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ABSTRACT Neglect feature selection matter for high-dimensional transient data obtained from phasor
measurement units (PMUs) negatively affect the inconsistent-linked indices, namely data labeling time
(DLT) and data labeling accuracy (DLA) in the transient analysis (TA). A reasonable trade-off between DLT
and DLA or a win-win solution (low DLT and high DLA) necessitates feature-based mining on transient
multivariate excursions (TMEs) via designing the comprehensive feature selection scheme (FSS). Hence,
to achieve high-performance TA, we offer the cross-permutation-based quad-hybrid FSS (CPQHFSS) to
select optimal features from TMEs. The CPQHFSS consists of four filter-wrapper blocks (FWBs) in the
form of twin two-FWBs mounted on two-mechanism of the incremental wrapper, namely incremental
wrapper subset selection (IWSS) and IWSS with replacement (IWSSr). The IWSS2FWBs and IWSSr2FWBs

contain filter-fixed and wrapper-varied approaches (FfWv) that first block-specific FfWv of IWSS2FWBs and
IWSSr2FWBs includes relevancy ratio-support vector machine (RR-SVM) and second block-specific FfWv of
IWSS2FWBs and IWSSr2FWBs accompanied by relevancy ratio-twin support vector machine (RR-TWSVM).
Generally, RRIWSSSVM and RRIWSSTWSVM is in IWSS2FWBs, and RRIWSSrSVM and RRIWSSrTWSVM is in
IWSSr2FWBs. Besides direct relations in two-FfWvBs per incremental wrapper mechanism, by plugging
different kernels into the hyperplane-based wrapper, all possible cross-permutations of hybrid FSS are
applied on transient data to extract the optimal transient features (OTFs). Finally, the evaluation of the
effectiveness of the CPQHFSS-based OTFs in TA is conducted based on the cross-validation technique. The
obtained results show that the proposed framework has a DLA of 98.87% and a DLT of 152.525milliseconds
for TA.

INDEX TERMS Hybrid feature selection algorithm, optimal transient features, transient analysis.

ACRONYMS
PMUs Phasor Measurement Units.
TA Transient Analysis.
DLT Data Labeling Time.
DLA Data Labeling Accuracy.
TMEs Transient Multivariate Excursions.
FSS Feature Selection Scheme.
CPQHFSS Cross-Permutation-based Quad-Hybrid FSS.
FWBs Filter-Wrapper Blocks.
HBs Hybrid Blocks.
IWSS Incremental Wrapper Subset Selection.
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IWSSr IWSS with Replacement.
RR Relevancy Ratio.
SU Symmetric Uncertainty.
SVM Support Vector Machine.
TWSVM Twin Support Vector Machine.
OTFs Optimal Transient Features.
IT Information Technology.
DM Data Mining.
ML Machine Learning.
HDD High-Dimensional Data.
TTP Training-Testing Procedure.
A&T Accuracy and Time.
OFs Optimal Features.
MDFs Most Discriminative Features.
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TSA Transient Stability Assessment.
TSP Transient Stability Prediction.
LDOTFs Low Dimensional Optimal Transient

Features.
mRMR Minimum-Redundancy and

Maximum-Relevance.
FCBF Fast Correlation-based Filter.
DSA Dynamic Security Assessment.
MI Mutual Information.
PCC Pearson Correlation Coefficient.
NMI Normalized Mutual Information.
SRFS Strongly Relevant Feature Subset.
WRFS Weakly Relevant Features Subset.
TFWM Trajectory-based Filter-Wrapper Method.
PFWM Point-based Filter-Wrapper Method.
FICA Fuzzy Imperialist Competitive Algorithm.
MIE Mutual Information-Entropy.
MHFSS Multifaceted Hybrid FSS.
IWMs Incremental Wrapper Mechanisms.
CL Classification Learner.
CFS Candidate Features Subset.
GEPSVM Generalized Proximal Eigenvalue SVM.
KKT Karush-Kuhn-Tucker.
LinKer Linear Kernel.
PolKer Polynomial Kernel.
SGRBF Standard Gaussian Radial Basis Function.
DTW Dynamic Time Warping.
REDK Recursive Edit Distance Kernel.
PFs Point features.
pOTFs Preliminary Optimal Transient Features.
TDGW Transient Dataset Generation Workflow.
OCBF Output Channels of Basic Feature.
API Application Program Interface.
PSS/E Power System Simulator for Engineering.
CONL Convert Load.
VOLT Bus Voltages.
VANGLE Voltage Phase Angle.
PELEC Machine Active Power.
QELEC Machine Reactive Power.
QLOAD Reactive Power Consumption.
TMTD Transient Multivariate Trajectory Dataset.
Acc Accuracy.
TPR True Positive Rate (Sensitivity).
TNR True Negative Rate (Specificity).
VUFSSs Vertically Unilateral FSSs.
PITHS Partial-Injective Trilateral Hybrid FSS.
BMHFSS Bi-Mode Hybrid FSS.
OT Observed Time.
NETS-NYPS New England Test System-New York

Power System

NOTATION

fi ith feature.
fhi Feature with ith-highest RR.
Acc(fhi) Learning model accuracy based on fhi.

Incr: #i ith increments in IWSS/ IWSSr tree.
CLtrain(fi) Training procedure of classification

learner based on fi.
param Recording learning parameters.
CLtest(fi, param) Testing procedure of model based

on param and fi.
HB1-2 First-second hybrid blocks of IWMs.
Si ith contingency sample in TMEs.
pfi ith point feature.
TUi ith transient univariate in multivariate

data.
f TU

k

i ith features of k th transient univariate.
H (X ) Entropy of X; X:{f TU

k

i , target class}.
H (f TU

k

i |C) Entropy of f TU
k

i when class is given.
O () Stands for worst-case complexity.
pfsTUi Point features (observed cycles)

of TUi.
SpfsTUi Sorted point features of TUibased

on SU.
pOTFsTUi Preliminary OTFs of TUi.
fOTFsTU# Set of final OTFs per TU.
Max Maximum function.
Min Minimum function.
Var Variance function.
FfWv Filter-fixed wrapper-varied in IWMs.
UfOTFsTU1:TU28 Union of final OTFs of TU1 to TU28.
OCBF-X Output channels of basic feature (X);

X: {VOLT/ VANGLE/ PELEC/
QELEC/ QLOAD}.

SVMIWSS3ker Embedding SVM model
equipped with triple kernel in IWSS.

TWSVMIWSS3ker Embedding TWSVM model
equipped with triple kernel in IWSS.

SVMIWSSr3ke Embedding SVM model
equipped with triple kernel in IWSSr.

