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ABSTRACT Keyword spotting (KWS) utilities have become increasingly popular on a wide range of mobile
and home devices, representing a prolific application field for Convolutional Neural Networks (CNNs),
which are commonly exploited to perform keyword classification. Addressing the challenges of targeting
such resource-constrained platforms, requires a careful definition of the CNN architecture and the overall
system implementation. These reasons have led to a growing need for design and optimization flows, able
to intrinsically take into account the system’s performance when ported on the target platform. In this work,
we present a design methodology based on Neural Architecture Search, exploited to combine the exploration
of the optimal network topology, the audio pre-processing scheme, and the data quantization policy. The
proposed design flow includes target-awareness in the exploration loop, comparing the different design
alternatives according to a model-based pre-evaluation of metrics like execution latency, memory footprint,
and energy consumption, evaluated considering the application’s execution on the target processing platform.
We have tested our design flow to obtain target-specific CNNs for a resource-constrained commercial
platform, the ST SensorTile. Considering two different application scenarios, enabling the comparison with
the state-of-the-art of efficient CNN-based models for KWS, we have obtained up to a 1.8% accuracy
improvement and a 40% footprint reduction in the most favorable case.

INDEX TERMS Keyword spotting, neural networks, neural architecture search.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) are moving fast to
the edge. The bandwidth and privacy issues of cloud-based
execution have pushed for the deployment of lightweight,
nevertheless very accurate, CNN implementations [1], [2] on
mobile and power-efficient edge-processing platforms, thus
improving the application’s responsiveness and alleviating
communication-related requirements. However, processing
systems of such a kind are often resource-constrained and
operate on limited energy budgets, requiring careful tailoring
of the CNN and accurate choices during porting and deploy-
ment. The high number of design choices and optimization
parameters at the disposal of the developers poses a need for
design practices allowing for target-aware optimization on
all of the design phases, through dedicated supporting design
tools.
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Along with computer vision, speech recognition is a
common application field for CNNs, often configured
as keyword spotting (KWS) in the edge domain. The
KWS task focuses on the recognition of a limited set
of words representing a simple speech recognition sys-
tem [3], or working as wake words triggering the execu-
tion of more complex speech processing systems running
on the cloud, as in smart home devices. When it comes
to automated CNN design and optimization, KWS repre-
sents an extremely interesting case study, due to two main
reasons:

1) the need for KWS is ubiquitous, thus it could require
the classifying network to be deployed on a very wide
range of processing platforms and hardware architec-
tures, highlighting the importance of a precise target
characterization within the design flow;

2) most of the approaches to CNN-based KWS envision
fairly complex steps of pre-processing to be applied
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to the input samples, opening an additional range of
choices to the designer.

Thus, a CNN-based KWS system involves several design
choices, often assigned to automated procedures, like Neural
Architecture Search (NAS). In this work, we present a design
flow, implemented with the ALOHA! tool flow, which is
capable of efficiently synthesizing, training, quantizing, and
deploying platform-specific KWS applications. The flow is
designed to:

e consider target-awareness: we use a model-based eval-
uation tool to pre-estimate the effects of the different
design choices on metrics measuring inference perfor-
mance on the target processing platform, such as latency,
footprint, or energy consumption. The obtained esti-
mations are considered during the whole optimization
process;

o consider quantization as one of the parameters to be
explored and tuned during the optimization;

o enable the combined cross-exploration of the data
pre-processing and the CNN topology, as these design
choices influence each other, while both impact accu-
racy and demands for hardware resources.

We define two different methodologies for the usage of
the tool flow. The first one implements a fast selection
procedure, representing an efficient trade-off between the
required design time and the quality of the results. The
second one involves an intermediate characterization phase
where the effects of quantization on the network model’s
accuracy are precisely evaluated. In the following, we refer
to it as accurate selection. Considering as a target platform
the microcontroller-based ST SensorTile, we have tested
our CNN selection methodologies on two different sets of
hardware-related constraints, enabling the comparison with
the best works in the literature presenting CNN architectures
for KWS [4], [5] obtained through NAS. We have obtained
two application configurations outperforming CNN state of
the art in the KWS field. In the first case, our approach
improves the accuracy of the CNN model considered in [4],
by 1.8% points, with 40% lower storage requirements. In the
other case, we reach similar accuracy (0.14% improvement),
with 14% fewer operations required, corresponding to a 5%
latency reduction [5]. Our approach could be extended with
some additional support to depthwise separable convolutions,
which result in sensible performance improvement in [4]-[6].
To provide a brief outline of our work, Section II contains a
brief introduction to NAS and its role in the design of efficient
CNN architectures for KWS, while Section III describes the
platform exploited as a target for our design. Section IV
defines a KWS system and anticipates the choices involved in
its design, while Section V presents the framework exploited
for CNN exploration. Section VI describes in detail our selec-
tion procedure, in both the fast and accurate implementations.

IThe ALOHA project is available at https://www.aloha-h2020.eu/
and aims at developing a framework providing several tools for
architecture-aware CNN exploration.
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Finally, experimental results are presented in Section VII: the
considered search space is defined in Section VII-A, while
Section VII-B provides the motivation for the pre-processing
scheme/ CNN topology combined exploration.

PAPER CONTRIBUTION SUMMARY

The main novel contribution of this paper can be summarized
as follows:

« we introduce a tool flow composed of several search
and evaluation utilities usable to compose automated
target-aware optimization of CNNs;

o we propose two different selection procedures (fast
and accurate) exploiting such tool flow for the KWS
problem;

« we test such procedures on two use-cases correspond-
ing to two different sets of target-related constraints,
reaching results comparable to the state-of-the-art or
improving it, in terms of accuracy, latency, or footprint.

