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ABSTRACT This paper presents an Internet of Things-enabled low-cost wireless sensor network with
newly-developed dependable schemes to improve reliability for monitoring air quality in suburban areas. The
system features sensing units for router communications with energy savings from dynamic conservation.
Based on the reliability function and mean time to failure, a continuous time Markov chain model is used
to analyze the monitoring performance. The proposed dependable monitoring network is shown to achieve
high availability with regards to energy consumption and data assurance with the survival probability of over
80% during a minimum period of 72-hour operation for monitoring air quality in a suburb. Distributions of
fine particle concentrations studied over a 6-month period demonstrate feasibility of the developed system in
its high correlations to benchmark monitoring stations with the Pearson’s coefficients obtained at 0.903 and
0.817 respectively for PM2.5 and PM10. Statistical analysis is conducted for performance evaluation in
association with two extreme events, one with bushfires and the other with pandemic lockdown. The results
obtained indicate enhancements in reliability and accuracy of the colocated dependable low-cost sensors
network proposed for wireless monitoring of air quality in urban conditions.

INDEX TERMS Low-cost wireless sensor networks, Internet of Things, air quality, dependability, monitor-
ing systems.

I. INTRODUCTION
A recent projection by the United Nations (UN) foresees that
by 2050 nearly 70% of global population will be living in
the cities [1]. This urbanization trend leads to considerable
demands for transportation, industrial production, infrastruc-
ture and energy. This would raise concerns on sustainable
development and require the need for effective measures for
environmental monitoring in urban areas. Interdisciplinary
and transdisciplinary efforts embracing advances in infor-
mation and communication technology (ICT), autonomous
systems, data science, computer science, systems theory, the
Internet-of-Things (IoT) and artificial intelligence (AI) have
formed the basis for smart sustainable city development [2].

Towards environmental sustainability and social resilience
in metropolitan areas, it is essential for residents to have
clean air. In this regard, technical measures are needed for
monitoring and improving air quality, whereby IoT-enabled
wireless sensors networks are promising among available
monitoring systems for healthy built environment and air
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quality management. As an example, in a crowdsourc-
ing and cross-sector collaboration project, namely AIR
Louisville [3], electronic inhaler sensors with the IoT tech-
nology have been used to provide the health data as well
as environmental values for policy recommendation on air
pollution management and control. An integrated monitoring
system is proposed in [4] for a smart building, where real-time
indoor air quality data are monitored round the clock using
IoT-enabled multisensor fusion.

For outdoor air quality, a simulation model is used in [5]
to monitor the traffic conditions of urban road networks that
have a direct effect on vehicle emissions. An open online
database and measured data from urban sensor networks
has been used to address individual incidents related to air
pollutants [6]. At a larger scale collaboration, the iSCAPE
(Improving the Smart Control of Air Pollution in Europe),
an allied project covering six cities in different European
countries, has demonstrated advancements in the deployment
of low-cost wireless sensor networks (LWSN) at citizens’
households to enhance awareness of sustainable environ-
ment [7]. In Australia, along with recent big projects for
infrastructure development to meet the urbanization needs,
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the problem of air quality modelling and control is also of top
priority [8]. A network of KOALA (Knowing Our Ambient
Local Air Quality) low-cost sensors has been implemented
for high spatial resolution air quality monitoring to suc-
cessfully observe the emissions of fine particles and carbon
monoxide during six months before and after a big sports
event [9]. These initiatives show benefits and feasibility of
a low-cost solution using wireless sensor networks for moni-
toring air pollution and improving air quality in cities.

While global smart city development can offer various
dimensions and services covering all aspects of municipal
activities, it should be people-centric, addressing directly
citizens’ well-being and quality of life [10]. Therefore, the
needs and preferences of citizens should be considered in
public-involved programs to implement of LWSN for envi-
ronment monitoring. As reported in [11], residents may raise
concerns on data quality, system reliability, operating sup-
port, ownership and the arrangement of power supply for
monitoring systems installed at some locations in suburbs.
Moreover, network security and data preservation should
be taken into account when crowdsourcing data, e.g. in
healthcare [12] or life basic necessities [13]. Indeed, low-cost
sensors networks using the IoT technology can be considered
as promising in environmental monitoring, e.g. for real-time
urban microclimate analysis [14]. In climate and atmo-
spheric sciences, this crowdsourcing technique, however,
needs further validation and verification to become a valu-
able source [15]. These indicate that the IoT-enabled LWSN
systems installed for urban air quality monitoring have to be
accurate, reliable, and fail-safe at the first requirements.