TWSVMIWSSr3ker Embedding TWSVM model
equipped with triple kernel in IWSSr.

I. INTRODUCTION
Nowadays, information technology (IT) by integrating dif-
ferent data-driven systems, plays the pivot role in collecting
a large amount of data in different sensitive industries. The
raw data obtained by the IT paradigm provide the necessary
conditions for conducting data-oriented actions instead of
experience-based operations in all tasks and responsibili-
ties of system operators [1]–[5]. Such restructuring in the
decision-making process will be possible through data min-
ing (DM) technology which triangulated machine learning
(ML), statistical learning (SL), and dataset to discover useful
patterns for predicting different phenomena [6], [7]. Besides
the importance of the type of ML and SL methods for achiev-
ing efficiency in learning procedures, the high-dimensional
data (HDD)with sparse-dissimilar features is the most sig-
nificant factor that negatively affects the training-testing
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procedures (TTP) of learning frameworks. In this regard,
the concept of the curse of dimensionality is defined as a
great challenge on the way of high-performance DM [8], [9].
Furthermore, the importance of inconsistent-linked indices
like accuracy and time (A&T) to make A&T-critical pre-
diction in real-world problems exacerbates the necessitate
of focusing on HDD concern. To fill two needs with one
deed, DM engineers apply FSS on HDD for extracting the
optimal features (OFs) set [10], [11]. The survived OFs
based on the FSS will bring two points: first, the low pro-
cessing time to predict unseen cases due to the mapping
HDD to low-dimensional feature space, and second, high
accuracy prediction induced by selecting most discriminative
features (MDFs).

One of the HDD-oriented real-world problems is tran-
sient stability assessment (TSA) related to secure power sup-
ply [12], [13]. The IT-based grid infrastructure equipped with
phasor measurement units (PMUs) gathers high-dimensional
transient features (HDTF) for transient analysis (TA) [14].
In HDTF, the presence of irrelevant and redundant features
is problematic for TTP of predictive approaches, which
cause low-accuracy transient stability prediction (TSP).
By applying the FSS scheme on HDTF, optimal transient
features (OTFs) are selected to achieve high data labeling
accuracy (DLA) in TSP. Also, the severe-sudden essence
of transient stability necessitates using the FSS for com-
pacting the HDTF to decrease data labeling time (DLT)
in TSP, including observed time and prediction time [15].
In terms of the low DLT, low dimensional optimal transient
features (LDOTF) caused fast learning in TTP scenarios leads
to low prediction time, and existing the most relevant fea-
tures in LDOTF allow picking up small-optimal observations.
Consequently, by applying the FSS scheme on HDTF, sys-
tem operators will be able to take timely-accurate corrective
control actions to provide secure-adequate exploitation of the
power grid. Hence, to achieve a win-win trade-off (high DLA
and low DLT), designing the comprehensive FSS has been
widely considered by DM researchers for TA.

II. RELATED WORKS
Reviewing the FSS-based transient studies shows that opti-
mal transient features are selected by filter and filter-
wrapper (hybrid) methods. In term of filter-oriented FSS, in
Reference [16], [17], mutual information theory applied on
transient characteristics related to power and angle to select
optimal features regarding two principles: selected transient
features have maximum relevance to the target class and have
minimum relevance to one another, which is calledminimum-
redundancy and maximum-relevance (mRMR) FSS. Refer-
ence [18] introduce the ReliefF algorithm for calculating
relevancy of rotor faults features to predict the health state
of induction motor. To calculate total transfer capability
regarding transient stability limitations, designing the fea-
ture pre-screening scenario based on the fast correlation-
based filter (FCBF) is considered in [19]. Based on FCBF,
optimal features of active and reactive load power, phase

angles of bus voltages, and the induced electromotive force of
generators are selected to achieve training-testing efficiency.
In Reference [20], for constructing the dynamic security
assessment (DSA) model for predicting the transient sta-
bility margin, applying the FSS algorithm based on partial
mutual information (PMI) and the Pearson correlation coeffi-
cient (PCC) is considered as the main step of the DSAmodel.
In terms of hybrid FSSs, in Reference [21], filter-wrapper
FSS includes feature weight ranking by Relief (filter as the
preliminary) step, and five-fold cross-validation SVM model
(wrapper as the complementary step) are applied on trajectory
cluster features for selecting optimal feature set. Based on
the proposed hybrid FSS in [22], first, normalized mutual
information (NMI) ranks the initial features in the form of
strongly relevant feature subset (SRFS) and the weakly rele-
vant feature subset (WRFS). Next, the obtained knowledge
of the filter phase is fed to the wrapper phase equipped
with an easy-implementing search algorithm called binary
particle swarm optimization (BPSO) to improve the effec-
tiveness of FSS results.Considering high-dimensional mul-
tivariate time series data obtained by transient simulations,
Reference [23] designed hybrid FSS in bi-mode, including
trajectory-based filter-wrapper method (TFWM) and point-
based filter-wrapper method (PFWM). In TFWM, mutual
information-entropy-based (MIE) calculations (filter) and
fuzzy imperialist competitive algorithm (FICA)-IWSS-based
trihedral kernel-SVM (wrapper) find the optimal transient
series. Next, the PFWM, including MIE calculations (filter)
and the Gaussian kernel-SVM (wrapper) utilized to find opti-
mal point features per optimal time series.

Regardless of the precise mining on transient feature
space by the abovementioned FSSs, which have led to
the acceptable performance in TSA, designing the com-
prehensive hybrid framework to extract masked-relevant
transient features is the greatest challenge to achieve
timely-accurate TSA. Lack of cross-oriented learning mech-
anisms in the form of multifaceted hybrid FSS (MHFSS)
causes some features with the discriminative character don’t
survive in the feature selection process. In this regard, focus-
ing on the structure of the filter or hybrid FSSs in previous
studies shows the fact that the mining of intrinsic character-
istics of transient data for selecting optimal features is based
on the unilateral strategy equipped with vertically learning.
Such a mechanismmay be applicable in selecting the optimal
features to improve the TSA, but it will ignore optimal-
blurred transient features. Furthermore, the characteristic of
transient data is the main parameter in determining how
to apply the proposed MHFSS to it. Having a glance at
FSS-based studies shows that the FSSs applied on multivari-
ate point or time series data in the whole-manner. Such a
strategy tends to select the OTFs without regard to the possi-
bility of optimal features sacrificing related to each univari-
ate trajectory. Streaming k-variate time-series data obtained
by the PMU-based synchronized measurement necessitate
extracting univariate-specific OTFs in the form of univariate-
oriented learning in both filter and wrapper phase.
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FIGURE 1. The Overall framework of FSS-oriented TA based on CPQHFSS.