Il. RELATED WORK
The very recent work of [8] presents an overview of the
KWS methods and techniques explored in the literature. The
first systems were developed as large-vocabulary continu-
ous speech recognition systems, mapping the audio into a
sequence of probable phonetic units, but requiring high pro-
cessing and storage capabilities to be executed, and thus not
suitable for edge execution [9]. A more lightweight solution
was represented by Hidden Markov Models (HMMs) and
Gaussian Mixture Models (GMMs) [10]. Nowadays, Deep
Neural Networks (DNNs) have replaced the alternatives, due
to their flexibility in terms of complexity, functionality, and
accuracy, becoming the most popular classification method
for KWS tasks. Very recent works have also exploited DNNs
for speaker identification [11], as well as CNNs applied to
Mel-Frequency Cepstral Coefficients (MFCC) features for
the detection of the speaker language [12]. However, some
energy-efficient Machine Learning alternatives have been
proposed. Among those is the work of [ 13], presenting a KWS
system based on a Tsetlin Machine, a Finite State Machine
exploiting propositional logic to perform classification, while
the work of [14] investigates an approach based on Support
Vector Machines (SVMs). The currently best performing
models are compared in [15], typically referring to 12 classes
classification problems on the common benchmark repre-
sented by the Google Speech Commands dataset [3]. All in
all, they can be grouped into CNNs [16], Recurrent Neural
Networks (RNNs) [17], and keyword Transformers [18].
Regardless of the model’s affiliation with one or the
other of the neural networks domains, efficient network
design is a crucial issue when inference has to be executed
on resource-constrained platforms. It is often the case for
KWS tasks, which are always-on and commonly executed
on power-constrained edge devices, whose available stor-
age space is also strictly limited. Thus, recent works have
proposed several workload-efficient network architectures,
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TABLE 1. Comparison with state of the art works on NAS targeting KWS.

Hardware Quantization Pre-processing Exploration
metric Levels Cross-exploration Parameters Cross-exploration | description
4] OPS 8bit X n. frames v X
footprint
[5] OPS up to 1bit X not applicable not applicable v
latency
[7] OPS X X X X 4
[6] X X X X X v
latency feature type
this work | footprint | up to 4bit v n.features v v
energy n. frames

either handcrafted [19] or automatically obtained as the result
of NAS processes [4]-[7]. In the following, we will focus on
the latter, which are more closely related to our work.

While the first approaches to NAS have mostly focused
on accuracy-oriented automated design, especially target-
ing image classification tasks, [20]-[22], NAS has more
recently evolved into a target-aware design process, where
non-functional performance metrics [23] are taken into
account during the optimization procedure. Furthermore,
to cope with the size of the architecture design space, sev-
eral approaches have focused on reducing the search time
in NAS, e.g. exploiting one-shot training [24], or differen-
tiable search [25]. Finally, to keep up with the wide adop-
tion of reduced-precision CNNs, some automatic design
flows also consider compression through quantization [26],
as an optimization objective along with network topology
selection.

Given the tight deployment constraints of KWS systems,
NAS for optimal design has been widely adopted in this field.
In Table 1, we list some of the most recent works presenting
neural networks for KWS designed through NAS, establish-
ing the state of the art. In column 1, we compare them in terms
of the hardware performance metric which is considered dur-
ing the exploration process. In columns 2 and 3, we describe
how the quantization subject is addressed. In detail, we list
the quantization policies explored and we report whether the
quantization policy is cross-explored with the CNN topology.
Similar information is reported in columns 4 and 5 for the
pre-processing scheme. In column 4, referring to the most
common speech features, Mel energies and MFCC, we report
which of the design parameters are explored and whether the
evaluation happens contextually, or on top of, the network
topology selection. Finally, in column 6, we define whether
the corresponding work provides methodological guidelines
for the exploration. The listed works are briefly summarized
in the following.

The work of [4] specifically targets microcontrollers
embedding ARM Cortex-M Processors. Considering the
design constraints posed by different sized systems,
the authors present an exploration of different net-
work architectures and operands, targeting three search
spaces defined by Small, Medium, and Large size sys-
tems. The search for the optimal network architecture is
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guided by number-of-operations-(OPS) and footprint-based
performance evaluations. A partial pre-processing scheme
cross-exploration involves the number of frames composing
the input spectrogram. However, all of the presented CNN
models perform classification on spectrograms obtained
through MFCC, considering 10 features and 49 time-frames,
thus having 49 x 10 resolution. On the other hand, the quan-
tization policy is not cross-explored, as compression to 8-bit
representation is only applied to the selected architectures.
The focus of the work is on the comparison among different
network models, based on CNNs, DS-CNNs, RNNs, and
DNNs, thus it does not provide a defined exploration method,
either for the network topology or for the pre-processing
scheme. The work presents the well-known state-of-the-art
DS-CNN architectures, exploiting depth-wise separable con-
volutions and outperforming the corresponding CNN-based
models. In the following, we compare with the CNN archi-
tecture selected for the 200kB - 20 MOPS Medium region,
reaching 92.2% accuracy, obtained through 199.4 kB param-
eters and 17.3 MOPS.

In [5], the authors present a network architecture selected
through differentiable NAS, where deployment performance
is evaluated in terms of OPS. The inference is executed
on raw audio files, through parameterized sinc functions
learned as a first layer, known as SincConvs. Thus, the
approach to audio processing can not be described in terms
of Mel/MFCC parameters, and the corresponding columns
4 and 5 in Table 1 are not filled in. Quantization, up to
1bit precision, is only applied to the selected architectures,
while it is not cross-explored with the network topology. The
selected CNN-based model reaches 95.6% accuracy, having
75.7 kB parameters and 13.6 MOPS, while the quantized
version uses up to 2.51 bits per weight and 2.91 bits per
activation, reaching 93.76% accuracy.

In [7], the authors exploit NAS where deployment per-
formance is evaluated in terms of OPS count. After the
first fixed-budget training phase, a Pareto frontier of can-
didate points is selected for a second refinement process,
where the training hyperparameters are evaluated through
exploration. The work provides methodological guidelines
for the exploration, which do not include cross-exploring
the pre-processing scheme and quantization policy together
with the CNN topology. The selected network reaches 95.1%
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accuracy, exploiting pre-processing based on MFCC, result-
ing in 40 x 32 input resolution.

Finally, the work of [6] presents the architecture which
is, to the best of our knowledge, the state-of-the-art one for
12 classes KWS, reaching 97.2% accuracy. The selected net-
work topology exploits both depthwise separable and dilated
convolutions, and is trained on 101 x 40 input pixels, obtained
through MFCC based audio pre-processing. The CNN design
is obtained through NAS, but the pre-processing scheme is
pre-defined, and not subject to exploration. Likewise, the
quantization policy is not explored.