This article aims to develop a framework of dependable
low-cost wireless sensor network (DLWSN) for air qual-
ity monitoring, which addresses the affordable deployment
of a colocated monitoring system for reliable data aggre-
gation and accurate assessment of urban air quality using
the IoT-enabled system with enhanced availability. Here, the
reliability analysis for the proposed system is conducted via
the mean time to failure (MTTF) derived from the reliability
function of the monitoring system, whereby the survival and
failing probabilities of its sensor modules are calculated by
a Markov chain model (MCM). From the reliability analysis,
a suitable configuration is selected for sensor motes supplied
with a dynamic energy conservation scheme to increase the
system’s runtime and incorporated with a novel wireless
dependable algorithm to improve the accurate, reliable and
fail-safe operations of the overall system in monitoring out-
door air quality. The availability, reliability and resilience of
the proposed DLWSN against environmental volatility are
verified in extreme events such as bushfires and pandemic
lockdown conditions. Contributions of the paper can be spec-
ified as (i) an architecture for dependable low-cost wireless
sensors networks with sensor motes formed by colocated
sensor modules developed from an IoT platform for urban
air quality monitoring, (ii) an effective algorithm for wireless
dependable monitoring to enhance system reliability, accu-
racy and fault-tolerance, and (iii) a promising approach to

real-time urban microclimate analysis, tested in a wide range
of environmental conditions.

The paper is organized as follows. After the introduction,
Section 2 presents the proposed architecture for DLWSN to
monitor air quality in a local area such as suburbs of a city.
Section 3 is devoted to an analysis of system reliability using
a continuous-time Markov chain model based on a failure
rate, and presents a novel dependable monitoring algorithm.
In Section 4, experiments are described, including labora-
torial testing and a real-world application of the proposed
DLWSN to monitor the air quality at a construction site and
its surrounding area. Section 5 provides on-site results and
statistical analysis to confirm the DLWSN merits, in terms
of high performance in air quality monitoring, possibility
for microclimate analysis, and good value for the suburban
management. Finally, a conclusion is drawn in Section 6.

II. DEPENDABLE LOW-COST WIRELESS
SENSOR NETWORK
The framework for the proposed low-cost wireless sensor
network is introduced in this section.

A. SYSTEM DEPENDABILITY
In discrete systems, dependability is attributed to such system
properties as availability, reliability, maintainability, dura-
bility and security [16]. In the context of technologies for
sustainable environment, dependable systems are important
for the management and information processing in various
aspects of a city life, improving the citizens’ responsiveness,
and facilitating services and applications towards resilience
of a smart city [17]. For environmental modelling, wire-
less sensor networks enabled in an IoT platform offer an
effective tool. To deal with uncertainties associated with data
collected, particular in the case of air quality monitoring, it is
essential to improve accuracy, reliability and service life of
these networks. To this end, we propose here the integration
of dependable schemes into a LWSN for urban monitoring
air pollution, in alignment with long-term development of
resilient smart cities.

The early concept of dependability in IoT-enabled systems
emerges in the industrial applications, which demonstrate the
enhancement of the fault-safe and reliable operations in face
of system’s incidents or network imperfectness. It is quite
often that dependable systems requires a level of redundancy,
spatially or temporally, depending on the relation to sensing
or communications and control. For example, the dependable
control and management of solar energy in a smart build-
ing made use of redundancy in the quad controllers [18].
In wireless sensor networks, redundancy has been exploited
to increase data accuracy, sensing reliability, system lifetime
and security [19]. With the availability of low-cost networks,
a prominent advantage coming out of redundancy is their
fault-tolerant and safe operation. As such, groups of sensor
motes can be colocated in clusters to extend theWSN lifetime
via optimization [20], by routing adaptation (Low Energy
Adaptive Clustering Hierarchy - LEACH) [21] or using fuzzy
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FIGURE 1. Proposed DLWSN architecture.

logic inference [22]. On the other hand, system dependability
can also be achieved by increasing reliability in relation to the
measurement as well as communication protocols, e.g. such
as Transmission Control Protocol (TCP), Automatic Repeat
Request (ARQ) or routing path, while handling possible
tradeoffs at the same time with energy waste, data replication,
connectivity congestion, and computational resource [23].

B. NETWORK ARCHITECTURE
Figure 1 presents the architecture of the proposed DLWSN
for monitoring air pollutants in suburban areas. The system
includes sensor motes of several collocated modules and
local router/gateway motes to collect environmental data and
transmit the most reliable values to the cloud server through
a dependable monitoring scheme. There is at a time only
one active sensor module in each mote (the one in orange in
Fig. 1). Therein, imputed data from the sensor mote clusters
are also processed and evaluated along with data obtained
from nearby air-quality stations to provide accurate and reli-
able assessment of distributions of air pollutants at a local
monitoring areas.

In the dependable scheme, each sensor module has
IoT-enabled functions to measure and transmit data remotely
to the sink devices (gateways/routers). As illustrated in each
sensor mote in Fig. 1, the dependable monitoring schemes
with developed wireless dependable sensing (W-DepS) play a
role of a local manager to switch the most reliable module in a
sensor mote while the other modules will stand by idly to con-
serve energy. The local routers are also developed to handle
as an intermediate layer to transfer data between sensor motes
and cloud server. However, to deal with imperfectness while
transceiving high quality information from the sites, network
redundancy will be integrated with physical sensor modules
to formulate our dependable low-cost framework.