The main contributions of this study to solve above-
mentioned challenges in FSS-based TSA are summarized as
follows:
• A new feature selection algorithm called cross-
permutation quad-hybrid FSS (CPQHFSS) was consid-
ered to select OTFs to achieve high-performance TA.
This scheme was designed via a multifaceted hybrid
scenario accompanied by the entropy-based metric in
the filter phase and hyperplane-based learning methods
in the wrapper phase.

• The CPQHFSS applied on high-dimensional TMEs
based on partial-manner learning for extracting
univariate-specific MDFs. The optimal features per uni-
variates are survived by the conducting cross-permutation
scenario of the proposed FSS. Such a mechanism guar-
anteed the optimal-blurred transient features extraction
to achieve high DLA and low DLT.

• The performance of CPQHFSS-specificOTFs in TAwas
compared with selected OTFs by other FSS based on the
cross-validation technique.

The rest of the paper is organized as follows: The detailed
descriptions of the CPQHFSS are remarked in Section 3.
Experimental results of applying CPQHFSS on univariates
of TMEs for TSA are presented in Section 4. Also, the
comparison results between the proposed FSS and the other
FSSs are interpreted in Section 4. Finally, the conclusion is
depicted in Section 5.

III. CROSS-PERMUTATION-BASED QUAD-HYBRID
FEATURE SELECTION SCHEME (CPQHFSS)
The overall framework of FSS-oriented TA based on
CPQHFSS is shown in Fig. 1. After transient data gathering
phase, we offer CPQHFSS including twin two-filter-wrapper
blocks (2FWBs)mounted on the two-mechanism of the incre-
mental wrapper namely incremental wrapper subset selection
(IWSS2FWBs) and IWSS with replacement (IWSSr2FWBs).
The relevancy ratio-support vector machine (RR-SVM) is

the filter-fixed wrapper-varied (FfWv) embedded in the first
block of IWSS2FWBs and IWSSr2FWBs. The second block-
specific FfWv of IWSS2FWs and IWSSr2FWBs is designed by
relevancy ratio-twin support vector machine (RR-TWSVM).
Besides direct relations in four hybrid blocks, cross-
permutation-based relations in IWSS2FWBs and IWSSr2FWBs

are defined in CPQHFSS. By plugging the different kernels
into hyperplane-based wrapper methods of IWSS2FWBs and
IWSSr2FWBs, all possible cross-permutations of two states
per IWSS2FWBs and IWSSr2FWBs caused to applying differ-
ent hybrid FSS on each univariate of transient multivariate
excursions (TMEs) to extract OTFs. In the third step, transient
analysis based on survived OTFs in the presence of cross-
validation scenario evaluates the effectiveness rate of the
OTFs in achieving high-performance TA.

The CPQHFSS by interlacing the filter-wrapper methods,
incremental wrapper mechanisms, and cross-permutation
scenario, selects OTFs of TMEs for high-performance TA.
According to Fig. 2, each univariates of the transient mul-
tivariate trajectories dataset is entered into the filter phase
as the first step of CPQHFSS (See Fig. 2, filter funnel).
Then, the obtained filter-based results per univariate are used
in the wrapper phase of the CPQHFSS, which consists of
four hybrid blocks categorized in twin two-FWBs, which are
mounted on dual incremental wrapper mechanisms (IWSS
and IWSSr). Overall, in the CPQHFSS, four hybrid blocks
formed as IWSS2FWBs (the left rectangle box of Fig. 2)
and IWSSr2FWBs(the right rectangle box of Fig. 2). The
direct relations in each block of IWSS2FWBs or IWSSr2FWBs

be caused that two FfWv-states (totally four FfWv-states).
In CPQHFSS, due to plugging elastic and non-elastic ker-
nels into hyperplane-based approaches situated in the wrap-
per methods, different cross-permutation hybrid FSS can be
considered for two filter-wrapper-states of IWSS2FWBs and
IWSSr2FWBs (See cross-permutation box in Fig. 2). Tak-
ing into cognizance the concise explanation of CPQHFSS
depicted in Fig. 2, the pseudocode of CPQHFSS is shown
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FIGURE 2. Overall process of CPQHFSS.
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TABLE 1. The pseudocode of the CPQHFSS.
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TABLE 1. (Continued.) The pseudocode of the CPQHFSS.

in Table 1. As can be seen in Table 1, the main body of
CPQHFSS includes filter phase (RR analysis), incremental
wrapper mechanisms (IWMs), and cross-permutation func-
tion. In the main body of CPQHFSS, symmetric uncertainty
values(Line 3) of point features per transient univariate (TU)
are calculated. After sorting point features (pfs) of TUk based
on SU measure (Line 7), these features are entered into
IWSS and IWSSr functions (Line 8 and Line 9) to extract
preliminary optimal transient features (pOTFs). Each IWM is
equipped with dual hyperplane-based classifiers (SVM and
TWSVM) to exert the train-test procedures. Also, to find
optimal separating hyperplane, different kernels are plugged
into SVMand TWSVMclassifiers. After selecting pOTFs per
TU in a six-states manner by IWMs (

[
pOTFs
IWSS TU

k
]
2×3

and[
pOTFs
IWSSr TU

k
]
2×3

), these matrices for each TU are recorded

in the structure arrays (pOTFsIWSSTU , pOTFsIWSSrTU )
(Line 10-14). Finally, structure arrays are entered into the
cross-permutation function to extract final OTFs (fOTFs)
per TU (Line 16). After conducting union-intersection oper-
ations on subsets of optimal features based on cross-
permutation scenario, the union of fOTFs (UfOTFs) is
obtained (Line 17). To better understand the details of
the pseudocode of CPQHFSS, we elaborate on the triple
components of it (filter, IWMs, and cross-permutation) in
Sections III-A to III-C.

Besides the above-mentioned describing the main body
of pseudocode of CPQHFSS, we present the complexity
of CPQHFSS for readers at a glance. The complexity of
CPQHFSS is related to IWMs accompanied by hyperplane-
based learning methods. By analyzing these main func-
tions, we can approximate the complexity of CPQHFSS.
In the worst case, the complexity of IWSS and IWSSr is
O(n) and O(n2), respectively [24]. Also, the complexity
of SVM and TWSVM is O(n3) and O(2×(n/2)3), respec-
tively [25]. Hence, the complexity of SVMIWSSTWSVM is
O(max{(n×n3), (n×2×(n/2)3)}) and SVMIWSSrTWSVM has
O(max{(n2×n3), (n2×2×(n/2)3)}) complexity. Since the
complexity of the SVM is 4 times larger than of the TWSVM,
the complexity of SVMIWSSTWSVM and SVMIWSSrTWSVM

will be equal to O(n×n3) and O(n2×n3), respectively. On the
other hand, the experiment results of Reference [24] show the
fact that the complexity of IWSSr is near to IWSS when
the number of variables to be selected is a very small number
of wrapper evaluations. Consequently, the CPQHFSS has
O(2×n4) complexity.