To the best of our knowledge, as reported in Table 1, ours is
the first approach to put in place a co-exploration of the opti-
mal CNN topology, pre-processing scheme, and quantization
level, based on hardware-aware performance evaluations, and
to provide its step by step description. Our perspective is
motivated by the great impact of the feature extraction and
input resolution choice, on both the classification accuracy
and the overall system performance, in terms of execution
time and required storage resources. Furthermore, according
to the current trend [27], we mean to extend to the KWS
field the evaluation of the quantization policy co-exploration
within NAS. Finally, we allow for hardware-aware perfor-
mance evaluation. This is achieved through a latency predic-
tion model of the target platform, allowing us to refine the
OPS metric into a more accurate execution time estimation
and consider immediate performance constraints expressed
as a maximum allowed execution time.

The application of our proposed design procedures allows
us to obtain CNN architectures reaching accuracy values
competitive with the CNN state-of-the-art in the KWS field
while being specifically tailored for the target platform,
thanks to hardware-aware inference latency predictions. Our
approach enables considering the specific hardware require-
ments in the design of all the most relevant parameters
impacting the performance of the system, including the
pre-processing scheme and quantization policy choice. As is
further discussed in Section VII-B, different pairs of topology
and preprocessing scheme can represent the optimal com-
bination in different latency regions, thus it is beneficial to
combine their exploration. The adoption of one-shot training
and multiple parameters cross-exploration improves the effi-
ciency of a NAS process in such an enhanced design space.
When multiple pre-processing schemes are evaluated, the fast
selection procedure enables an exploration time reduction,
after the one-shot training, proportional to the number of
schemes explored. The details of the exploration time anal-
ysis are given in Section VI-C.

Ill. TARGET PLATFORM

As an example target of our design-flow application,
we consider a tiny microcontroller platform, developed
by STMicroelectronics: the SensorTile. It is an IoT mod-
ule, equipped with a digital microphone, and embedding
an 80 MHz ARM Cortex-M4 32-bit low-power micro-
controller, accessing a 96kB SRAM, and 1MB FLASH
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FIGURE 1. KWS system overview.

memories, posing strict storage constraints. The system archi-
tecture exploits a Real-Time lightweight Operating System
(RTOS), providing support for multi-threading, and schedul-
ing of the different application tasks on defined timings.
For efficient CNN execution, we relied on the CMSIS-NN
library [28], specifically developed to target this family of
Pprocessors.

IV. OPTIMIZING A CNN FOR KWS: PROBLEM DEFINITION
Our approach aims at defining a set of tools and method-
ologies, for automating the optimization of KWS systems.
A generic view of a KWS system detailing the composi-
tion of the software application is highlighted in Figure 1.
Audio samples are received in input and are streamed to a
pre-processing stage. In this paper, we assume as reference
the pre-processing functionality which is more commonly
used in literature, i.e. converting the monodimensional input
stream into a bidimensional representation. We particularly
consider Mel energies and MFCC, which are both representa-
tions of the power spectrum of the acquired audio over time.
Such extracted 2D features are then sent in input to a CNN
algorithm, which classifies the incoming data over a set of
classes corresponding to the keywords to be spotted. We aim
to set an optimal configuration of the application knobs avail-
able in such a system, maximizing the classification accuracy
under the constraints defined considering the target process-
ing platform and the required performance. More formally,
the optimization process starts from the following list of
inputs:

o dataset - set of pre-processed audio data, obtained
through a certain combination of the pre-processing
steps;

o platform description - defining the available stor-
age and processing resources, and allowing to obtain
hardware-related performance metrics for the examined
CNN algorithm;

« constraints - limits to the maximum CNN memory foot-
print, and the maximum inference latency, depending on
the platform’s description and the application require-
ments on the final throughput;

« design space definition - set of CNN structures and
operands to be explored.

As most of the state-of-the-art works, the classification task
refers to the Google Speech Commands dataset [3], and
involves 10 of the 35 classes provided: “Yes”, “No”, “Up”,
“Down”, “Left”, “Right”, “On”, “Off“, “Stop” and
“Go”, plus the additional classes “silence” and “‘unknown’.
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FIGURE 2. Selection procedure for target-oriented CNN design exploiting
the ALOHA framework.

Considering this input, we need to implement a Design
Space Exploration that analyzes and compares different
design points, corresponding to different configurations of
the following design parameters:

« CNN topology;

o feature-extracting function to be

pre-processing;

o resolution of the

pre-processing;

+ CNN quantization level.

used during

features produced by the

As noticeable, all the possible design points, corresponding
to the available permutations of such parameters, define a
very vast design space that, in general, cannot be fully
explored.

Thus more complex procedures, based on NAS strategies,
are needed to obtain (near-) optimal results in a reasonable
time.

V. ALOHA CNN DESIGN FLOW
According to the NAS approach, the ALOHA framework
allows addressing CNN design as an iterative selection pro-
cess. An overview of the framework organization is shown in
Figure 2. The core of the design flow is a Selection Proce-
dure, which aims to define and deploy the optimized CNN,
based on a set of design constraints and the definition of
the reference design space. The procedure is composed of
several sub-steps that iteratively refine the CNN topology
selection until the identification of the optimal candidate for
the target platform. A Dataset management utility takes in
input the reference dataset defining the task to be imple-
mented by the CNN and applies pre-processing and data-level
transformations to feed the different training actions within
the procedure. Moreover, the Selection Procedure is served
by a set of Evaluation tools, which can be used to assess the
metrics needed to compare the design points with each other.
In the following, we outline in more detail the features of
the tool flow components.
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A. DATASET MANAGEMENT UTILITY

As depicted in the left column, Dataset management, the
ALOHA tool flow provides the possibility to customize the
data pre-processing operations according to the application’s
requirements [29]. In detail, each transformation to be applied
to the data is described as a plug-in, i.e. a pre-processing
operator that can be treated independently and arbitrarily
connected to others, to compose a preprocessing pipeline.
The available operands can be set to be applied on the overall
input set, at sample level, or batch level. In this paper, for
KWS classification, they include MFCC and Mel feature-
extracting functions, representing the pre-processing plug-
ins, but also several augmentation plug-ins, like random time
shifts and random noise addition, as well as random pitch and
random speed. Whether these transformations are applied,
and at which point of the selection procedure, can be defined
by the user.