In this study, each sensor mote constitutes four colo-
cated sensor modules in a quad-sensor configuration that

has been field-tested on a construction site [24]. In the pro-
posed architecture, the IoT-enabled low-cost microcontroller
ESP32 is the main platform embedding our W-DepS algo-
rithm as well as other communications and measurements.
The W-DepS link is decided by a local router mote consti-
tuted by two microcontroller units (MCUs) connecting in
series, in which one unit communicates with sensor mod-
ules in the local network called ESP-NOW, the remaining
MCU is responsible for sending the most reliable data pack-
ets to the cloud server (internet) via the Wi-Fi network.
In addition, the sensor motes can communicate directly to
the cloud in cases of failing connections with the routers or
for indoor applications. The on-duty (active) module selected
by W-DepS will communicate for data transmission with the
router, while three others are in the standby (passive) mode.
Therefore, unnecessary communication and the redundant
information are mitigated to improve the information utility
and energy conservation in comparison to other wireless
sensor networks [25]. Moreover, the supply for the sensor
mote and router comes from a solar panel with proprietary
lithium-powered energy storage controlled by a dynamic
energy conservation scheme as described in the next section.

C. DYNAMIC ENERGY CONSERVATION FOR
ENERGY SAVINGS
In environmental monitoring, wireless sensor systems often
operate intermittentlywith low sampling frequencies (periods
of minutes or hours) depending on the desired resolution.
This requires the power supply for the system to be main-
tained over the lifespan. Here, our strategy is focused on a
dynamic energy conservation (DEC) scheme, making use of
the deep-sleep mode in order to extend the service time and
assure stable operation of the sensor modules.

The proposed DEC scheme in each sensor module includes
(i) the active state when the MCU ‘‘wakes’’ up, samples
values from sensors and transmits data to gateways, and
(ii) the deep-sleep mode when the MCU cuts off the power
supplying to all sensors until the next self-wakeup instant.
Over the active period, only the most reliable sensor module
connects wirelessly to the gateways to transmit the measured
data, the remaining modules send only survival states (sur-
vival probability) when having triggered signal from the local
gateways. Through the W-DepS feedback, the sleeping time
can be dynamically chosen and adapted by the gatewayswhen
the survival probabilities of the sensor modules become lower
than a predefined threshold. From the experimental records of
DEC presented in [24], the sampling interval of 15 minutes
will be considered for all analysis in this paper.

The ESP-NOW network, a low-power wireless protocol
in the local clusters, is deployed in our communication
layers also for saving energy. This device-to-device (D2D)
radio communication method allows for low-energy 2.4 GHz
wireless connectivity without a common gateway like in
other wireless protocols. In terms of connecting security,
ESP-NOW is seamlessly integrated with CCMP (Counter
Mode Cipher Block Chaining Message Authentication
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Code Protocol) in combination with Primary Master Key and
Local Master Key [26]. Moreover, the transmission payload
can be maximum at 250 bytes and the connection range up to
hundred meters in line-of-sight connectivity. Therefore, this
communication protocol is an appropriate option to leverage
our proposed dependable monitoring scheme for reducing the
interference with the globalWi-Fi network and increasing the
connectivity performance.

III. RELIABILITY ANALYSIS
Before testing and implementing the proposed DLWSN for
urban air quality monitoring, an analysis of the system reli-
ability is conducted using probability and statistics. In the
IoT infrastructure, several techniques have been applied to
evaluate both availability and reliability of IoT-based sys-
tems, such as the Petri net-based approach for healthcare
applications [27], or the Markov chain model (MCM) for
WSN deployed in areas with relatively harsh natural envi-
ronments [28]. Nevertheless, most of the previous studies are
limited in the virtual conditions of simulation that does not
reflect the real-world application of the IoT-enabled WSN
in online operation. In practice, due to the impact of volatile
weather or extreme natural events on the WSN performance,
the lifetime, communications and other basic functions of
developed networks need to be explored in an onsite scenar-
ios. In this work, a hierarchical MCM is proposed to derive
the reliability function of colocated sensor motes using col-
lected data from the experiments for dependability evaluation
of the DLWSN.

A. RELIABILITY FUNCTION AND MEAN TIME TO FAILURE
In our dependable system, the sensor modules are colocated
to measure the same environmental variables (e.g., ambient
temperature, air humidity, soil moisture, air pressure, and
particulate matter). In each sensor mote, only one on-duty
sensor module is representative for the mote to transmit
data to the intermediate gateways or directly to the server.
The sensor motes are at the high-level management for data
transmission, while the sensor modules are at the low level
for data sensing and dependable monitoring. Hence, this
configuration simplifies the embedded control algorithm in
computing-constrained IoT platforms.

As the parallel-operation scheme for the colocated sensor
modules is adopted, we analyze the availability and reliability
for the two possible configurations, namely, (C1) all active
modules operate at the same time (i.e., similar duty cycles in
communication and measurement), and (C2) one at a time,
i.e. one active module and the rest modules are cold-standby.
To proceed with the analysis, we first assume that (i) the
lifetime of a sensor mote is the time span of the maximum
longevity of the whole set of modules in (C1), or the total
time span of all sensor modules in a mote (C2), and (ii) a
failure is caused predominantly by power exhaustion with all
module batteries being discharging with the same rate.