A. INCREMENTAL WRAPPER MECHANISMS (IWMs)
1) IWSS
The IWSS mechanism [26] is utilized in the first set of
twin 2FWBs (IWSS2FWBs) in CPQHFSS as IWM. How to
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FIGURE 3. The IWSS algorithm.

navigate in the incremental process of IWSS to select optimal
features depends on the results of the embedded filter and
wrapper method. As the preliminary step of IWSS, by con-
ducting the filter method on feature set based on relevancy
ratio (RR), the features are sorted based on RR values in
descending manner. Then, for completing the first increment
of IWSS, the feature inserted into the first position of the
sorted array (fh1: feature with highest RR) is fed to the
classification learner (CL), and then fh1 with the prediction
accuracy (Acc(fh1)) is recorded in the candidate features sub-
set (CFS) based on the TTP. In the next increment, the feature
with second-highest RR (fh2) is added to the CFS, and the
updated CFS-based learning model reports the Acc(fh1,fh2).
If the classification performance of CFS including fh1 and
fh2 is higher than the performance of fh1, the third increase
(adding fh3) is accompanied by fh1& fh2; otherwise, fh2 is
deleted from CFS, and fh3 is added to the CFS and placed
next to fh1. Fig. 3 shows how to select OTFs by the IWSS in
the form of a numerical example.

2) IWSSr
In the second set of twin 2FWBs, filter-wrapper blocks are
mounted on IWSSr [24] algorithm (IWSSr2FWBs) as IWM.
In IWSSr, similar to the dependence of the IWSS on filter
and wrapper method results, based on sorted RR values of
features, in the first increment, fh1 is added to CFS, then
CL trained by fh1 and Acc(fh1) is recorded. In the second
increment, fh2 is added to the preceding CFS in two modes.
In the first mode, fh1 is replaced by fh2 (only fh2added to CFS)
and in the second mode, fh1 and fh2 are added to CL together.

FIGURE 4. The IWSSr algorithm.

Now, in the second increment, Acc(fh1) and Acc(fh1,fh2) are
obtained. Fig. 4, shows the process of IWSSr which the third
increment starts from node 3 (create node 4 to 6).

B. TWIN TWO FILTER-WRAPPER BLOCKS (2FWBs)
Twin 2FWBs in CPQHFSS refer to applying two sets
of 2FWBs in the presence of IWMs which are called
IWSS2FWBs and IWSSr2FWBs. The 2FWBs include frozen
information theory concept (filter-fixed) and unfixed
machine learning classifier (wrapper-varied). Filter-related
model of 2FWBs including the relevancy ratio (RR) [27]
in the first-second hybrid block (HB1−2) of IWSS2FWBs

(RRIWSS2FWBs
HB1−2

) and IWSSr2FWBs (RRIWSSr2FWBs
HB1−2

). Wrapper-
related models including support vector machine in the
HB1 of IWSS2FWBs (SVM IWSS2FWBsHB1

) and IWSSr2FWBs

(SVM IWSSr2FWBsHB1
) and twin support vectormachine (TWSVM)

in HB2 of IWSS2FWBs (TWSVM IWSS2FWBsHB2
) and

IWSSr2FWBs(TWSVM IWSSr2FWBsHB2
). Generally, in respect of

twin 2FWBs, one set of 2FWBs is situated in IWSS formed as
RR
SVM IWSS

2FWBs
HB1

, and RR
TWSVM IWSS

2FWBs
HB2

. Also, another set of
2FWBs is associated with IWSSr raised as RRSVM IWSSr

2FWBs
HB1

,
and RRTWSVM IWSSr

2FWBs
HB2

. The detailed descriptions of the filter

andwrapper models of 2FWBs are discussed in the following
subsections.

1) FILTER-FIXED METHODS IN 2FWBS
Relevancy ratio (RR): The symmetric uncertainty (SU) is
considered as the HB1−2-specific filter index in IWSS2FWBs

and IWSSr2FWBs, which triangulated the entropy, conditional
entropy, and mutual information (MI) to measure the rele-
vancy rate between features of transient univariates and class
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label. The SU index is calculated as:

SU (f TU
k

i ,C) = 2
MI (f TU

k

i ;C)

H (f TU
k

i )+ H (C)
(1)

where f TU
k

i represents ith features of k th transient univariate,
and C is the class label of transient samples. In (1), the
entropy H (Z ) is defined as:

H (Z ) = −
∑
z∈Z

p(z) log p(z) (2)

where Z is a discrete random variable and p(z) = Pr{Z = z} is
a probability density function. Mutual information (MI) in (1)
is defined as:

MI (f TU
k

i ;C) = H (f TU
k

i )− H (f TU
k

i |C) (3)

where H (f TU
k

i |C) in (3) is called conditional entropy as
follow:

H (f TU
k

i |C) = −
∑

x∈f TU
k

i

∑
c∈C

p(x, c) log p(x|c) (4)

2) WRAPPER METHODS IN 2FWBS
a: SUPPORT VECTOR MACHINE (SVM)
SVM in [28] introduced as a supervised learning model that
draws hyperplane in feature space for classifying binary or
multi-class data in the form of the linear SVM (hard margin
or soft margin approach) and nonlinear SVM (kernel-based
approach). Regardless of the different factors that affected
the SVM formula, SVM aims a low structural risk without
overfitting data to achieve high accuracy in train-test proce-
dures. For example, achieving such a goal in the presence
of data that has a nonlinear decision boundary (e.g., PMU-
gathered HDTF), necessitates plugging the kernel trick into
SVM computations as follows:

a∗ = argmin
α

1
2

l∑
i=1

l∑
j=1

αiαjyiyjK (xi, xj)−
l∑

k=1

αk ;

0 ≤ αi ≤ C,
l∑
j=1

αiyi = 0, i, j = 1, . . . , l (5)

where K (xi, xj) in (5) is employed for mapping the data from
the main space to the new space (high dimensional space)
so that in the new space the data are linearly separable. The
maximum-margin separating hyperplane in feature space is
solved by (6):

f (x) = sgn

(∑
i∈s

αiyiK (xi, x)+ b

)
;

b =
1
s

∑
i∈s

yi −∑
j

αjyjK (xj, xi)