B. SELECTION PROCEDURE

The selection procedure starts with the definition of a ref-
erence Design Space, establishing the set of operands and
topologies to be considered for exploration. Furthermore, the
selection needs to account for possible design Constraints,
posed by the performance requirements of the application,
or by the resources available on the target hardware. Given
this set of inputs, the first stage of the procedure involves a
Design space pruning step. A search strategy surfs through
the initially defined design space, to identify a reduced pool
of eligible near-optimal CNN topologies. To this aim, it uses
a Genetic Algorithm (GA) that iteratively refines evolving
populations of CNNs, according to their comparison. During
this phase, considering the big number of networks to be com-
pared, the accuracy of the design points is assessed using a
Once-for-All (OFA) one-shot training utility [24]. Moreover,
the metrics related to the execution on the target hardware
are estimated using a target-aware Latency/ energy/ footprint
evaluation tool.

At this point, the resulting pruned pool of topologies can
be further examined through a refinement phase, precisely
assessing the accuracy and footprint of the deployable net-
work through detailed training and quantization. Finally, one
or more CNN architectures can be selected for Deployment.

1) THE OFA TRAINING

The one-shot training facilitates energy-efficient NAS evalu-
ation cycles. This external utility [24] allows describing the
search space as a single SuperNetwork, obtaining, through a
single training process, all the configurations to be evaluated
as possible subnetworks. After the teacher network has been
trained for a configurable number of training epochs, all of
the desired configurations can be optimized through a Pro-
gressive Shrinking procedure. To prevent the training of one
subnetwork from interfering with the others, the optimization
starts from the network models having the highest number of
parameters, and finally adjusts the accuracy of the smallest
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ones, which profit by weight sharing. For example, starting
from a CNN exploiting only 5 x 5 filtering kernels, the kernel
size is made elastic by additionally training their 3 x 3 subsets.
The same can be done with the network’s depth and width.
As further discussed in Section VII-A, this allows us to train
a huge number of candidate networks, in a reasonable amount
of time.

As soon as the SuperNetwork is trained, the accuracy of
each design point can be assessed by just repeating a valida-
tion pass over the validation set, which is significantly shorter
than training each design point from scratch.

2) THE GENETIC ALGORITHM

The GA allows searching across the search space, by itera-
tively selecting and updating the population of design points
satisfying the search criteria. The candidate networks are
admitted into the eligible population according to perfor-
mance evaluation based on accuracy, latency, memory, and
energy estimations. After one generation of design points has
been evaluated, the new one is obtained as the composition
of the most accurate networks evaluated up to that point,
and of new network models obtained by randomly changing
the parameters of those most promising points. The possible
mutations considered in this work, based on the flexibility of
the procedure, and the structure of the SuperNetwork defining
the search space, involve the specific pre-processing pipeline,
the input and kernel size, the number of convolutional layers,
and their width. Thus, the GA evolves towards the selection
of the most suitable candidate points, by optimizing the vali-
dation accuracy within the defined constraints.

C. EVALUATION TOOLS
The Evaluation tools, exploited during the pruning and
refinement phases, are listed in the right column.

1) THE LATENCY ESTIMATION TOOL

The Latency estimation tool provides hardware performance
metrics based on the evaluated network’s parameters and the
target platform specifications [30]. The inference time on the
SensorTile is evaluated through a simple Roofline-based [31]
model. The model, shown in Figure 3, considers two distinct
performance roofs, assessed through benchmarking, for con-
volutional and fully connected operands: in the first case, the
maximum achievable performance is 0.64 ops/cycle, while in
the latter it is limited to 0.3 ops/cycle. The network’s latency
is obtained as the sum of each layer’s execution time, evalu-
ated as the ratio between the number of operations required
by the layer, and the corresponding achievable performance.
We assessed the average estimation error of around 25%,
by comparing the resulting estimations with on-hardware
latency measurements, on a set of 450 common convolutional
layers, and 60 fully connected layers.

The memory footprint is evaluated considering the selected
precision for the network’s parameters, and assuming a
double buffer mechanism for the activations. Finally, the
tool can be easily extended to provide energy consumption

40692

= Convolution Roof
=+ Gemm Roof

OPS/cycle

100 200 400 500 600

300
OPS/byte

FIGURE 3. Roofline model of the SensorTile platform, representing peak
performance roofs for convolution and gemm execution.

estimations, although we do not consider energy among the
hardware metrics in this work.

2) THE DETAILED TRAINING ENGINE

The Detailed training engine works on ONNX (Open Neural
Network Exchange) model descriptions [32] and provides
the possibility to explore the training hyper-parameters and
handle multiple input formats for different use-case con-
figurations, supported by the Dataset management plug-ins.
It also allows applying transfer learning techniques to pre-
trained models, further improving their accuracy [33]. Thanks
to the possibility to exploit data augmentation techniques, the
Detailed engine allows reaching higher accuracy values than
the one-shot training, although it requires a longer time.

3) THE QUANTIZATION ENGINE

The Quantization engine uses the NEMO (NEural Mini-
mization for pytOrch) framework [34]. It is based on PACT
(Parameterized Clipping Activations) quantization [35],
which replaces ReLU activations with a clipping function
between 0 and a maximum value, defined by the desired
number of representation bits. The network model result-
ing from such procedure presents quantized convolutional
weights, while Batch Normalization (BN) and ReLU oper-
ators along the architecture are replaced respectively with a
series of Mul/Add and Mul/Div/Clip operators, allowing for
intermediate quantized representations.