Since the sensor modules operate with limited energy
supplied by battery cells, the working status of each device

should last continuously during the time. Therefore, the pro-
cess involved can be represented by an exponential distribu-
tion. Moreover, the colocated sensor modules are supplied by
separate power banks, hence their failures are independent
and identically distributed (IID). To this end, the process can
be considered as a Poisson distribution of a continuous-time
Markov chain (CTMC) model. The reliability function or the
so-called the survival function of module ith in a sensor mote
is an exponential function :

Ri(t) = e−λt , (1)

where λ is the failing rate of module.
The reliability functions for two configurations (C1) and

(C2) for a general case with n devices can be expanded
respectively as,

RC1(t) = 1−
n∏

k=1

(1− Ri) (2)

and

RC2(t) = e−λt
n−1∑
k=0

(λt)k

k!
, (3)

where k is number of failed modules at time t .
TheMTTF , an important metric to quantify reliability of a

system, is defined as [29]:

MTTFC1 =
∫
∞

0
RC1(t)dt =

1
λ

n∑
k=1

1
k

(4)

and

MTTFC2 =
∫
∞

0
RC2(t)dt =

n
λ
. (5)

It is obviously seen from (4) and (5) that the cold-standby
configuration (C2) increases MTTF when higher redundant
modules are in the systems (sensor motes). Hence, the reli-
ability and survival time of systems will be higher, and our
quad-sensor motes will operate with one active and three
passive modules.

B. CONTINUOUS TIME MARKOV CHAIN MODEL FOR
SENSOR MOTES
The CTMC model of our colocated sensors can be depicted
in Fig. 2 for a sensor mote of four sensor modules with a
perfect switching mechanism. Here, the working status of
each sensor module of a sensor mote is represented by a
state. For example, State_1 means the module 1 being in
good condition and State_0 implies all the four modules not
functioning and hence the mote being in the failure status.
The lower layer (inside the rectangle box) demonstrates states
of each sensor module by a two-state model of W and F
corresponding to working and failing, respectively.

A failure of a sensor module will transit to the next state of
the mote. Therefore, the transition rate between two states is
assumed equally as λi for both the mote and the module i−th.
The other parameter is µi denoting the recovery rate. This
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FIGURE 2. Continuous-time Markov chain model for a quad-sensor mote.

parameter is dependant on environmental changes such as
solar PV panels and weather conditions. Nevertheless, as the
dependable scheme can replace instantly the failing module
by a working one and given a high value of the MTTF, our
proposed quad-sensor configuration can assure a prolonged
continuous lifetime of the proposed DLWSN.

For the onduty-standby configuration, we denote a binary
variable representing the operational (active) and non-
operational (standby) states of the quad-sensor mote as,

πi =

{
1→ Operational
0→ Non− operational.

(6)

The sensor mote reliability for an n colocated sensor mod-
ules can be obtained from the combination:

Rmote(t) =
n∑
i=1

πi.Ri(t), (7)

where Ri(t) is the reliability function of a sensor module.
In cluster-based networks, at least one sensor module must

operate in a cluster. As such, the higher number of operational
sensor modules will lead to the exponential growth to the
computational latency of the network server [30]. This justi-
fies a reasonable selection of the number n of sensor modules
in a sensor mote. In this work, with n = 4 modules per
mote, an ensemble of sensor motes will be distributed over
the local area for the purpose of microclimate assessment of
urban air pollution. The whole DLWSN will be controlled by
the neighbour gateways to mitigate the problem of large scale
implementation. The reliability of each sensor module at the
lower layer is considered in the next section.

C. SENSOR MODULE RELIABILITY
As illustrated in Fig. 2, the failure of a sensor module will
decide on reliability of a sensor mote. In the following, the
two-state MCM is used to find the survival and failure prob-
abilities of each sensor module at a certain time, based on the
Kolmogorov forward equation as [31],

Ṗ(t)T = P(t)TA, (8)

or

[ṖF (t), ṖW (t)] = [PF (t),PW (t)]
[
−µ µ

λ −λ

]
, (9)

where P(t) and Ṗ(t) are respectively the probability vector
of all states and its time derivative, PW (t) and PF (t) are the
probability of state W and state F, respectively, and A is the
transition matrix of theMarkov model expressed in (8). Since

the module operates initially (t = 0) at PW (0) = 1 and
PF (0) = 0, and given the unity sum of probabilities for all
states, the following differential equations for two variables
PW (t) and PF (t) are obtained as,

λPW (t)− µPF (t) = ṖF (t) (10)

PW (t)+ PF (t) = 1. (11)

The solution of the system (10) and (11) for each state can
then be obtained [32]:

PW (t) =
µ

µ+ λ
+

λ

µ+ λ
e−(µ+λ)t , (12)

