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ABSTRACT Theway of living of many individuals around the world endures because of mental and physical
disability associated with the movement of limbs. The usage of the assistive technology and systems will
enhance the quality of affected people. In this situation, you can pave the way for a solution by transforming
the movement of physical activities into computer-assisted applications. Surface Electromyography (sEMG)
introduced the non-intervention procedure that can transform physical activities into signals for classification
purposes and then practice it in applications. In this study, we suggest a scheme based on machine learning
for the identification of 20 physical movements. This scheme follows up on the distinct characteristics
from numerous signatures that include time-domain features, frequency-domain features, and inter-channel
statistics of an sEMG signal. Afterward, we performed a thorough comparative examination of the k-NN and
SVM classifier by considering the group of features for multiple normal and aggressive activities. The impact
of different arrangements of dimensionalities has been recorded as well. Eventually, the SVM classifier gives
100% accuracy for 10 normal actions whereas 1-NN for a subgroup of features achieves 98.91% accuracy
for 10 aggressive actions respectively. Additionally, we combine both SVM and 1-NN to propose a hybrid
approach to classify 20 physical actions. The hybrid classifier gives an accuracy of 98.97% respectively.
These recommendations are valuable for algorithm designers to select the finest approach by considering
the resources available for the execution of an algorithm.

INDEX TERMS Segmentation, feature extraction, feature concatenation, surface electromyography, support
vector machine, machine learning, physical activity classification.

I. INTRODUCTION
Recently, the physical disabilities cause major issues in daily
life. There are several factors responsible for these disabil-
ities. They include limb impairment or gait disorder, as the
age increases [1], occupational hazards or traumas like
sports accidents, drastically affect the life. Another most
important reason for disabilities in adults is the stroke. [2].
Most of the affected ones require prosthetic or partial limb
support to have assistance in day to day tasks. Aside from
that, neurological disorders contribute towards physical dis-
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ability either directly through hindrance in daily activities
or through injuries caused through accidents [3]. Epilepsy
is a common neurological disease, normally caused by the
activities of nerve cells in brain [4], that affects more than
50 million people worldwide [5]. Hence it is need of the
hour that a system is established which classifies physical
signals in order to design prosthetic limbs or to get the notifi-
cation of an epileptic attack well in time, in order to prevent
injuries.

In this respect, a feasible solution could be to detect
the intended movement and act accordingly. Surface Elec-
tromyography (sEMG) is known to be the most accurate
non-invasive performer for analyzing activities [6]. sEMG
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FIGURE 1. Raw sEMG signal showing dissimilarity between two activities
for two activities (Normal and aggressive).

focuses on recording the electrical activity generated when
muscles move. Figure 1 is displayed to portray a side-by-
side comparison of two signals, the sEMG signals observed
against aggressive activities (like elbowing), and the nor-
mal ones (like clapping). The nature of EMG signals allow
its use for analysis in several cases, i.e. the develop-
ment of modern human-computer interaction and identify-
ing the ailments of muscular system, as well as in clin-
ical and biomedical applications too [3], [7]. These sig-
nals are then used to examine medical abnormalities [8],
[9], prosthetic limbs control [10], and emotion detection
l [7]. Numerous approaches include wavelet analysis, Fourier
transform, empirical mode decomposition (EMD) and filter-
ing etc. have been suggested over the time to inspect the
sEMG signals.

An innovative algorithm is proposed in this paper that
will classify multiple physical activities based on the sEMG
signals. The proposed framework pre-processes a window
of raw sEMG signals, primarily improving the variance
between the signals of normal and aggressive activities. The
pre-processed window is then progressed to a feature extrac-
tor, one of sEMG’s well-known time based and frequency-
based features.Afterward, the characteristics for the classes
are calculated based on Correlation and Covariance between
the channels. The feature set is then fed to Support Vector
Machines and K-Nearest Neighbor classifier to process the
output class of the signal. The suggested technique even with
the use of simple classifier performs better than the previous
techniques with complex classifiers. The remaining work is
organized in the subsequent manner: Section II discusses the
development of the algorithms proposed by the researchers
for the recognition of physical activities using sEMG signals.
Proposed framework is given in Section III which is followed
by dataset description, experimentation and the results which
are covered by Section IV. In the end, the description and
conclusion of these results are detailed in Sections V and VI
respectively.

II. RELATED WORK
In the literature, focus of the researches has been on numer-
ous aspects including pre-processing, hand-crafted feature
engineering and classification. With regard to classification,
sEMG signals have been used for various activities ranging
from muscle movement to actions identification leading to
abnormality detection.