D. DEPLOYMENT

Finally, efficient and fast deployment is automated thanks
to a Python script for target-oriented Code generation. The
Python script generates a software application in C language,
that uses generic operators for NN and pre-processing func-
tions, which are linked to the specific target-compliant imple-
mentation. Based on the network model in ONNX format,
the tool provides the source code for inference execution
and appropriate parameters arrangement for the target library.
To briefly describe generation targeting SensorTile, inference
execution exploits CMSIS-NN library, modified to allow BN
and ReLU (or their quantized replacements) folding with the
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convolution operations, and to efficiently handle the quan-
tized models produced by the quantization tool.

VI. CNN SELECTION PROCEDURE IMPLEMENTATION

In the following, we present an efficient CNN selection pro-
cedure, representing our proposed design solution exploit-
ing the tools presented in Section V. We developed it to
provide an efficient co-exploration strategy, where both the
network topology and the pre-processing scheme are treated
as random variables by the evolution search. The motivation
for such an approach is further explored in Section VII-B.
We first describe a fast and simple implementation, resulting
in an architecture selection that ensures high accuracy and
efficient performance, while requiring a limited design time.
Finally, we present a more complex and accurate version,
aiming at improving the selection quality with more detailed
performance evaluations.

A. FAST IMPLEMENTATION

Figure 4a shows an overview of the simple version of the
network selection procedure, whose detailed implementation
is described in Algorithm 1. It can consider a set PP of pre-
processing pipelines, exploiting different feature extracting
functions and resulting spectrum resolutions. Furthermore,
it accepts a set of hardware constraints, setting a maximum
limit for the network’s memory footprint and execution time,
based on the target platform specification.

In Step 1, the SuperNetwork architecture, SN, is one-shot
trained exploiting the OFA utility [24]. The search space to
be explored is obtained through the Progressive Shrinking
procedure as the set N of all its possible sub-networks. If a
set of hardware constraints is provided, the search space is
restricted into one, denoted as N#., enforcing the memory
and latency restrictions. All the design points whose storage
requirements or inference latency exceed such constraints are
discarded, but first different levels of quantization are evalu-
ated, reducing the precision of either weights or activations
up to 4bit representation.
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In Step 3, the GA is executed. We consider popula-
tions made up of 100 network models, evolving to explore
G1 = 20 generations of design points, compliant with the
hardware constraints. Each generation preserves the 25 most
accurate network architectures of the previous one, while the
new candidate design points are obtained through random
mutation (50) and parameter crossover (25) of such best
design points. The possible mutations involve the network’s
depth, resolution, and pre-processing features, as well as
layer-wise kernel size, and channel width. The performance
evaluation in this step is based on the one-shot training
accuracy.

The selection of the optimal model is handled in Step 4.
The simplest design choice coincides with the selection
of the most accurate design point in the last generation
explored. Otherwise, a more in-depth analysis can be per-
formed, repeating a sequence of evaluation actions for a
desired number of iterations, denoted as iter in Algorithm 1:

« the last generation A¢ is ordered based on the predicted
classification accuracy (during the first iteration, such
value matches the one-shot accuracy);

o the most accurate CNN architecture is selected for
100 epochs Detailed training, where data augmentation
is applied to reduce the overfitting effect;

o the CNN architecture is quantized according to
the selected quantization policy, and retrained for
100 epochs to reduce the accuracy drop;

« retraining gain and quantization drop are evaluated and
exploited to improve the predicted accuracy of the archi-
tectures in Ag.

The value of ifer can be defined by the user, based on the
effort and compute time that he is willing to dedicate to the
selection flow. The case iter = 1 falls into the simple selec-
tion of the most accurate design point in the last generation,
while higher values of iter may require the definition of an
update-policy for the accuracy gain resulting from Detailed
training and the quantization drop. Different schemes can
be exploited. To provide an example, gain and drop can
be updated by: 1) considering the values evaluated for the
architecture with the closest memory footprint; 2) consid-
ering an average of the available values; 3) considering the
last evaluated value. After the last iteration, Step 5 performs
a final refinement on the selected architecture. This refine-
ment step can be preceded by a hyperparameters exploration,
to evaluate the configuration of learning rate and batch size
resulting in the highest accuracy.

B. ACCURATE IMPLEMENTATION

One possible flaw of the previously described procedure

derives from neglecting the effects of quantization on the

models’ accuracy during the evolutionary search. Such

effects are only considered during the final selection process.
As an alternative, we developed a more accurate version,

depicted in Figure 4b and described in Algorithm 2.
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Algorithm 1 Fast CNN Architecture Selection

Algorithm 2 Accurate CNN Architecture Selection

Input: PP(H, W, AudioProc), SN, hw(Mem, Texe)

Result: CNN architecture a

Step 1. OFA training;

fori e [1, p]do

| OFA_train(SN, PP;);

N = {N(PP1),...,N(PPy)};

Step 2. Population initialization;

Nx. = {n;| Mem*(n;),Texe(n;)) < hw(Mem, Texe)};

Ay ={ny,...,n00} with n; € Nx.;

Step 3. GA in HW-aware search space N %,

fori e [1,G]do

| Evolution_Search(A;, N.);

Ag;

Step 4. Quantization drop evaluation;

for i € [1, iter] do
Order(Ag, Accuracy);
Detailed_train(best(Ag));
g(PP;) = Evaluate_Gain;
Quantization((n, quant));
d(PP;) = Evaluate_Drop;
Adjust_accuracy(Ag, g(PP;), d(PP;));

a = best(Ag)

Step 5. Refinement for Accuracy;

return a

In this case, the GA in Step 3 explores a search space
N, which only admits the networks that fit in the memory
constraint when using 8bit representation, which has little or
no effect on the model’s accuracy and is the most common
deployment precision of the target library, CMSIS. This first
run of the evolutionary search is a preliminary step, exploited
to choose adequate design points to explore the achievable
gain, resulting from detailed training introducing data aug-
mentation, and the possible drop connected to quantization.
To this aim, we select from Ag, the CNN architecture having
the biggest footprint, among the network models within one
percent accuracy point from the most accurate one. This
choice follows the general assumption that a network with
a higher number of parameters can benefit more from the
training procedure. The analysis conducted in this step is
exploited as a prediction model for the networks requiring
quantization to fit the memory constraint and be included in
the search.