PF (t) =
λ

µ+ λ
−

λ

µ+ λ
e−(µ+λ)t . (13)

The probability PW (t) is now one of the inputs in our pro-
posed dependable scheme to determine a new active sensor
module based on the potential failure from the currently oper-
ating device. In order to obtain PW (t), the two parameters,
recovery rate µ and transition rate λ, have to be specified
and simplified for an embedded system. In our application
for air pollution monitoring at a suburb scale, the proposed
DLWSN system operates with a working voltage subject to
a battery threshold of E(t) = 3.2 V - a limit operation volt-
age of ESP32-MCU [26] for switching between the charge
and discharge states of each module almost instantaneously.
As such, when being discharged, the recovery rate (µ) can be
considered zero. For the transition rate at failures, or failing
rate λ, it is often taken as the reciprocal of the mean time to
failure (i.e., MTTF = 1/λ) [30]. Therefore, the probability
PW (t) and PF (t) can be obtained as,{

PW (t) = e−λt = e−
t

MTTF

PF (t) = 1− e−λt = 1− e−
t

MTTF .
(14)

As discussed above, the MTTF of each sensor module has
its own distribution which can be sampled at a time instant t
for the value of λ. The development of the proposed W-DepS
is presented in the next section.

IV. SYSTEM IMPLEMENTATION AND APPLICATION
This section describes the implementation of the proposed
wireless sensor network, its dependable monitoring algo-
rithm, its laboratorial testings, and system installation for its
application to air quality monitoring in a suburb.

A. DEPENDABLE MONITORING ALGORITHM
In our development, the wireless dependable monitoring
algorithm is embedded in the MCUs of the gateways. These
gateways are governed by the local ESP-NOW network
between the sensor motes and the gateway motes, as illus-
trated in Fig. 1. From the ESP32-MCU, there are two inte-
grated Xtensa 32-bit LX6microprocessors, normally denoted
as core 0 and core 1, which can work independently for
multitasking by an abstract real-time operational system (i.e.,
FreeRTOS) to manage parallel tasks between the two cores.
Fig. 3 shows the structure for task distribution and data com-
munications between these cores (core 0 for communications
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FIGURE 3. Task distribution and data communication structure.

and core 1 for other tasks). The multitasking ability allows for
reduction of network interference and computational latency.

Beside raw data measured by sensors, the feedback from
each sensor module includes also the probabilities of sur-
vivalPWi (t) and received signal strength indicators (RSSIi(t)).
These are sent to and stored in the gateway mote. Although
the colocated sensor modules are used here, and the RSSI can
be meaningful over some distance for wireless devices [33],
the network’s signal strength, data collection and localization
are obviously affected by environmental conditions (e.g.,
temperature and humidity) [34]. Therefore, the RSSI can
serve best as a proxy for the effects of weather volatility
on the DLWSN performance. The dependable monitoring
algorithm W-DepS is then developed based on status pack-
ets of the sampled probabilities and signal strength indica-
tors. The pseudo-code of the W-DepS program is shown in
Algorithm 1, wherein the output is the command for updating
the reliable active module at the next cycle of the monitoring
system.

B. LABORATORIAL TESTING RESULTS
For evaluation of the DLWN development, we have con-
ducted laboratorial experiments to test its performance. Here,
reliability for WSN can be analyzed by using modelling tools
such as Reliability Block Diagram [23], Petri net [27], and
Fault Tree Analysis (FTA) [35], which are convenient for
simulation. However, assumptions and a priori parameters
used in these models may not reflect well the multifaceted
responses of the low-cost components of the developedWSN
because of drastic changes in operational conditions or unac-
countable effects in a real-world environment. Here, termina-
tion tests are laboratorially conducted to measure the MTTFs
of sensor modules by setting up experiments at the intended
conditions (similar data measurement, communication, sam-
pling frequency, and energy conservation). The MTTFs are
then measured from the fully-charged to failure-terminated
state (power outage, system shutdown or a communications
problem). Next, the probability density function (pdf) and
cumulative distribution function (cdf) are modelled by using
the Python reliability library [36] from the histogram of the
MTTF data as shown in Fig. 4, wherein the order of legends

Algorithm 1W-DepS
Input : Status packets [PW (t),RSSI (t)] from sensor

modules
Output: Estimate and assign the most reliable sensor module
Data: PW (t) = [PWi ] and RSSI (t) = [RSSIi]
Result: Identify the next active module
1: function IdentifyActive(PWi ,RSSIi)
2: find max PWi with (i = 1, 2, 3, 4)
3: find max RSSIj with (j = 1, 2, 3, 4)
4: if (i == j) then

activeDevice← i
5: else if (max(PWi ) and max(RSSIi >

min(RSSIthreshold )) then
activeDevice← i

6: else
activeDevice← j

7: compareLastStates(activeDevice)
8: end function
9: return updatedActiveDevice
10: sendControllerCommandOut(updatedActiveDevice)

indicates the goodness of fitted distributions from high to low.
The best fit will be used for further statistical analysis.