Akhundov et al. evaluates the quality of sEMG signal
by conducting comparison of five distinct classifiers [11].
They used both supervised and unsupervised artificial neural
networks. Supervised classifiers includes Adaptive Neuro
Fuzzy Inference System, and Probabilistic Neural Network
whereas, the Convolutional Neural Network, Alex-Net, and
ResNet50 were used as unsupervised classifiers. In this work,
mean absolute value, variance, root mean square, power spec-
trum ratio were extracted based on discrete wavelet trans-
form (DWT) feature extraction algorithm for the supervised
learning algorithms. For all three CNNs they take an envelope
extraction of an EMG signal and then transformed it to an
Image for further processing. Ultimately, the unsupervised
artificial neural networks improve the classification accuracy
by up to 98% related to supervised artificial neural net-
works has been reported. Duan et al. elaborates the gesture
motion recognition, the collection of EMG data takes place
for 10 different hand gestures using Myo arm band [12].They
introduced the concepts of multi-task learning and multi-
class classification to enhance the generalization ability of
motion detection systems. On comparing both CNNs and
SVMs, CNNs have 94.06% better classification accuracy
than SVMs because they have better translational symmetry
due to their weight sharing properties. Therefore, the spectro-
gram image is taken by evaluating the SEMG signal and used
as a time-frequency image of the CNN.

In [13], Sezgin et al. describe describe the analysis of the
sEMG signal based on the bispectrum that belongs to the
family of higher-order spectrum. The binary class sEMG data
set (normal action or aggressive action) was taken from UCI
machine learning repository. First, they used a bispectrum to
analyze the sEMG signal, and then the QPC (quadratic phase
coupling) of each sEMG segment was calculated. The char-
acteristics of the analyzed sEMG signal were then input to the
learning machine. In the end, the sEMG signal was classified
as belonging to either normal activity or aggressive activity.
The performance comparison was based on ANN (Arti-
ficial neural networks), SVMs (support vector machines),
LR (Logistic regression), LDA (Linear discriminant anal-
ysis), and ELM (an extreme learning machine) classifiers.
The train test ratio of the extreme learning machine was
randomly assumed to be 50:50 from the extracted features of
the sEMG signal data. It shows that ELM ismore efficient and
gives higher classification accuracy of 99.75% as compared
to conventional learning machines. In [14], Mishra et al.
demonstrated that the performance of the improved EMD
(Empirical Mode Decomposition) method was better,
in which the median filter-based traditional EMD method is
used to remove the impulse noise from IMFs (intrinsic mode
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functions). The amplitude modulation bandwidth, the band-
width of frequency modulation, Fourier moments of power
spectral density, and the first derivative of instantaneous
frequency are the features extracted from improved IMFs
to detect ALS (Amyotrophic Lateral Sclerosis) and Normal
sEMG signals. In [15], Jana et al. discussed the Adaptive
neuro-fuzzy inference system ( ANFIS) based differentia-
tion of aggressive activities and normal activities from one
another. In this paper, the extraction of sEMG features was
carried out using the discrete wavelet transform (DWT) algo-
rithm. On the basis of DWT, they used DB-4 (Daubechies)
wavelet of level 5, approximate time-series coefficients, etc.
to decompose the sEMG signal. The approximate coefficients
from the signals were assumed to enter the ANFIS module
to classify the physical activities. They used the training
testing ratio as 70:30. The accuracy of the ANFIS algorithm
based on extracted features was found to be 98% for the
binary classification problem. Alaskar et al. presented a novel
approach in which three convolutional neural networks are
evaluated using the two time-frequency representations [16].
The Spectrogram and Scalograms images are produced from
surface EMG signals as the input dataset of CNNs. From the
analysis, it can be proven that EMG signal representation
affects the performance of CNNs. Spectrogram Images are
used as the input dataset to the convolutional neural network
for the differentiation between normal and aggressive activity.
As a result, this algorithm achieved the accuracy of 94.61%
for a binary class problem.