Therefore, in Step 4, the retraining gain and quantization
drop are evaluated separately for each of the pre-processing
pipelines. To reduce the training time on the Detailed engine,
which is critical to this implementation of the selection proce-
dure, we exploit a static augmentation of the training dataset.
Multiple copies of the dataset, enforcing different random
levels of data augmentation, are created, and alternatively
processed at each training epoch. Such a static augmented
dataset is saved and made available for the successive training
procedures, reducing the impact of the pre-processing opera-
tions on the training time. We found that such a solution does
not impact the final accuracy.
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Input: PP(H, W, AudioProc), SN, hw(Mem, Texe)
Result: CNN architecture a
Step 1. OFA train;
fori e [1,p] do
| OFA_train(SN, PP;);
N = {N(PP1),...,N(PPy)};
Step 2. Population initialization;
N: = {nj| Mem(n;),Texe(n;)) < hw(Mem, Texe)};
Ay ={ny,...,n00} with n; € N.;
Step 3. GA in HW-aware search space N¢;
fori e [1,Gi]do
| Evolution_Search(A4;, N,);
AGys
Step 4. Quantization drop evaluation;

D = {npp,, ..., I’lppp)} where npp, has biggest footprint in
AG,s
for n € D do

Detailed_train(n);
g(PP;) = Evaluate_Gain;
Quantization(n);
d(PP;) = Evaluate_Drop ={dy8ys, dxaw8, dxswa, dxawa};
Nx. = {n;| Mem*(n;),Texe(n;)) < hw(Mem, Texe)};
Al =Ag;
Step 5. GA in HW aware Search Space N *¢;
fori e [1, G2] do
L Adjust_accuracy(A}, g(PP), d(PP));
Evolution_Search(A;, Nx.);
a= best(A’Gz);
Step 6. Refinement for Accuracy;
return a

In Step 5, a second run of the GA is performed, starting
from the last generation Ag,, produced in Step 3, and includ-
ing in the new search space, N, the possibility to perform
quantization up to 4 bits. At this point, the ranking of the
architectures takes into account the effects of quantization on
their accuracy, as evaluated in Step 4.

After G, = 20 generations, the most accurate model, asso-
ciated to its pre-processing and quantization scheme, is cho-
sen as the optimal selection, and is retrained and refined,
in Step 6, to further improve its accuracy.

C. SELECTION TIME

We analyze here the required exploration time for the
described selection procedures. Table 2 lists the operations
performed according to the fast and accurate implementations
and provides a general estimate of their execution time, based
on measurements performed on NVIDIA Tesla T4, exploited
for the one-shot training, and on NVIDIA Tesla P100. For
each table entry, we report the corresponding time values,
which depend on the search parameters, more specifically on
the number of different preprocessing pipelines (|PP|) and
quantization levels (Q) considered, and on the number of
refinement steps performed until selection (iter). As can be
derived from the Table, the time required for the quantization
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TABLE 2. Step by step required exploration time for the accurate and fast
selection procedure, where the OFA training is executed on NVIDIA Tesla
T4, while the GA exploration and the detailed training are executed on
NVIDIA Tesla P100.

Step Execution Time
Operation Accurate Fast Accurate Fast
Selection Selection Selection Selection

OFA train 1 I 2h 30X [PP] 2h30x [PP]

GA 3 3 6h 6h
Gain eval 4 4 1h30x |PP)| 1h 30 x iter
Drop eval 4 4 2hx Q X |PP| 2h X iter

GA 5 - 6h -
Refinement 6 5 5h 5h

drop evaluation in the fast implementation does not scale with
the number of pipelines and quantization levels explored,
since it is only performed a selected number of times, iter.
For the use-cases presented in the following, where |PP| =
6 and Q = 4, the Gain/Drop evaluation requires 51 hours
in the accurate implementation, against 3h 30 needed in the
fast one (with an iter choice of 1). Furthermore, we also
mean to emphasize the substantial savings delivered by the
CNN topology/ pre-processing co-exploration. A separate
evaluation would in effect require repeating the topology GA
search on multiple design spaces, as many times as is the
number of pipelines considered, or assuming in advance a
given scheme, neglecting such an important design variable.
This would require 36 hours of GA exploration, against the
6 hours needed by the fast implementation. Thus, the fast
implementation allows a factor PP reduction of the required
exploration time after the one-shot training.

VII. EXPERIMENTAL RESULTS

The selection procedures described in the previous section
were exploited to design optimal CNN architectures in two
different scenarios, resulting from the hardware constraints
selection. We referred to the state-of-the-art for the con-
straints definition [4], [5], in order to enable a direct com-
parison with the literature dealing with NAS targeting KWS
applications. As anticipated in Section III, the search targets
the ST SensorTile, and enforces a latency and memory con-
straint, exploiting the latency prediction model described in
Section V.

A. SEARCH SPACE DEFINITION
The search space explores CNN architectures composed as
indicated in Table 3. Each network presents either 1 or
2 convolutional stages, separated by a MaxPooling layer. The
possible feature size within each stage is defined in column 5,
while column 6 reports the stage’s maximum depth. The num-
ber of convolutional layers in each stage ranges from 1 to Max
Depth. Possible channel width values are listed in column 3,
while considered kernel sizes are listed in column 4. Channel
width and kernel size values are set independently for each
convolutional layer. All the network configurations present a
final fully connected stage.

Six pre-processing pipelines, described in Section VII-B,
are considered, thus the training process at Step 1 of Algo-
rtihms 1 and 2 results in a set of over 330000 CNNs
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TABLE 3. Parameters of the CNN architectures which constitute the
Design Space for NAS targeting SensorTile.

Stage Operator Output Kernel Input Max
Features Size Size Depth
0 Conv 16/32/64 | 3x3/5x5 | 40x32/32x16 1
16x8
1 Conv 16/32/64 | 3x3/5x5 20x16/16x8 5
8x4

available for exploration, corresponding to all the combi-
nation of parameters in Table 3 for the six pre-processing
schemes.