For illustration, we consider the survival probability of
twelve sensor modules to indicate a divergence in the reli-
ability range of low-cost components. Figure 5 depicts the
survival probability according to the MTTF of those tested
sensor modules. The vertical dashed line marks the 72th

hour threshold showing that most of the modules have the
probability of surviving 3 days of continuous operation to be
at least 0.8, i.e. with a survival probability higher than 80%.
Some other prototypes have lower survival probabilities, e.g.,
module 7, 8, 9, 10, and 12. As a result, the highly reliable sen-
sor modules are selected for the real-world implementation to
assure better reliability. The proposed dependable monitoring
algorithm W-DepS is also tested in our laboratory with the
Virtual Bench NI VB-8012 all-in-one instrument. Experi-
ments were conducted with one master gateway module and
three slave sensor modules communicating wirelessly by the
ESP-NOW protocol. Figure 6 depicts the signals obtained
from the all devices. A dummy program of the master device
periodically switches the active slaves as can be observed
by the rising and falling edges of the pulse signals with the
frequency of 50 Hz, i.e. the red pulses with approximately
5 V in amplitude and 10 ms in width.
The blue, black and green pulses (at 3.2 V amplitude)

are the responses probed from GPIOs of three slave mod-
ules when being assigned the active module by the W-DepS
algorithm. These slaves are switched at a random sequence,
e.g. Slave 1→ Slave 3→ Slave 2, as shown in Fig. 6. The
switching duration in our experiments is approximately 1ms,
depending on the length of the data frame transceiving in the
local network. Moreover, all three slaves toggle the GPIOs
instantly ON/OFF according to the feedback signals from the
master as described in Algorithm 1. The switching between
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FIGURE 4. Pdf and cdf of the MTTF measured and their fitted distribution functions.

FIGURE 5. Probabilities of reliability of 12 sensor modules.

any two sensor modules takes less than one millisecond,
negligible with respect to a working cycle (DEC scheme)
in the range of minutes for monitoring systems. The results
obtained indicate effectiveness of the proposed W-DepS
algorithm along with the ESP-NOW protocol developed for
the DLWSN.

C. DLWSN INSTALLATION
The study area is a construction site at coordinates
(33◦49′11′′S; 151◦4′38′′E), which is located approximately
17 km north-west of the Central Business District of Sydney
City. Its map is depicted in Fig. 7, showing the posi-
tions of 15 developed sensor motes, denoted from T1 to
T15 and surrounding suburbans having air-quality stations,
namely Parramatta North, Macquarie Park, Lidcombe and
Rozelle.

FIGURE 6. Experimental demonstration of W-DepS.

The area under monitoring is divided into two primary
zones: (i) the on-site zone comprises sub-zones from Z1 to
Z6 with motes T1-T8 spatially distributed over the construc-
tion site to monitor the impact of construction activities on
suburban air quality, (ii) the off-site zone with motes T9-T15
installed in a residential area and a park in the surround-
ing for observing emissions from urban activities including
household, transportation and any anthropogeneous sources
in the area. Figure 8 depicts several sensor motes installed
on electrical poles at 3 m height above the ground for proper
measurement.

The monitoring period covers 6 months (from
November 2019 toMay 2020), associated with two important
environmental events, namely a catastrophic bushfire (Black
Summer) and COVID-19 lockdown, which presented differ-
ent aerosol patterns in the area. In this study, the air pollutants
of interest are dust emissions (particulate matters of less than
2.5 micrometers in diameter - PM2.5, and also with diameter
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FIGURE 7. Study area and location of nearest air quality stations (left),
and map of on-site sensor motes (right) with designated subzones:
Z1- Site North West, Z2- Site North East; Z3- Site Mid West; Z4- Site Mid
East; Z5- Site South West; Z6- Site South East.

FIGURE 8. Sensor motes installed (1) T4 at a residential location, (2) T12
at the construction site, and (3) T2 in the car park.

below 10micrometers - PM10).With the selected operational
cycles of 15 minutes, over 12000 data points were collected
by each sensor mote.

V. URBAN AIR QUALITY MONITORING RESULTS
This section presents the data processing and validation
results with the proposed DLWSN for the real-world moni-
toring air quality in the mentioned suburb, along with a thor-
ough evaluation analysis of its on-site dependability attributes
through the monitoring of dust emissions from a construction
site.

A. DATA PROCESSING AND VALIDATION
The data collected by the sensor motes are first compared
with those provided by state-run monitoring stations close to
the site as the station data are highly regarded as ground truth.
They are administered by the NSW government authority and
made public for various air pollutants as well as meteoro-
logical variables on the hourly and daily basis [37]. The site
(Melrose Park, MP) in this study is located between Sydney
Central-East and North-West regions, near several stations,
of which, four air-quality stations surround MP located in
Parramatta North, Macquarie Park, Lidcombe and Rozelle
having the distances of approximately 7 km, 5.7 km, 7.8 km
and 10.3 km, respectively, as shown in Fig. 7.