Moving towards action classification, several researchers
have presented models for classification of multiple actions
either from normal or aggressive action. Sukumar et al.
perform identification using Variational Mode Decomposi-
tion (VMD) for the ten normal physical activities like bowing,
clapping, walking, waving, jumping, etc. of sEMG signal for
the analysis of musculoskeletal disorder [17]. VMD decom-
poses the signal into several functions. These functions are
used for the extraction of statistical features like coefficient
of variance, zero crossing rate, standard deviation, entropy,
mean and negentropy. Next, the extracted features are fed
into MC-LS-SVM (multi class least square support vector
machine) with RBF kernel for the discrimination of 10 normal
activities and the system achieved an accuracy of 98.17% as
compared to existing methods. In [18], Subasi, et al. pro-
posed an EMGpattern recognition system for the exoskeleton
robot control and rehabilitation purpose. In this study, they
used multiscale principal component analysis to remove the
noise from various sEMG signals to minimize the effect
of outliers. The discrete wavelet transform based statistical
features includes mean of absolute value, average of power,
standard deviation and ratio of mean absolute value have
been extracted. The extracted features are then fed into the
SVM with gaussian kernel. The experimental results show
that the proposed system got an accuracy of 92.27% for
10 normal classes. Sravani, et al. discussed that the extraction
of features is based on Flexible Analytic Wavelet Trans-
form (FAWT) and then fed these features into a feed-forward

neural network called as extreme learning machine (ELM)
classifier for the classification of multi-class problem in [19].
FAWT decomposes EMG signals into eight sub bands. Fol-
lowing features including negentropy, mean absolute value,
variance, modified mean absolute value, Tsallis entropy, sim-
ple square integral, waveform length and integrated EMG are
extracted from each decomposed sub band. After that these
features are fed into the ELM classifier for the identification
of 10 normal activities and the proposed algorithm achieves
an accuracy of 99.36%. Moreover, In [20], Demir et al. dis-
cussed another method in which spectrograms were assumed
to be the input of a pre-trained convolutional neural network.
They used VGG-16 and Alex-Net for deep feature extrac-
tion whereas SVM are used to classify sEMG signals based
Physical movements. The highest accuracy of 99.04% for
10 normal activities includes bowing, handshaking, clapping,
standing, seating, waving, jumping, hugging and walking
etc. is achieved by the deep feature concatenation of fully
connected layers of both Alex Net and VGG-16.

Furthermore, an improved classification framework for
the multi-class problem is proposed in [21]. The EMG
dataset has been taken frommachine learning repository. The
dataset is comprised of 20 physical activities i.e. 10 normal
actions and 10 aggressive actions. The ten normal actions
include bowing, hand shaking, hugging, clapping, etc. The
ten aggressive actions include elbowing, hammering, Head-
ering, slapping, etc. The classification framework includes
probabilistic neural network and subspace KNN. The features
are extracted from different signal signatures includes time
domain, inter channel correlation, modified spectral moment
based features, and local binary patterns. Afterwards sequen-
tial forward feature selection algorithm is used to reduce the
dimensions. The classification is performed using multiple
classifiers like subspace KNN, probabilistic neural network,
cubic SVM, gaussian SVM, functional KNN, Bagged trees,
and LDA by considering the selected subset of features.
But, subspace KNN gives highest accuracy of 93.91% for
20 physical actions.This study deals with the above men-
tioned multi-class classification problem, as described in the
sections below.

In the previous literature, the researchers mostly address
the binary class problem of physical activities by considering
both traditional machine learning and deep learning. They
also address the multi-class normal actions but didn’t focus
on multi class aggressive activities. There is only research
paper that directs the problem of 20 physical activities. In this
article, we address the classification of Multi class problem
of 20 physical actions as well as 10 aggressive activities and
10 normal activities comprised of multi-channel sEMG data.
Following are the contributions made in the article.
• We propose an improved feature set consisting of
selected feature subsets from different feature signa-
tures including time domain (TD) statistical features, the
inter-channel correlation and co-variance, the moment
ratios and products of fourier spectrum and, the spectral
band powers based statistics.

40508 VOLUME 10, 2022



A. Sadiq et al.: Machine Learning and Signal Processing Based Analysis of sEMG Signals for Daily Action Classification

FIGURE 2. Proposed framework based on hand-crafted features for classification of 20 physical
actions.

• We have combined the SVM and 1-NNmodels to design
a hierarchical classifier to maximize the classification
performance.

• We perform the classification of multiple aggressive
activities based on 1-NN model with selected subset of
features and results in an accuracy of 98.91%.

• Finally, we also demonstrate that by combining SVM
and 1-NN models results in an accuracy of greater than
98.97% for 20 physical actions.