B. PRELIMINARY PRE-PROCESSING EXPLORATION

Given the different choices of CNN input dimensions
exploited in the literature, we started our exploration pro-
cess by comparing different feature extracting functions
and resulting spectrogram’s resolutions, to preliminary esti-
mate the usefulness of the pre-processing choice’s adapta-
tion to different targets. Figure 5 shows the output of an
evolution search conducted on the search space defined in
Section VII-A. The search strategy does not enforce any
hardware constraint, but it is hardware-aware and evolves by
optimizing the design points to be Pareto optimal in terms
of classification accuracy and required execution time on
the target platform, based on the latency evaluation tool
described in Section V. We repeated the search process on six
distinct search spaces, each corresponding to a pre-processing
scheme choice, exploiting either Mel-spectrogram or MFCC
as feature extracting functions and resulting in 16 x 8,32 x 16,
or 40 x 32 input resolution. The dots in the figure represent the
Pareto optimal design points, obtained after 20 generations.
Each curve is defined by the input resolution and selected
feature extracting function. As can be derived from the plot,
the overall Pareto front would be made up of design points
exploiting different pre-processing schemes, showing their
impact both on the network’s performance and on its clas-
sification accuracy. For example, optimal points in the left
region are trained on 16 x 8 Mel-spectrograms, while in the
rightmost region of the plot the higher accuracy values are
reached thanks to 40 x 32 spectrograms.

Furthermore, Table 4 reports the execution time of online
pre-processing, measured on the target platform. The mea-
sured values do not include the evaluation time of the constant
parameters (e.g. the coefficients of the Mel filtering banks,
and the DCT matrix), which can be computed once at first
execution, and memorized for the successive iterations of the
audio processing. Such results show how the overall system’s
performance is impacted by this design choice, affecting the
overall latency of the KWS task.

Thus, we consider the pre-processing selection to require
careful evaluation as a part of the system design process, and
consider in the following its co-exploration with the topology
and quantization scheme.

C. USE-CASE 1
As summarized in Table 5, considering as a reference the
Medium size region defined in [4], we performed a CNN
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FIGURE 5. Comparison of the Pareto optimal design points resulting from
NAS based on distinct evolution searches considering pre-processing
schemes based on Mel and MFCC, with input resolution of 16 x 8,

32 x 16 and 40 x 32.

TABLE 4. Measured execution time for the considered preprocessing
schemes on ST SensorTile.

Pre-processing time
Mel 16x8 46 ms
MFCC 16x8 48 ms
Mel 32x16 94 ms
MFCC 32x16 98 ms
Mel 40x32 120 ms
MEFCC 40x32 132 ms
94 * A G design points ‘8
e selection (One-shot) 1
a1 #  selection (Detailed) i
o ‘

Accuracy
]

150 200 250 300 350
Latency ms

FIGURE 6. Fast selection output in 200kB - 20 MOPS search space. The
selected model is highlighted, and its final accuracy upon detailed
training is reported.

TABLE 5. Summary of search parameters for NAS targeting use-case 1.

Design Space Constraints Constraints Reference
MOPS: 20 [4], referred to as
as defined in Table 3 | Memory 200kB Medium region

obtained based on
model in Figure 3

Latency: 390ms

topology/ pre-processing scheme exploration, constrained by
a maximum memory footprint of 200 kB. The number of
operations is limited to 20 MOPS, corresponding to a max-
imum latency of 390 ms. Figure 6 reports the output of
the fast selection process. The most accurate design points
within the pruned pool of CNNs selected through the GA
run are depicted as bullets and placed based on their one-shot
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TABLE 6. Performance metrics summary for the selected design point
and the reference state of the art network, in the 200kB-20MOPS region,
expressed as percentage of the constraints value.

Network model | Accuracy | Latency | MOPS | Memory
CNNM [4] 92.2% 86.9% 86.5% 99.7%
fast selection 94% 95.8% 86.8% 60%
e fast design points »®
8 fast selection iter=1 ;
*T % fast selection iter=2 !
*
> i
g :
|
g :
<
920 L) . ° L ]
. L ) A TS
° r} . ° L] L]
100 125 150 Latel;:cy ms 200 225 250

FIGURE 7. CNN architecture fast selection output in 75.7kB - 13.6 MOPS
search space. The network models selected based on different choices for
the iter value are highlighted.

training accuracy and estimated latency. Considering an iter
value equal to 1, we select for refinement the network having
the highest one-shot accuracy, highlighted in the plot. The
selection output includes the pre-processing and quantization
scheme associated with the CNN topology: 8bit represen-
tation for both weights and activations, and Mel-based pre-
processing, resulting in 32 x 16 input spectrograms. The
selected network model is finally retrained on the Detailed
engine for 100 epochs, exploiting data augmentation through
random shifts and random noise addition, and then quan-
tized according to the directions resulting from the evolu-
tion search. Based on our hyper-parameters exploration, the
training exploits a learning rate value /r = 0.025, batch size
bs = 16, and SGD optimizer.

The co-exploration approach allows us to improve the
efficiency of the design process, since, as shown in Figure 5,
the pre-processing scheme’s impact on performance is deeply
connected with the search constraints, and consequently to
the CNN architecture to be deployed. Thus performing a
dedicated preliminary analysis is not only time-consuming,
as anticipated in section VI-C, but also very complex, espe-
cially when considering multiple constraints, like the infer-
ence time and the network’s storage requirements. As shown
in Figure 9, the selected architecture reaches 94% accuracy,
improving the reported state-of-the-art CNN model [4] by up
to 1.8% with 40% less storage space required for weights
and activations, while the number of OPS is increased by
0.3%, thus requiring a 10% higher latency. The results sum-
mary is reported in Table 6. The exploration process requires
around 30 hours, considering 15 hours of one-shot training
executed on NVIDIA Tesla T4 GPU, while the evolution
search and the Detailed training were executed on NVIDIA
Tesla P100 GPU.
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TABLE 8. Performance metrics summary for the selected design point
and the reference state of the art network, in the 75.7kB-13.6MOPS
region, expressed as percentage of the constraint value.

Accuracy

160 180 200 230 240 260
Latency ms

(a) Pareto plot of the pruned design space after Step 3. The me
exploited for the accuracy gain/drop evaluation, on pipeline ba
on Mel with 32x16 input resolution, is highlighted.