To evaluate the network performance at the MP site with
reference to the four stations Si(i = 1, 2, 3, 4) in relevance

to their distance, the commonly-used square inverse distance
weighting (IDW) technique is applied for target point S0 of
the DLSWN:

ŷ(S0) =
n∑
i=1

ωiy(Si), (15)

where ωi is the weighted distance of station ith, defined as:

ωi =
d−20i∑n
i=1 d

−2
0i

, (16)

where d0i is inverse distance between station ith to S0. Raw
data logged from DLWSN are first preprocessed to remove
noise and anomalous values with a moving average filter by
taking the average of neighbour values from left and the right
as:

Yfilter =
1
n

n−1
2∑

i=− n−1
2

yi, (17)

where Yfilter is the output of the moving average filter, and n
is the range of centered samples (an odd number). Then, the
Cook’s distance technique is adopted in this study to identify
the so-called influence points or outliers on the regression
model:

Di =

∑n
j=1(ŷj − ŷ(j)i)

2

p.MSE
, (18)

where Di is the Cook’s distance of the observation ith, yi
and y(j)i are respectively the fitted values when including and
excluding samples ith, MSE is the mean square error of two
datasets, and p is the number of coefficients of the fitting
model. Here, those samples were selected at least 3 times the
means of the outliers’ values.

The next step is to impute missing data by using a filtering
technique [38]. Finally, as data collected by the state-run
monitoring stations are available in the hourly or daily aver-
age format, the commonly-used cubic interpolation can be
applied to synchronize the sampling frequency between the
data from DLWSN and the station data.

The partial profiles from both datasets are presented in
Fig. 9 for comparison between DWLSN data (in red) and
IDW estimated data (in blue). The mean values taking
over the whole period for concentrations of fine particles
PM2.5 are respectively 23.73 µg/m3 measured at MP and
24.50 µg/m3 from stations, while those for dust PM10 at
the two sources are 31.15 µg/m3 and 49.15 µg/m3, all
within the daily national standards for particulate matter pol-
lutants (the Australian standard thresholds are 25 µg/m3 and
50 µg/m3 for PM2.5 and PM10, respectively). The mean
for PM2.5 are nearly equal for both sources, while those
for PM10 appear to be higher from referent values than
measured concentration at MP, probably because the effect
of the bushfire event during that time in NSW. To evaluate
the correlation of the two profiles of fine dust PM2.5, a scatter
plot is also presented on the right side in Fig. 9. The Pearson’s
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FIGURE 9. Time series of PM2.5 collected by a LWSN (Melrose Park) and estimated values from referent air-quality stations from 02nd to
16th January 2020.

correlation (r) for PM2.5 and PM10 are calculated with
significant values at 0.903 and 0.817, respectively. The other
statistical values such as standard deviation (STD), mean
absolute error (MAE) are also given in Table 1. The statistical
analysis indicates a strong correlation of the time series of
particle concentrations collected by the DLWSN and those
obtained at the neighbour state-run stations. Therefore, the
measured data from our IoT-enabled monitoring system can
be considered as accurate and reliable. The following section
provides further evaluations.

B. AVAILABILITY AND RESILIENCE EVALUATION
As the survival of battery-based systems predominantly relies
on duration of the solar exposure, the measured voltages of
the remaining energy from each mote can indicate the avail-
ability of our system. To evaluate the DLWSN availability,
we consider two practical factors (i) instant battery voltage,
and (ii) daily solar exposure during the harsh condition of
environment.

We consider two extreme events.

1) BLACK SUMMER BUSHFIRE
Due to the catastrophic bushfire in Black Summer beginning
in early August 2019 ending in February 2020, a high level
of particulate matters were distributed over a large region,
including the suburb under monitoring. During that time,
emissions of fine particles PM2.5 were not only from con-
struction activities on the site but also dominantly from the
wildfire, as monitored by sensor motes T2-T8 (see Fig. 7).
The box plot shown in Fig. 10 summarizes statistical informa-
tion of the collected data from DLWSN. Notably, the outliers

FIGURE 10. Box plots of PM2.5 by sensor motes T2-T8 implemented from
November 2019 to February 2020.

of all data are quite high due to impacts of smoke and dust
from the wildfire, much beyond emissions from construction
activities. Notably, the outliers of T6 are relatively smaller
than of the other motes, which can be explained by its location
in the residential area and far way from the site.

On the other hand, the daily averages of solar exposure
collected from the Bureau ofMeteorology [39] along with the
voltages of a sensor mote (T7) are shown typically in Fig. 11
for February 2020. During the month, the W-DepS algorithm
and DEC scheme successfully selected the most reliable sen-
sor modules while the measured voltages of sensor motes
were kept around 3.95 V. During 7-9th February 2020, there
was a long-awaited heavy rain in NSW, which contributed
to stop the bushfire. Despite changes in the battery energy
according to the level of solar exposure and the adversary
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TABLE 1. Statistics of data measured from DLWSN at Melrose Park and IDW-estimation of referent stations.