III. METHODOLOGY
In this work, the problem ofmulti-class classification of phys-
ical activities is considered. It is based on 8-channel of sEMG
data. The suggested approach is split into pre-processing of
raw sEMG signals, feature extraction, and classification into
20 categories. Figure 2 shows the diagram representing the
proposed framework.

A. PRE-PROCESSING AND SEGMENTATION
First of all, the pre-processing of the multi-channel sEMG
signals has taken in the proposed framework. Let us consider
the length of each signal (sch) to be of D duration sampled at
sampling rate fs having c channels. In this step, each record of
sEMG is segmented into smaller chunks,ϕi, using rectangular
window (windl) of lengthW , whereW < length of the signal
using equation 1.

ϕ = sch(l) ∗ wind(l) (1)

whereas,

wind(l) =

{
1 0 ≤ l ≤ W − 1
0 otherwise

The rectangular window is moved over the whole signal in
slidingmanner with an overlap of 25% as shown in Fig. 3. The
window length W is managed by the sampling frequency at
which the desired signal is captured. Note that after segmenta-
tion, each sEMG signal is translated into a lengthW , Ns trials
using the ch-channels. Then, feature extraction is performed
from each sEMG pattern in each sub-window.

FIGURE 3. sEMG signal segmentation using rectangular window.

After that, extracted features are based on each of the sub-
window (s) from every sEMG pattern.

B. FEATURE VECTOR GENERATION
In an attempt to generate an accurate feature vector, the
proposed methodology uses different features from both the
time domain and the frequency domain. It contains signatures
from Time Domain statistics, Frequency Domain statistics
and Inter-Channel Correlation and Covariance. In the subsec-
tions we elaborate on these features.

1) SIMILARITY INDEX AND COVARIANCE
This subset of features is based on channel wise analysis
surrounded by the corresponding segment of two channels
(chα) and (chβ ) of a sEMG signal ϕi, where α 6= β. The
channel wise pairing for calculation of these features is shown
in Figure 4.

Initially, maximum correlation between 2 channel is com-
puted based on work done in [21] using equation 2.

correlation(chα, chβ ) = max(Corr(ϕi,α(l), ϕi,β (l))) (2)

Additionally, we propose the use of an additional feature
which is the maximum covaraiance between 2 channels
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FIGURE 4. Channel-wise pairing of sEMG segments for correlation and
covariance calculation.

using equation 3.

covariance(chα, chβ ) = max(Cov(ϕi,α(l), ϕi,β (l))) (3)

Equations 2 and 3 indicate the maximum measure of cor-
relation and the measure of joint variability i-e; covariance
respectively among the segments of two channels chα and
chβ of a sEMG signal. Since there are 8 channels so we can
get the feature vector fICS of 7 × 8 values after performing
the maximum cross-correlation and covariance among the
corresponding channels of the signal.

2) SPECTRAL BAND POWER
The characteristics of power spectral density were previously
proposed to identify sEMG patterns in [22]. In the suggested
algorithm, the power spectrum estimates are calculated using
the Burg transformation of each channel in the sEMG sample.
The power spectral density characteristics are assessed by
sub-dividing the spectrum into Nb bands and calculating
the power of each of these bands.And the feature set, fPSD,
is comprised of these band powers for all bands and channels
giving us Nb × 8 features.

3) MOMENTS OF LOGARITHM OF FOURIER SPECTRUM
The log of both moments and their ratios from the frequency
spectrum is calculated for the sEMG segment based on [21].
The total 17 log moment ratios have been calculated for each
channel. Hence we get a feature vector, fLMF , of length 17 ×
8 for a segment of EMG activity.

4) TIME DOMAIN STATISTICS
One of the most frequently used signatures is time domain
analysis of sEMG signal. This modality shows how a signal
changes its parameters or shape over time.

a: AMPLITUDE
The maximum signal’s amplitude can be expressed as in
equation 4:

ft1 = max(|ϕi(l)|2) (4)

b: ROOT MEAN SQUARE
The RMS characterizes the square root of the mean power of
the sEMG pattern for a given period as shown in equation 5.

ft2 =

√√√√ 1
W

W∑
l=1

|ϕi(l)|2 (5)

Here, ‘s’ represents the segment of a sEMG signal and ‘W’
is the length of the segment.

c: VARIANCE
Variance is used to measures the power of a signal as
expressed in equation 6.

ft3 =
1

W − 1

W∑
l=1

|ϕi(l)|2 (6)

d: WAVEFORM LENGTH
WL illustrates an accumulative variance in the sEMG pattern
that can indicate the variations of the sEMG signal [23]. It can
be calculated using equation 7.