 (6)

b: TWIN SUPPORT VECTOR MACHINE (TWSVM)
The standard SVM is formulated based on finding the middle
boundary (maximum margin) between two parallel planes
with the maximum distance from each of the existing classes.
SVM geometry space can be reshaped by cross planes in
which each plane could nearest distance to the samples of
one class and farthest from the samples of the other class.
This idea was raised as the generalized proximal eigenvalue
support vector machine (GEPSVM) [28]. In another effort
by [29], the spirit of the GEPSVMwas kept into a new skele-
ton (new formulation) was termed TWSVM. In TWSVM,
cross planes are obtained by solving the following optimiza-
tion problems:

min
w1,b1,q

1
2
||Pw1 + e1b1||2 + c1eT2 q

s.t. − (Qw1 + e2b1)+ q ≥ e2, q ≥ 0
(7)

min
w2,b2,q

1
2
||Qw2 + e2b2||2 + c2eT1 q

s.t. (Pw2 + e1b2)+ q ≥ e1, q ≥ 0
(8)

where c1, c2, e1, and e2 are vectors with a value of 1 and
a proper dimension. By calculating the Lagrangian function
for (7) and (8), the Karush–Kuhn–Tucker (KKT) equations
are formed. By placing the KKT terms and relations in the
Lagrangian function for each of the relations (7) and (8), the
dual optimal relations are obtained according to the following
relations:
dualTWSVM1

: max{eT2 α −
1
2
αTG(HTH )−1GTα} (9)

dualTWSVM2
: max{eT1ψ −

1
2
ψTP(QTQ)−1PTψ} (10)

Based on the dual optimization problems, the value α and
ψ is obtained via quadratic programming and by placing
these values in the KKT relations, the values [w(1), b(1)] and
[w(2), b(2)] related to hyperplanes of the binary-class task are
obtained:

XTw(1)
+ b(1) = 0 and XTw(2)

+ b(2) = 0 (11)

Finally, the class label of the unseen point x ∈ Rn is deter-
mined from the plane that is close to this point:

Class x = argvmin
∣∣∣xTw(v)

+ b(v)
∣∣∣; v = 1, 2 (12)

Based on the above-mentioned principle of TWSVM, the
nonlinear classification of HDTF can be considered via
kernel-based cross planes [29]:

K (xT ,CT )u(1) + b(1) = 0 and K (xT ,CT )u(2) + b(2) = 0

(13)

where CT
= [A B]T and K denote the kernel. The vector

[u(1) b(1)]T and [u(2) b(2)]T are obtained by solving the fol-
lowing optimization problem:

KTWSVM1
: min

u(1),b(1),q

1
2
||(K (A,CT )u(1) + e1b(1)||2

+ c1eT2 q
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s.t. − (K (B,CT )u(1) + e2b(1))

+ q ≥ e2, q ≥ 0 (14)

KTWSVM2
: min

u(2),b(2),q

1
2
||(K (B,CT )u(2) + e2b(2)||2

+ c2eT1 q

s.t. (K (A,CT )u(2) + e1b(2))

+ q ≥ e1, q ≥ 0 (15)

C. CROSS-PERMUTATION SCENARIO BASED ON
WRAPPER KERNELS
The cross-permutation scenario in CPQHFSS is conducted
based on plugged triple kernel into wrapper approaches of
twin 2FWBs. The kernels situated in wrapper approaches
of IWSS2FWBs and IWSSr2FWBs are categorized into two
types: 1) non-elastic kernel: linear kernel (LinKer) [31], poly-
nomial kernel (PolKer) [31], and standard Gaussian radial
basis function (SGRBF) [28], and 2) elastic kernels: dynamic
time warping in GRBF (DTWGRBF) [32] and recursive edit
distance kernel (REDK) [33]. The definitions per kernel are
summarized below:

1) LINKER
LineKer is calculated based on the inner product plus con-
stant c, which is considered as the simplest kernel function:

K (x, x ′) = xT x ′ + c (16)

2) POLKER
The degree-based variant of LinKer (the d value more than 1)
is known as PolKer, which is defined as follow:

K (x, x ′) = (αxT x ′ + c)d (17)

3) SGRBF
SGRBF is known as a non-elastic kernel due to linear align-
ment (point to point) in pattern matching in feature space.
The SGRBF for using as K (x, x ′) in (5) and (13) is defined as
follows:

K (x, x ′) = exp
(
−
||x − x ′||2

2σ 2

)
(18)

The distance between two trajectories is calculated based on
squared Euclidean distance denoted by ||x − x ′||2 in (18).

4) DTWGRBF
The elastic behavior of DTW motivates to replace Euclidean
distance with DTW distance in SGRBF to have a robust and
non-linear alignment in feature space. The DTW distance
between two-time series is calculated by (19):

distanceDTW (Ap1,B
q
1)

= d(a(p), b(q))+Min

 distanceDTW (Ap−11 ,Bq1)
distanceDTW (Ap−11 ,Bq−11 )
distanceDTW (Ap1,B

q−1
1 )


(19)

FIGURE 5. Transient dataset generation workflow (TDGW) [34].

FIGURE 6. Single line diagram of NETS-NYPS test system.

According to (19), K (x, x ′) can be defined as the DTW-based
elastic kernel as follow:

K (x, x ′) = exp

(
−

[
distanceDTW (Ap1,B

q
1)
]

2σ 2

2)
(20)

5) REDK
In [33], constructing the kernel based on the aggregation of
scores recursively caused that the REDK is introduced as an
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FIGURE 7. Stable and unstable samples based on F14 variations.

FIGURE 8. SU amount of pfsTU6.

efficient elastic similarity measure against classical elastic
distances. According to (21), if for any pair of trajectory, such
following equation is satisfied, the function 〈·, ·〉 : U ×U →
R termed as REDK:

〈
Ap1,B

q
1

〉
=

∑

〈
Ap−11 ,Bq1

〉
f (0(A(p)→ 3))〈

Ap−11 ,Bq−11

〉
f (0(A(p)→ B(q)))〈

Ap1,B
q−1
1

〉
f (3→ B(q))

(21)

TABLE 2. Transient multivariate time series features (28-variate).

where U = {Ap1|p ∈ N}. Ap1 (or Bq1) is the trajectory with a
discrete index varying between 1 and p (or q). Also, 0(h) is
the cost function for edit operation.

After applying different kernels in the hyperplane classi-
fiers of wrapper phase (SGRBF, DTWGRBF, and REDK in
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TABLE 3. Filter-based ranking of point features of univariates.

TABLE 4. Results of wrapper phase based on IWSS-SVM regarding different kernels per transient univariate.

