking smaller
SHE leads to too few clusters. This demonstrates how the
scatter diagram informs whether and when our approach is
suitable for clustering a given graph instance.

V. CONCLUDING REMARKS
In this paper, we investigated the entropic centrality of a
graph, using the spread/uncertainty of a random walker’s
eventual destination as a measure, that is applicable for all
families of graphs: un/weighted, un/directed. Studying the
probability distribution of a random walker to be absorbed
at any given node when initiated at a node of a given
entropic centrality, we established principled insights on how
to choose query nodes for random walkers, and how to
exploit said probability distribution to identify local com-
munity structures. We utilized these mechanisms to realize
heuristic bottom-up clustering algorithms, relying on the cen-
trality informed choice of query nodes, which inherit the
universality of the entropic centrality model. Thus, it is also
applicable across families of graphs. We benchmarked the
proposed clustering mechanism using a variety of data sets,
and by comparing it with other popular algorithms. Given the
principles that guided the design of our heuristics, we also
explored how the underlying analysis could be leveraged to
reason about when and whether our algorithm is suitable to
cluster a given graph.

Given the bottom-up and localized nature of the most rele-
vant information that are used in the decisionmaking process,
in the future, we want to explore the trade-offs in the quality
of results obtained against computational scalability and pos-
sible distribution/parallelization, if partial information is used
to compute approximate centrality scores and random walker
distributions.

Our model naturally fits applications such as the flow of
money and its confined circulation among subsets of users,
where the volume or frequency of interactions can be mapped
to edge weights, and the direction of the flow is vital. Money
laundering and cryptocurrency forensics are thus application
areas of interest, which we want to explore in the immediate
future with the designed tools.
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