ft4 =
W−1∑
l=1

|ϕi(l + 1)− ϕi(l)| (7)

e: MEAN ABSOLUTE VALUE
It indicates the average of an sEMG signal by taking the
aggregate of the absolute value of the signal. [23] and can
be calculated using equation 8.

ft5 =
1
W

W∑
l=1

|ϕi(l)| (8)

f: SIMPLE SQUARE-INTEGRABLE FUNCTION
It indicates the aggregate of the square values of the amplitude
of the sEMG pattern [23], and it can be determined using
equation 9.

ft6 =
W∑
l=1

ϕi(l)2 (9)

g: ZERO CROSSING
It characterizes the total number of counts when the sign of
the sEMG signal changes its sign from positive to negative
over time [23]. The two given adjoining sEMG amplitude
samples ϕi(l) and ϕi(l + 1) the zero values can be calculated
using equation 10.

ft7 =
∑

f (s) (10)

where f (s) is set as 1 or 0 for consecutive samples of a
segment.

f (s) =

{
1 sgn(ϕi(k)) 6= sgn(ϕi(k − 1))
0 otherwise

whereas, k ∈ 1, 2, · · · ,W − 1
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h: SLOPE SIGN CHANGE
It denotes the total number of counts when the slope of the
sEMG signal changes its sign from positive to negative over
time [23]. Given three neighboring amplitude samples of the
sEMG signal ϕi(l − 1), ϕi(l) and ϕi(l + 1), the count is
calculated using equation 11:

ft8 =
∑

f (s) (11)

where f (s) is set as 1 or 0 for three consecutive samples of a
segment.

f (s) =

{
1 sgn(ϕi(k)) 6= sgn(ϕi(k − 1))
0 otherwise

i: WILLISON AMPLITUDE
It represents the total counts that are responsible for the vari-
ation in the amplitude among the two neighboring samples of
the sEMG signal that exceed a specified threshold [23]. It is
calculated using equation 12.

ft9 =
W−1∑
l=1

f (|ϕi(l + 1)− ϕi(l)|) (12)

where f(s) is calculated as:

f (s) =

{
1 s > threshold
0 otherwise

j: INTEGRATED EMG
It characterizes by the integration of the rectified sEMG
pattern and indicates the pre-activation of muscle move-
ment [23]. Simply put, it can be implying as the sum of
the absolute values of the sEMG amplitudes as shown in
equation 13.

ft10 =
W∑
l=1

|ϕi(l)| (13)

k: LOG DETECTOR
It describes the estimation of exerted force observed at the
time of muscle activity [23], and it can be expressed using
equation 14.

ft11 = e
1
W

∑W
l=1 log(|ϕi(l)| (14)

l: MYOPULSE PERCENTAGE RATE
This feature takes the mean value of myopulse output in
which the absolute value of the raw sEMG signal outreach the
specified threshold. [23] and can be calculated as equation 15.

ft12 =
1
W

W∑
l=1

f (ϕi(l)) (15)

where, ‘s’ is called as a wavelet coefficient of respective
channel, and ‘W’ is the window length of coefficient.

m: DIFFERENCE ABSOLUTE STANDARD DEVIATION VALUE
It calculates the standard deviation by taking the difference
between the adjoining sEMG samples. [23], and it can be
implying as

ft13 =

√√√√W−1∑
l=1

(ϕi(l + 1)− ϕi(l))2

W − 1
(16)

n: ENHANCED MEAN ABSOLUTE VALUE
This feature provides a satisfying estimation of exerted force
at the time of muscle activity [23], and it can express as the
following function by using the parameter p to identify the
effect of the sample in the signal.

ft14 =
1
W

W∑
l=1

|ϕi(l)(l)p| (17)

where p is set using the following

p =

{
0.75 0.2W ≤ l ≤ 0.8W
0.5 otherwise

o: ENHANCED WAVELENGTH
The features include EMAV and EWL use more value of
parameter p in the following function in the 20% to 80% area.
You can improve the quality of functionality by increasing
the amount of information in the central part to achieve
maximum relevant information. In addition, you can see that
EMAV and EWL are expansions of MAV and WL features
with simple changes, so they do not require much additional
computational time for evaluation as provided in [23].