* A_G2 design points
e selection (prediction)
8 selection (Detailed)

Accuracy
J
.
o
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175
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(b) Pareto plot of the pruned design space after Step 5. The com-
parison between the predicted and training accuracy on the final
selection is highlighted.

FIGURE 8. Accurate selection procedure in 75.7kB - 13.6 MOPS search
space.

TABLE 7. Summary of search parameters for NAS targeting use-case 2.

Design Space Constraints Constraints Reference
MOPS: 13.6 [5], parameters of
as defined in Table 3 | Memory 75.7kB the selected network
Latency: 265ms obtained based on
model in Figure 3
D. USE-CASE 2

Table 7 reports the search parameters for a NAS pro-
cess performed considering as a reference the work of [5].
We defined a constrained search space limited by the number
of operations and the storage requirements stated for the
state of the art network: 75.7 kB and 13.6 MOPS. Such
an architecture achieves 95.55% accuracy, while its quan-
tized version, exploiting mixed data representation (2.91 bits
to represent activations and 2.51 bits to represent weights)
reaches 93.76% accuracy.

Figure 7 reports the output of the fast selection procedure.
We report two possible selections, respectively corresponding
to iter = 1 and iter = 2 values. As can be derived from
the plot, the second one results in a higher accuracy after the
detailed training and quantization process and is referenced
as the fast selection in the following. However, considering
the accuracy drop connected to the selected quantization
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Network model Accuracy | Latency | MOPS | Memory
Full precision [5] 95.55% 100% 100% 100%
Quantized [5] 93.76% 100% 100% 7.8%
accurate selection 93.9% 94.9% 85.9% 95.5%
fast selection 93.46% 98.2% 89.7% 80.2%

level, we also performed the accurate selection procedure
for this use case. The corresponding results are described
in Figure 8. In detail, Figure 8a represents the Pareto plot
of the most accurate design points belonging to the design
space after the GA run, performed as Step 3 of Algorithm 2.
They are depicted as grey bullets and placed according to
their one-shot training accuracy, and their estimated latency.
We highlight in the plot the design point corresponding to
the network model exploited for the quantization drop eval-
uation, in Step 4. Its accuracy projection after the detailed
training is also reported. The detailed training at this step
was performed for 100 epochs exploiting Ir = 0.025 and
bs = 16. Although only one design point is depicted in the
Figure, corresponding to the pre-processing pipeline based on
Mel resulting in 32 x 16 input resolution, the same gain/drop
evaluation is conducted for each of the pipelines considered.
The output of the last GA run, corresponding to Step 5,
is reported in Figure 8b. In this case, the design points are
placed according to their predicted accuracy, considering
the evaluated gain/drop corrections. The resulting selection,
having the highest predicted accuracy, is highlighted on the
plot. The predicted accuracy of the selected point is compared
to the one really achieved with the detailed training.

The CNN architectures selected as the result of both the
fast and accurate procedures are trained on Mel spectrograms
of 32 x 16 resolution, while different quantization policies are
suggested: the fast implementation results in 8bit representa-
tion for the activations, and 4bit representation for weights,
whereas the accurate one results in 8bit quantization for all
datatypes. Figure 10 and Table 8 report the comparison with
the CNN proposed in [5]. The refined accurate selection, after
additional 100 refinement training epochs in Step 6, results
in an architecture reaching an accuracy 0.14% higher than
the one of the quantized version of the reference state-of-the-
art architecture, although having higher storage requirements,
while neither of the selection procedures allows achieving the
accuracy of the full precision model.

Anyway, the fast procedure allows selecting an architecture
with an accuracy value only 0.34% points lower than the
accurate one, exploiting only 37% of the required exploration
time.

E. SELECTION’S QUALITY ASSESSMENT

To evaluate the quality of both selection procedures, we con-
sider one of the exploration trials performed for the use-
case 1 evaluation and report the detailed accuracy values
for all of the considered design points, obtained through
a full training exploration. Figure 11 reports the results of
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FIGURE 11. CNN architecture accurate selection output in 200kB -

20 MOPS search space. For each design point, the comparison among the
predicted accuracy values and the ones achieved after detailed training is
reported. The model selected by the accurate procedure is highlighted,

as well as the optimal one based on the results of the full exploration.

such extended exploration, showing, for each of the design
points, the accuracy after one-shot training, as well as its
predicted and real value upon detailed training exploiting data
augmentation. As can be derived from the plot, the drop/gain
prediction can be applied with sufficiently precise results.
However, due to some inaccuracy of the one-shot evaluation,
both the fast and accurate procedures result in the selection of
a design point that does not improve as much as it is expected
with the detailed training. Since this is not captured by the
gain/drop evaluation, not even the accurate selection matches
the overall best architecture, highlighted in the plot, instead,
it requires 38% higher inference time, and has 0.3% lower
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FIGURE 12. CNN architecture fast selection output in 200kB - 20 MOPS
search space. The highlighted models represent the final selection
resulting from an iter value of 1, and of 3, corresponding to the optimal
one evaluated through the full exploration.

accuracy. However, as shown in Figure 12, referring to the
fast implementation, a value of ifer = 3 would be sufficient to
find the optimal solution. In this case, the required processing
time would slightly increase to 45% of the accurate imple-
mentation one, thus still allowing for significant savings.

VIIl. CONCLUSION

We presented an efficient CNN design procedure, combining
NAS and quantization, for target-oriented optimal network
selection, through the co-exploration of the CNN topology,
and the pre-processing and quantization schemes. We also
provide a more accurate exploration procedure, responding
to the need of accounting for the quantization’s effect on the
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accuracy in order to define a proper ranking of the considered
architectures. We tested both the accurate and fast imple-
mentations of the proposed procedure, considering network
design targeting a KWS task running on the ST Sensor-
Tile, and considering two different use-cases posing different
latency and memory constraints. Through an automated and
flexible design procedure, we obtained CNN architectures
that can be compared to the CNN state of the art in the KWS
field, providing up to a 1.8% accuracy improvement and a
40% footprint reduction. As a further future development,
this approach could be extended to other applications fields
requiring similar design evaluations based on hardware and
performance constraints, and grow to include more detailed
performance models.
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