SVM; SGRBF, LinKer, and PolKer in TWSVM) in the form
of proposed IWMs (SUKernelsIWSS

RR
SVM and SU

KernelsIWSS
RR
TWSVM

in IWSS2FWBs; SU
KernelsIWSSr

RR
SVM and SU

KernelsIWSSr
RR
TWSVM in

IWSSr2FWBs), first, by regarding possible kernel-based per-
mutation between two-state of IWSS2FWBs(9 permutations),
for each permutation of IWSS2FWBs, the union of the selected
preliminary OTFs (pOTFs) per the state of IWSS2FWBs is

recorded (See Fig. 2, left panel (LLP and RLP) of the
cross-permutation box). In terms of IWSSr2FWBs, the men-
tioned scenario is conducted to record union results per per-
mutation in IWSSr2FWBs, which is shown in the right panel
(LRP and RRP) of the permutation box. Next, based on the
cross-manner scenario, each left union is linked with right
unions (9 links are established; e.g., 9 black links, 9 blue links,
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FIGURE 9. Structure of IWSS tree in selecting IWSS-SVMSGRBF-based pOTFsTU3 regarding Acc variations in optimal
node (node 5).

and so on). Then, the intersection of both sides of the link
in each colored 9 links (e.g., the intersection of both sides
of the first black link) is calculated. After calculating the
intersection of both sides of all colored links (e.g., both sides
of the second black link to both sides of the ninthblack link),
the union of sets is recorded (See Fig. 2), union sign in
the polygonal black side). Such mechanism (intersection and
union) is conducted on other colored 9 links (9 blue links,
9 yellow links, and so on). Finally, the intersection of the
obtained sets in polygonal sides is considered as univariate-
specific final OTFs (intersection of polygonal black side,
polygonal brown side, and so on).

IV. EXPERIMENTAL DESIGN
A. TRANSIENT DATASET CONSTRUCTION
As can be seen in Fig. 1, transient dataset construction
containing multivariate trajectories is considered as the first
step of the proposed framework for FSS-based TSA. In this
step, we executed contingency simulation based on the
two-step transient dataset generation workflow (TDGW) pro-
posed in [34], which is shown in Fig. 5. In TDGW, first, tran-
sient responses are extracted from output channels of basic
features (OCBF-X; X indicated basic features namely bus
voltages (VOLT), voltage phase angle (VANGLE), machine
active power (PELEC), machine reactive power (QELEC),
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TABLE 5. Results of wrapper phase based on IWSS-TWSVM regarding different kernels per transient univariate.

and reactive power consumption (QLOAD)). The application
program interface (API) functions of the SIEMENS power
system simulator for engineering (PSS/E) [35] in the form
of Python-based automation file are used for exerting contin-
gency simulation on the New England test system- New York
power system (NETS-NYPS) (See Fig. 6) [36]. The generated
transient samples are derived by substation outages, generator
outages, and line outages where the fault duration time is set
to 0.23 seconds (the time step is 0.0167 seconds). Also, the
fault clearing time is set after the end of fault duration time.
As an important uncertainty parameter in generating transient
samples, the convert load (CONL) API is added to the PSS/E-
Python automation file to regard different load characteristics
which the percent of active and reactive power load to be
converted to the constant current and constant admittance
load characteristics [34], [36]. In the second step of TDGW,
a set of Matlab-based commands cause adding factors to
OCBF-X which leads to the defined 28 univariates trajectory
features listed in Table 2 [37]–[39]. After conducting TDGW,
the transient dataset contains 800 (No. transient samples) ×
28 (No. features) × 9 (No. observed cycles)]. For exam-
ple, some stable and unstable samples streamed based on
F14 trajectory (The proportion of total QLOAD to total
QELEC) is shown in Fig. 7.

B. FINAL OTFs (fOTFs) SET PER TRANSIENT
UNIVARIATE (TU)
Extracting the transient univariate-specific final OTFs set
called fOTFsTU# (namely fOTFsTU1 to fOTFsTU28) by
applying CPQHFSS on each univariate (TU1 to TU28) of
transient multivariate trajectory dataset (TMTD) is elabo-
rated in this section. According of Fig. 2, in the first step
of CPQHFSS, each univariate of TMTD is entered to the
filter-fixed phase of twin 2FWBs. According to (1), RR of
point features per TU of TMTD is calculated based on SU
measure. According to was what mentioned about the filter
method in Section 2.B.1, for example, the obtained RR of pfs
of TU6 (pfsTU6; 9 cycles) based on SU is shown in Fig. 8.
As can be seen in Fig. 8, based on SUvalues of pfsTU6, {pf8}is
ranked as a high SU feature, and {pf5}is considered as the
low SU pfs. Next, by sorting pfsTU6 based on SU values in
descending manner (SpfsTU6), the order in which the pfsTU6

enter the wrapper phase in twin 2FWBs is specified (See
Table 3; sixth row). Formore clarity, Table 3 show the SpfsTU1

to SpfsTU28 based on SU values.
After calculating the SU amount of pfsTU1:28 and sort-

ing the pfs of TU1:28 (SpfsTU1:28), the SpfsTU1:28 are
fed to the wrapper phase of twin 2FWBs in the form
of IWSS2FWBs and IWSSr2FWBs. In IWSS2FWBs(the left
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TABLE 6. Results of wrapper phase based on IWSSr-SVM regarding different kernels per transient univariate.

rectangle box in Fig. 2), the first hybrid block includ-
ing SVM classifier (SVM IWSS2FWBsHB1

) accompanied with
SGRBF, DTWGRBF, and REDK kernels. Also, the sec-
ond hybrid block of IWSS2FWBsincludes the TWSVM
classifier (TWSVM IWSS2FWBsHB2

) with LinKer, PolKer, and
SGRBF kernels. In terms of IWSSr2FWBs(the right rectangle
box in Fig. 2), the SpfsTU1:28 entered intoSVM IWSSr2FWBsHB1