ft15 =
W∑
l=2

(|ϕi(l)− ϕi(l − 1)|p) (18)

where p is set using the following

p =

{
0.75 0.2W ≤ l ≤ 0.8W
0 otherwise

p: MODIFIED MEAN ABSOLUTE VALUE
This feature extends the mean absolute value function by giv-
ing theweightedwindow function as in [23].Mathematically,
MMAV can be expressed as

ft16 =
1
W

W∑
l=1

(wl |ϕi(l)|) (19)

where wl is set using the following

wl =

{
0.75 0.2W ≤ l ≤ 0.75W
0.5 otherwise
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q: MODIFIED MEAN ABSOLUTE VALUE 2
This feature extends the mean absolute value function by
keeping the continuous weighted window function as in [23],
it can be implying using equation 19 but with modified value
of wl . The modified value of wl is set using

wl =



1 0.25W ≤ l ≤ 0.75W

4l
W

l < 0.25W

(l −W )
W

otherwise

r: MAXIMUM FRACTAL LENGTH
This is a new technique used to measure low levels of muscle
activation. Setting the minimum scale to 1 makes the defini-
tion of this feature equivalent to the modified version of WL
that takes into account the RMS and logarithmic functions
that can be calculated using 20 similar to [24].

ft18 = log(

√√√√W−1∑
l=1

(ϕi(l + 1)− ϕi(l))2 (20)

s: AVERAGE AMPLITUDE CHANGE
This feature is equivalent to the WL function, except that
the wavelengths are averaged as shown in [25]. It can be
formulated with equation 21.

ft19 =
1
W

W−1∑
l=1

|ϕi(l + 1)− ϕi(l)| (21)

t: KURTOSIS
This feature defines a statistical method that describes the
distribution and identifies trends in peak data as given in [26].

u: SKEWNESS
This feature defines as the inclination distribution data. If the
mean, median, and data modes are on a single line on the
curve, the data is said to be normally distributed. If these
values are not on the line of the curve, the result will be
skewed or heel as discussed in [26].

After calculating the above mentioned time domain fea-
tures for each channel, all features are grouped to form
a feature vector ft . As the number of channels are eight,
so 21 × 8 will gives us the feature vector of length 168.

C. CLASSIFIER
The extracted feature vectors described in section III-B are
the entered into the classifier and the activity class is pre-
dicted from the 20 possible activities. In this work, we imple-
mented various classification techniques, focusing on the use
of simple classifiers such as support vector machines and
K-nearest neighbors. The aggressive and Normal activities
is classified by KNN and SVM. After that, we hybridized
both SVM and KNN for the better classification results. This
hybrid approach performs better classification accuracy for

multi-classes. The performance of classifiers is evaluated
using classification accuracy, sensitivity, specificity, preci-
sion, F1-score, and kappa coefficient.

1) SUPPORT VECTOR MACHINE
A support vector machine (SVM) is a supervised machine
learning algorithm which is used for both classification and
regression problems. SVM is a fast and dependable classifica-
tion algorithm that performs very well with a limited amount
of data to analyze. In this algorithm, each data value is plotted
as a point in an N-dimensional space whereas N indicates the
number of features/dimensions. For the classification of data,
SVM finds the hyper-plane that does not only separates the
two classes but also maximizes the margin (i.e. the distance
between the margin and the closest data point of each class).
In this work, to classify the normal actions the SVM model
performs better classification as compared to k-NN model
discussed in experimentation section IV-B. The performance
of the classifier is analyzed using 5-fold cross validation,
the ‘Quadratic’ kernel function, and ‘One vs. all’ multi-class
method.

2) K-NEAREST NEIGHBOR
k- Nearest Neighbor is one of the most basic and easy-to-
implement supervised machine learning algorithm used for
both classification and regression problems. It is widely used
to recognize patterns, intrusion detection, and data mining.
According to this classifier, the value of data point is deter-
mined by the data points around it or based on the majority
voting principle. The mechanism of k-NN is to find the
distances (i.e., Euclidean, Manhattan, Minkowski, hamming
etc.) between a new data point and all the neighbor examples
in the training data, selecting the specified number neighbor
examples (k) closest to the new data point. Afterwards it
votes for the most frequent label in classification problems.
In our proposed methodology, k-NN is used for the classi-
fication of aggressive actions with a subset of features and
perform better classification as compared to SVM model
discussed in experimentation section. The performance of
the classification model is analyzed by setting the value of
k = 1 whereas the distance metric is set as Manhattan
distance which is also known as city block distance. It is
the sum of absolute differences between points across all
the dimensions. Equation 22 is the generalized formula for
calculation of distance for an n-dimensional space.

dist =
1
W

W−1∑
l=1

|sch(l + 1)− sch(l)| (22)

3) HYBRID APPROACH (1-NN AND SVM)
InHierarchical classificationmodel, the classificationmodels
are grouped together in the form of hierarchy in order to
solve the problem of multi-class classification. Considering
the given EMG data the classification is well separable and
discriminant for two class problem. This can be visualized
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FIGURE 5. Mean of normal v/s aggressive classes.