FIGURE 11. Daily average solar exposure (blue bars) and the average
battery voltage (red line with min-max intervals) of the sensor mote T7 in
February 2020.

weather during the time, the voltage level recorded can drop
from 3.97 V down to 3.75 V. This indicates the continuous
availability as well as resilience of our DLWSN system under
extreme conditions such as severe bushfires.

2) COVID-19 LOCKDOWN
Since March 2020, the whole Australia was in the lockdown
due to the coronavirus pandemic (COVID-19). During the
time, a decrease in anthropogeneous sources of emissions
resulted in a low level of dust concentrations, as recorded
from the developed LWSN. The box plots of Fig. 12 show the
significant low PM2.5 concentrations measured by 15 sensor
motes T1-T15 with 95% of all fine-particle levels under
20 µg/m3. This is a direct effect of the absence of major
transports in the city as well as other sources of emissions
from human activities during lockdown. On the other hand,
it also demonstrates accuracy and sensitivity of the proposed
DLWSN for urban air quality monitoring.

C. DEPENDABILITY AND MICROCLIMATE ANALYSIS
To illustrate dependability of the proposed DLWSN, three
sensor motes T1, T2 and T3 are deliberately colocated with
the radial distance less than 200 m so that the environmental
parameters measured in this sub-area can be considered as
the same by each sensor mote. Then, the power supplying
to the sensor motes was switched off deliberately to simulate
failures as if caused by the adverse impacts, e.g. from damage
to the physical system or any vulnerable incident. Accord-
ingly, the following schedule applied: T1 (20th-22nd March),
T2 (25th March), T3 (28th March) and later, both T3 and T1
from earlyApril 2020. Fig. 13 presents the time series of these
motes, showing missing data from them.

During the study period, T1 profile (red line) had
two interruptions, during 20th-22nd March and after

FIGURE 12. Box plots of PM2.5 by 15 sensor motes implemented from
February to May 2020.

FIGURE 13. Data profiles of three low-cost sensor motes with data
selection of W-DepS.

02nd April 2020. Both were recognized by the W-DepS algo-
rithm that triggered T2 (blue line) to take over as the active
sensor mote in the cluster for data acquisition (magenta line).
When T2 stopped operation on 25th March, the algorithm
compared the reliable probability between T1 and T3 (black
line), and assigned the monitoring task to T3. Similarly, T1
was selected to replace T2 and T3 on 28th March 2020. For
the final interrupting interval, due to failures of both T3 and
T1 on 3rd April, values collected from T2 would be the only
output of the dependable monitoring algorithm. It is clear that
the W-DepS successfully handled the incidents by switching
to a standby sensor mote to assure continuous monitoring in
the occurence of failures in the sensor network.

Notably, an interesting advantage of the proposed DLWSN
rests with its potential in environmental monitoring at a
microscale, a feature exceeding the capability of state-run
stations. In this study, it is used for monitoring dust emissions
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FIGURE 14. Spatial distribution of PM2.5 at midday 10th December 2019.

FIGURE 15. Spatial distribution of PM2.5 at midday 15th April 2020.

from a construction site in a small suburb. Indeed, monitor-
ing information can be collected at a small distance taking
into account the dependability advantages of the proposed
low-cost sensor networks. Typically for the two extreme
events described above, the spatial distributions of PM2.5
levels on 10th December 2019 and 15th April 2020 at mid-day
are presented respectively in Fig. 14 and Fig. 15. The dis-
persion of fine particles covered the site of interest using
the standard color code for air quality assessment. From the
spatial maps, the central area of the site (T1 - T8) have higher
levels of PM2.5 in comparison with the residential (T9 - T15)
due to the emissions contribution from the construction site.
The results obtained are promising in microclimate analysis.
Further learning schemes can help improve resilience and
security of the developed network in harsh operating condi-
tions. Those will be the topic of our future work.

VI. CONCLUSION
This paper has presented a new development for a reliable
environmental monitoring system built on the combination
of physical and communication redundancies. By colocation

of similar sensor motes to monitor the same parameters,
increasing the time to failure for eachmodule via energyman-
agement, and incorporating an effective IoT-enabled depend-
able control algorithm, the proposed low-cost wireless sensor
network can significantly improve the monitoring quality
in terms of availability, reliability with high correlations
(0.903 for PM2.5, 0.817 for PM10) and fault tolerance with
a high survival probability above 80%. The continuous-time
Markov model and statistical tools are utilized in the design
and performance verification. The system architecture is
described along with hardware implementation. The devel-
oped system has been successfully tested in laboratory condi-
tions as well as applied to real-world monitoring of air quality
profiles of a construction site in a suburb, considering the
impact of construction activities as well as different weather
events such as bushfires, COVID-19 lockdown and heavy
rain. The obtained results show feasibility and advantageous
merits for the proposed low-cost wireless sensor network
for environmental monitoring, particularly for air pollution
assessment. They also indicate a promising application in
microclimate analysis for cities.
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