(kernels:SGRBF, DTWGRBF, and REDK) and
TWSVM IWSSr2FWBsHB2

(kernels: LinKer, PolKer and SGRBF).
After conducting the wrapper phase of CPQHFSS in the

form IWSS2FWBs and IWSSr2FWBs, the obtained results are
shown in Table 4 to Table 7. Table 4 show the obtained
preliminary OTFs (pOTFs) of TUx (pOTFsTUx) based on
IWSS-SVM regarding SVM-specific kernels in the form
of pOTFsIWSS-SVMSGRBF, pOTFsIWSS-SVMDTW−GRBF,
and pOTFsIWSS-SVMREDK columns. Also, Table 5 show
pOTFsTUx based on IWSS-TWSVM regarding TWSVM-
specific kernels in the form of pOTFsIWSS-TWSVMLinKer,
pOTFsIWSS-TWSVMPolKer, and pOTFsIWSS-TWSVMSGRBF

columns. In terms of IWSSr-based results, Table 6 and
Table 7, show the pOTFsTUx based on IWSSr-SVM
(pOTFsIWSSr-SVMSGRBF, pOTFsIWSSr-SVMDTW−GRBF,
pOTFsIWSSr-SVMREDK) and IWSSr-TWSVM (pOTFsIWSSr-
TWSVMLinKer, pOTFsIWSSr-TWSVMPolKer, pOTFsIWSSr-
TWSVMSGRBF) respectively. For example, after applying
the wrapper phase of CPQHFSS on SpfsTU3, the IWSS-

based pOTFsTU3 (See third row of Table 4 and Table 5) and
IWSSr-based pOTFsTU3 (See third row of Table 6 and Table 7)
are extracted. By applying IWSS-SVMSGRBF, IWSS-
SVMDTW−GRBF, and IWSS-SVMREDK on SpfsTU3, the
pOTFsIWSS-SVMSGRBF({pf1, pf5, pf6}: 90.24%), pOTFsIWSS-
SVMDTW−GRBF({pf1, pf5, pf6, pf8}: 90.24%), and
pOTFsIWSS-SVMREDK ({pf1, pf3, pf5}: 90.24%) are obtained,
respectively. Also, by conducing IWSS-TWSVMLinKer,
IWSS-TWSVMPolKer, and IWSS-TWSVMSGRBF on SpfsTU3,
the pOTFsIWSS-TWSVMLinKer({pf3, pf5, pf8, pf9}: 80.48%),
pOTFs IWSS-TWSVMPolKer({pf3, pf 5, pf9}: 80.48%), and
pOTFs IWSS-TWSVMSGRBF ({pf7, pf1, pf3, pf5, pf6}:
90.24%) are obtained, respectively. In the case of SpfsUT3-
specific pOTFs based on IWSSr-oriented wrapper phase, the
pOTFsIWSSr-SVMSGRBF is {pf4, pf1}: 90.24%, pOTFsIWSSr-
SVMDTW−GRBF is {pf9, pf6}: 92.68%, and pOTFsIWSS-
SVMREDK is {pf6, pf3, pf5}: 92.68%. Also, the pOTFs

IWSSr-TWSVMLinKer is {pf7, pf3, pf9}: 85.36%, pOTFsIWSSr-
TWSVMPolKer is {pf7, pf9}: 85.36%, and pOTFsIWSSr-
TWSVMSGRBF is {pf8, pf1, pf6}: 90.20%. For example, the
IWSS-oriented tree is depicted in Fig. 9 show how IWSS-
SVMSGRBF-basedpOTFsTU3 are selected in IWSS iterations.
Also, the Acc metric (22) measured the performance of
SVMIWSSTWSVM and SVMIWSSrTWSVM. Furthermore, the
fine-tuning on learning parameters (C and σ ) in each iteration
of IWMs is considered for TTP which for the SVM and
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TABLE 7. Results of wrapper phase based on IWSSr-TWSVM regarding different kernels per transient univariate.

TABLE 8. The obtained final OTFs per univariate (f OTFsTU1:TU28) and union of f OTFsTU1:TU28 based on cross-permutation phase of CPQHFSS.
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FIGURE 10. Acc variations based on learning parameters in some folds (fold2,5,7, 10) for TSP based on Uf OTFsTU1:TU28.

TWSVM classifiers and their plugged kernels as (23). In the
case of IWSS-SVMSGRBF(See Fig. 9), in each iteration, the
maximum value of the Acc (retrieved by optimal pair of
learning parameters) is recorded. As can be seen in Fig. 9,
the pOTFsTU3 based on IWSS-SVMSGRBF is {pf1, pf5, pf6},
which Acc variations related to optimal iteration (node 5:
green-face) is depicted in 3-D plot.

Accuracy(Acc) = (TP+ TN )
/
(TP+ TN + FP+ FN ){

P : stable sample; T : predicted correctly
N : unstable sample; F : predictedin correctly

(22)

SVM (plugged kernel)
{
C = 2i|i = 0, 1, . . . , 5
σ = 2j|j = −3,−2, . . . , 4

}
TWSVM (plugged kernel)
C = 2i|i = 0, 1, . . . , 5
σ = 2j|j = −3,−2, . . . , 4
σ = 2j|j = 0, 1, .., 4 (PolKer)

 (23)

After selecting SVMIWSS3ker-based three packages-
pOTFs and TWSVMIWSS3ker-based three packages-pOTFs

TABLE 9. The evaluation metrics.

(totally six packages pOTFs-IWSS); and SVMIWSSr3ker-
based three packages-pOTFs and TWSVMIWSSr3ker–based
three packages-pOTFs (totally six packages pOTFs-IWSSr)
per TUx, as the final phase of CPQHFSS which is shown
in Fig. 2, the cross-permutation scenario is conducted on
obtained 12 packages of pOTFs per TUx for extracting
fOTFsTU1:TU28. Finally, based on fOTFsTU1:TU28, the union
of fOTFsTU1:TU28 (UfOTFsTU1:TU28) is obtained as the final
optimal transient feature set for use in TSP. The obtained
fOTFsTU1:TU28 and UfOTFsTU1:TU28 based on the cross-
permutation phase of CPQHFSS is shown in Table 8.
In Table 8, the details of obtaining the optimal transient
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TABLE 10. Results of tsp based on Uf OTFsTU1:TU28 set.

features of TU1 (fOTFsTU1) based on cross-permutation are
elaborated.

C. TSP BASED ON UNION OF fOTFsTU1:TU28

(UfOTFsTU1:TU28) SET
After selecting the univariate-specific fOTFs set for
28-variate trajectories dataset namely fOTFsTU1 to
fOTFsTU28(fOTFsTU1:TU28) based on CPQHFSS, evaluating
the efficacy of union of fOTFsTU1:TU28(UfOTFsTU1:TU28)
(See Table 8, last row) in achieving high-performance TSP
is considered in this section. The UfOTFsTU1:TU28-oriented
TTP are based on the 10-fold cross-validation technique that
in each fold, the SVM

sGRBF is used as a learning model.
Also, fine-tuning of the learning parameters for pair (C , σ )
in SVM

sGRBF is adjusted from {C = 2i|i = 0, 1, . . . , 15}
and {σ = 2j|j = −5,−4, . . . , 15}to find an optimal value
for pair (C , σ ) in the TTP per fold. In such an experimental
design, the performance evaluation of the class labeling by
SVM

sGRBF in the presence of UfOTFsTU1:TU28 is measured
by classification metrics which are shown in Table 9.