FIGURE 6. Hybrid classifier for multi-class classification.

from Figure 5 shows the effect of mean EMG signals of all
ten aggressive and all ten normal activities.

On considering this, we started the classification form
binary and leading towards the multi-class problem (10 nor-
mal classes, 10 aggressive classes and 20 physical action
classes etc.)

Finally, we combine both SVM and 1-NN classification
model in hierarchical manner to classify the 20 different
physical actions as shown in Figure 6. First of all, we trained
three different models using SVM and 1-NN classifiers. The
Binary class model is trained using 1-NN which is based on
440 features, as it classifies the data into either normal or
aggressive class. Another SVM basedmodel uses the features
from all signatures (i.e. 440 number of features) in order to
classify the 10 normal actions. The 1-NN based model uses
the subset of features (i.e. 272 features from inter channel
correlation and covariance, Log moment of Fourier spectra
and spectral band power domains) for the classification of
10 aggressive activities.

IV. EXPERIMENTATION AND RESULTS
A. DATASET
The dataset of physical activities that is used for the analysis
of our proposed methodology is taken from UCI Machine

TABLE 1. Feature subset details used for different experimentation.

Learning Laboratory database [27]. The dataset contains
sEMG data of 4 subjects, 3 males and 1 female of age
range between 25 and 30. Each subject performed a total
of 20 actions which are divided into 10 normal (i.e. Bow-
ing (1), Clapping (2), Hugging (3), Handshaking (4), Jump-
ing (5), Running (6), Seating (7), Standing (8), Walking (9),
Waving (10)) and 10 aggressive actions (i.e. Elbowing (11),
Frontkicking (12), Hammering (13), Headering (14), Knee-
ing (15), Pulling (16), Punching (17), Pushing (18), Side-
kicking (19), Slapping (20)). The sEMG signals collected
from these subjects have a total of eight channels, four for
the upper limbs and four for the lower limbs. Every channel
correlates to time series data from each electrode consisting
of around 10,000 samples.

B. EXPERIMENTATION
The dataset of physical activity as stated above holds around
10000 samples per action per subject. First, these samples are
broken into several overlying segments, with the spacing of
1000 per segment with an overlap of 25%. Therefore, you
can subdivide each activity to get a healthy sample space of
600-900 segments depending on the length of the signal. The
sample span is then further utilized to extract the feature set
per segment with different signatures. described in section III.
For getting a better classification rate, the experimental set-
ting for validation is to measure this parameter for a 20-class
problem. SVMs and kNNs have been applied to categorize
using the full feature vector and their subsets. The complete
feature set was divided into subsets holding particular feature
types (time, frequency, etc.) and their possible combinations.
The details of these subsets are available in Table 1.

Various parameters such as accuracy, sensitivity, speci-
ficity, f-Measure, accuracy, misclassification rate, and kappa
coefficient were calculated to measure the performance of
the proposed algorithm. The SVM and kNN 5-fold cross-
validation helps to split the data into 20 and 10 classes,
respectively.
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TABLE 2. Comparison of 1-NN based classification using various subset
of features.

TABLE 3. SVM based classification using various subset of features.

Initially, the entire feature vector of length 440 is surpassed
to the classifiers to categorize data into 20, and 10 classes
respectively for normal and aggressive actions. Table 2 rep-
resents that the subset includes features from Inter-Channel
Statistics, Log moments of Fourier spectra and spectral band
power have higher classification accuracy for 10 aggressive
classes.

It is clear from Table 3 that SVM model performs better
using all features to classify 10 normal actions as compared
to k-NN model. So, from this observation we can combine
both SVM and KNN models to classify 20 physical actions.

In addition, a thorough analysis of SVMswas performed to
classify physical activities using an entire subset of features,
but the subset of features did not provide good classification
accuracy.

V. DISCUSSION
The acquisition sensor of non-invasive signals such as sEMG
plays a vital role in uplifting the lifestyle of human beings

TABLE 4. Confusion matrix for binary classification using proposed
technique.

FIGURE 7. Heat map of normal activities from SVM with 10-fold cross
validation for 10 normal actions (All features).

suffering from various neurological and physical disabili-
ties/diseases. The correct type of bodily sports is the primary
step in supplying a possible option to such patients. In this
write-up, we have proposed a framework that can assist in
developing an assistive technology by giving a classification
of physical activities.

In our methodology, the use of pre-processing has a sig-
nificant impact on the accuracy of classification, both for
the comprehensive feature set and for the optimal subset.
The result is that SVM and 1NN with a combination of
fICS and frequency domain analysis features provide better
classification accuracy compared to an entire feature set and
other classifiers. The relevant classification accuracies for
1-NN and SVM are 98.91% and 100%.

A. BINARY CLASSIFICATION
The confusion matrix is obtained by performing 80:20 split
on 974 observations of binary class (Normal and Aggressive)
using 1-NN classifier on considering features from all signa-
tures. The resultant model has been trained on 780 samples
whereas has it has been tested on 194 samples. The model
gives us the testing accuracy of 100% which is reflected in
Table 4.

B. NORMAL ACTIVITIES CLASSIFICATION
The confusion matrix is obtained by performing 80:20 split
on 483 observations of 10 normal physical activities using
SVM classifier on considering features from all signatures.
The resultant model has been trained on 393 samples whereas
it has been tested on 90 samples. Hence, the model gives us
the testing accuracy of 100% as shown in Figure 7.

C. AGGRESSIVE ACTIVITIES CLASSIFICATION
The confusion matrix is obtained by performing 80:20 split
on 491 observations of 10 Aggressive actions using 1-NN
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FIGURE 8. Heat-map of aggressive classes for 1-NN classification with
10-fold cross validation for 10 aggressive actions (ICS, LMF and PSD
subset).

FIGURE 9. Heat-map of 20 classes for hybrid classifier.

classifier on considering the subset of features from the signa-
tures include Inter channel statistics, Log moment of Fourier
spectra and Power spectral density. In this classification,
Time domain features are not considered. The resultant model
has been trained on 399 samples whereas it has been tested
on 92 samples. Hence, the model gives us the accuracy of
98.91% as shown in Figure 8.

D. ALL ACTIVITIES (HYBRID CLASSIFIER)
The confusion matrix is obtained by testing 194 observations
of 2 class using 1-NN classifier on considering the features
from all different signatures. As a result, optimized k-NN
classify the samples into either normal class or aggressive
class. The samples classified as Normal are fed into the
optimized SVM classifier (trained using all features) whereas
the samples classified as aggressive are fed into the optimized
KNN classifier which are trained on the subset of features
from the signatures include fICS , fLMF and fPSD. Hence the
20 class classification is performed by training two different
classifiers in hierarchy. The model gives us the average test-
ing accuracy of 98.97% as shown in Figure 9.

A comparison of performance indicators such as sensi-
tivity, specificity and precision, f-measure, mis-classification

TABLE 5. Comparison of performance parameters.

TABLE 6. Performance comparison of proposed method with same
dataset for the classification of physical actions sEMG signals.

rate and kappa constants is shown in Table 5 from both binary
classes and multi-classes. The performance indicator carries
the Specificity and sensitivity and shows the true negative and
true positive values of the classifier for the proposed feature
vector. The accuracy determines the true positive value that
belongs to this activity.

The performance comparison of our proposed method with
the latest research work is shown in Table 6. The obtained fea-
tures from different signal signatures for each segment gives
a good response to the classification of 20 physical actions
of sEMG. It provides robustness to the variation between
classes. This result shows that the hybridization of SVM
and KNN models provides better performance for automatic
identification of surface EMG signals.

VI. CONCLUSION
In this study, we have proposed a multi-class classifica-
tion framework based on SVM and KNN to categorize the
physical actions using the features derived from eight chan-
nels of the surface EMG data. A set of 440 features were
extracted from various signatures including the statistical
features of time domain, the inter channel cross correlation
and covariance, logarithm of moments of Fourier spectra and
the mean band power of power spectral density estimates
based on the Burg’s algorithm. The results show that the SVM
performs better for the classification of ten normal classes
whereas KNN improves the accuracy for the ten aggressive
classes. In the case of 20 class classification, adopting hybrid
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approach by combining SVM with KNN models improves
the accuracy especially if the dataset is limited. The classifi-
cation results of proposed method shows better performance
in terms of accuracy as compared to other existing methods.
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