By regarding the above-mentioned points in TTP for TSP,
the value of triple indices in TSP (Acc, TPR, and TNR) per
fold is shown in Table 10. Based on setting the different
value for learning parameters, the fluctuations of the Acc
index per fold is recorded, and these values are inserted
into Table 10. For example, the Acc variation of fold2,
fold5, fold7, and fold10 are depicted in Fig. 10. Furthermore,
the Table 10 is accompanied by TPR and TNR indices,
which is commensurate with the maximum value of Acc
in each fold. After extracting all the results based on the
evaluation indices, as the overall result of employing the
UfOTFsTU1:TU28in SVM

sGRBF for TSP, calculating the aver-
age of the Acc, TPR, and TNR is regarded in Table 10. The
results of Table 10 show the fact that the UfOTFsTU1:TU28

set plays the pivot role in raising the capacity of predic-
tion (high DLA) in TSA (Acc: 98.87 %, TPR: 98.5 %, and
TNR: 99.25 %). Besides the importance of DLA, we con-
centrated on the DLT factor (including observed time and
prediction time) in the performance evaluation of proposed
framework in TSA. For DLT calculation, we need to focus

TABLE 11. ODLT for TSP based on Uf OTFsTU1:TU28 set.

on selected point features UfOTFsTU1:TU28(See Table 8).
The optimal features in the UfOTFsTU1:TU28 set show the
fact the selected cycles of some univariates are related to
the 9th cycle. (e.g., fOTFsTU15, fOTFsTU17, fOTFsTU18, and
fOTFsTU25). Hence, observed time (OT) is equal to 9 cycles
(150.3 milliseconds (ms)), and the prediction time based on
SVM

sGRBF -UfOTFsTU1:TU28 is 2.225 ms. Consequently, the
DLT is 152.525 ms (See Table 11), indicating a low DLT to
address corrective control actions.

D. COMPARISON OF EXPERIMENTAL METHODS:
CPQHFSS VS. VERTICALLY UNILATERAL FSSs (VUFSSs)
AND MHFSS
For further evaluation on the efficacy of CPQHFSS-based
UfOTFsTU1:TU28 in TSP, the comparison between with three
VUFSSsOTFs (3VUFSSsOTFs) is considered in this section.
The 3VUFSSs includes mRMR [16], [17], ReliefF [18] and
fast correlation-based filter (FCBF) [19]. Also, we compared
the CPQHFSS with the bi-mode hybrid feature selection
scheme (BMHFSS) [23] and partial-injective trilateral hybrid
(filter-wrapper) scheme called PITHS [34] as the MHFSS.
By applying the 28-variate time-series data to 3VUFSSs
and 2MHFSS, the 3VUFSSs-based OTFs and 2MHFSS-
based OTFs are extracted. Next, the 3VUFSSsOTFs and
2MHFSSOTFs are entered into the SVM

sGRBF learning model
in the same learning conditions expressed in subsection C
of section 3 (10-fold cross-validation technique and the
fine-tuning of the learning parameters).

As can be seen in Table 12, CPQHFSSOTFs have better
performance in TSP than 3VUFSSsOTFs and 2MHFSSOTFs

(ignoring only 0.25% less than TPR than PITHS). The
obtained results of Table 12 show that CPQHFSS in the
presence of 48-cycles of 28-variate trajectory (See Table 8)
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TABLE 12. Results of TSP based on selected OTFS by 3VUFSS and 2MHFSS.

has better performance (Acc, TPR, and TNR) than mRMR
(9-cycle of 4-variate trajectory features), FCBF, ReliefF,

and BMHFSS (9-cycle of 3-variate trajectory features [23].
In terms of the PITHS method, the selected cycles via
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TABLE 13. ODLT for TSP based on 3VUFSSs and 2MHFSS.

CPQHFSS leading to high Acc and TPR than PITHS
(24-cycle of 18-variate trajectory features [34]). In terms
of DLT, CPQHFSS has higher DLT (152.525 ms) than
3VUFSSs (mRMR: 68.793 ms, FCBF: 68.930 ms, ReliefF:
68.910 ms) and MHFSSBMHFSS (BMHFSS: 52.948 ms).
Also, based on DLT index, CPQHFSS has lower DLT than
MHFSSPITHS (PITHS: 152.591 ms) (See Table 13). Gener-
ally, the CPQHFSSDLTcauses the system operator to have
enough time to take corrective actions. The detail information
about CPQHFSSDLT, 3VUFSSsDLT, and 2MHFSSDLT are
shown in Table 11 and Table 13.

V. CONCLUSION
The presence of tightly correlated indices in the TSA prob-
lem, namely, accuracy and time of transient prediction,
extracting optimal transient features (OTFs) from HDTF
space via multifaceted FSS to meet low DLT and high
DLA, was defined as the main agenda of this paper.
To this end, we proposed cross-permutation-based quad-
hybrid FSS (CPQHFSS) designed by integrating four filter-
wrapper blocks (FWBs) in the form of twin two-FWBs
mounted on dual incremental wrapper mechanisms (IWMs)
called IWSS2FWBs and IWSSr2FWBs. Regarding filter-fixed
and wrapper-varied approaches (FfWv) embedded into
IWMs2FWBs of CPQHFSS, the relevancy ratio-support vec-
tor machine (RR-SVM) raised as FfWv in the first block
of IWSS2FWBs and IWSSr2FWBs, and relevancy ratio-twin
support vector machine (RR-TWSVM) situated in the sec-
ond block of IWSS2FWBs and IWSSr2FWBs. Furthermore, the
nonlinear nature of transient feature spacemakes the plugging
elastic and non-elastic kernels into the wrapper phase an inte-
gral part of CPQHFSS. Hence, by selecting the triple nonlin-
ear kernel, cross-permutations of hybrid FSS are applied on
HDTF to select OTFs. After applying CPQHFSS on transient
multivariate trajectories, selected optimal features are fed to
the cross-validation scenario to evaluate their effectiveness on
TSA. Experimental results show that the selected OTFs based
on the CPQHFSS have a high performance (Acc 98.87%,
TPR 98.5%, TNR 99.25%, and DLT of 152.525 ms) for TSP.
For more clarity, the performance of CPQHFSS compared
with 3VUFSSs and 2MHFSS. The obtained results show that
the selected CPQHFSS-based OTFS have better performance
than selectedOTFs bymRMR,ReliefF, FCBF, BMHFSS, and
PITHS algorithms on TSP.

In future transient studies, we evaluate the performance of
learning models in TSA by focusing on the environmental

conditions of power systems that negatively affect the quality
of the transient dataset. Selecting the most relevant features
from the contaminated transient dataset via filter-wrapper
strategy mounted on the convolutional neural network can be
considered as one of the most significant solutions to achieve
timely-accurate TSA in the presence of missing and noisy
data.
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