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ABSTRACT Vision-based object detection is an essential component of autonomous driving. Because
vehicles typically have limited on-board computing resources, a small-sized detection model is required.
Simultaneously, high object detection accuracy and real-time inference detection speeds are required to
ensure safety while driving. In this paper, an anchor-free lightweight object detector for autonomous driving
called ALODAD is proposed. ALODAD incorporates an attention scheme into the lightweight neural
network GhostNet and builds an anchor-free detection framework to achieve lower computational costs
and provide parameters with high detection accuracy. Specifically, the lightweight backbone neural network
integrates a convolutional block attention model that analyzes the valuable features from traffic scene images
to generate an accurate bounding box, and then constructs feature pyramids for multi-scale object detection.
The proposed method adds an intersection over union (IoU) branch to the decoupled detector to rank the vast
number of candidate detections accurately. To increase the data diversity, data augmentation was used during
training. Extensive experiments based on benchmarks demonstrate that the proposed method offers improved
performance compared to the baseline. The proposed method can achieve an increased detection accuracy
while meeting the real-time requirements of autonomous driving. The proposed method was compared with
the YOLOVS and RetinaNet models and 98.7% and 94.5% were obtained for the average precision metrics

AP50 and AP75, respectively, on the BCTSDB dataset.

INDEX TERMS Autonomous driving, deep learning, lightweight, object detection.

I. INTRODUCTION

Autonomous driving will change the way we travel in the
future and will be vital to the development of national and
global economies. Commercial applications of autonomous
driving have been realized for specific scenarios to date.
However, because the current technology directions are
mainly based on lidar, the system cost is high, and large-
scale deployment cannot be realized in this way. Vision-based
methods have become a research hotspot because of their low
cost. Object detection is one of the most important aspects of
the development of this technological approach. Object detec-
tion methods can help autonomous vehicles (AVs) detect
and recognize traffic signs, signal lights, pedestrians, and
vehicles in traffic scenes automatically and can then transmit
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the results to the vehicle’s decision-making module to ensure
that the vehicle is driven safely and in accordance with traffic
rules.

In recent years, many algorithms have demonstrated good
object detection performances based on deep learning. How-
ever, the detection of objects in real traffic scenes remains a
challenge. Some researchers have used complex models to
obtain a high traffic object detection performance. However,
because the on-board computational resources of vehicles
are limited, these complex models cannot be deployed in
embedded devices, or they are unable to achieve real-time
detection during autonomous driving. Improving the detec-
tion accuracy of such a model when deployed on an on-board
computing unit remains challenging.

Large and complex models are difficult to apply to AVs
because they have insufficient on-board memory and comput-
ing power. Scenarios in autonomous driving typically require
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low latency and fast response speeds. Thus, the aim of this
paper is to propose an object detection model that can realize
the high detection accuracy required while maintaining small
parameter sizes for autonomous driving applications.

To solve the problems described above, a lightweight
detection framework based on a single stage was proposed.
The contributions of the proposed method are as follows:
(1) It improves an existing lightweight backbone network
based on GhostNet [1]. The method integrates an attentional
mechanism into the GhostNet backbone network, which can
improve the network and allow it to focus on the objects to
be detected, and uses a feature pyramid network for multi-
scale detection. (2) A novel complete intersection over union
(CIoU)-aware head based on an anchor-free detector and a
new confidence calculation method are designed to enhance
the correlation between object classification and localization.
(3) A data augmentation approach driven by complex traffic
scenarios was used to provide a more diverse dataset for
training.

The remainder of this paper is organized as follows.
In Section 2, we introduce related works on object detec-
tion in recent years. The details of the proposed method are
presented in section 3. Section 4 focuses on the implementa-
tion of the proposed method and compares it with previous
methods. Section 5 summarizes the conclusions of the work
completed in this study and suggests future development
directions for this work.

Il. RELATED WORK

A. OBJECT DETECTION

Traditional object detection (using histograms of oriented
gradients plus a support vector machine (HOG [2] +
SVM [3]) approach) works by selecting candidate regions
from a given image, extracting features from these regions,
and then classifying these features using a trained classifier.
In recent years, the rapid development of deep convolutional
neural networks has led to performance improvements in the
object detection field. In general, deep learning-based object
detection methods can be divided into two types: single-stage
methods, such as you only look once series (e.g., YOLO
vl [4], YOLO v2 [5], and YOLO v3 [6]), the single shot
multibox detector (SSD) [7], and RetinaNet [8], and multi-
stage methods, such as the two-stage region convolutional
neural network (R-CNN) series [9]-[11], and cascade R-
CNN [12]. The detection speeds of multi-stage methods make
it difficult to achieve real-time detection, whereas one-stage
detection algorithms can greatly improve the operating speed
based on the premise that high accuracy is ensured.

In recent years, researchers have begun to focus on the
application of object-detection methods to AVs. Wang et al.
[13] proposed an improved faster R-CNN for traffic sign
detection. Han et al. [14] used a revised faster R-CNN for
small traffic sign detection. These studies achieved high
detection accuracy, but the detection speeds when used on
traffic scenes demonstrated the limitations of these meth-
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ods. He et al. [15] used a one-stage detector called YOLO-
MXANet to perform small object detection in traffic scenes
to improve detection speed. Based on mask R-CNN, the mask
scoring (MS) R-CNN approach [16] uses a mask IoU head to
learn the predicted mask quality and then obtain a new net-
work structure that combines the characteristics of the exam-
ple with the corresponding predictive mask to enable regres-
sion to the mask IoU. Jiang et al. proposed IoU-Net [17] to
improve the interpretability of the regression by proposing an
IoU-guided non maximum suppression (NMS) to introduce
localization confidence as an ordering index in the NMS, and
proposed an optimization-based bounding box refinement to
replace the traditional regression-based method. Fan et al.
[18] used CornerNet [19] with foreground attention to detect
traffic objects. Xu et al. [20] used the center-based detection
algorithm, FCOS [21], to detect objects in mobile scenarios.
Some of the detection methods described above have already
been applied to AVs.

However, there is still a problem regarding the low corre-
lation between the classification score and localization accu-
racy. Generally, the final scores of the predicted boxes used
in NMS are taken from the classification scores alone, and
the localization information is not considered. In Figure 1, C
represents the classification score. A high classification score
with low IoU bounding boxes (Fn) cannot accurately repre-
sent the location information of an object, and it suppresses
accurate boxes with high IoU (7n) values during NMS when
only classification scores are used for the final scores. This
mismatch problem between classification and localization
causes anchors with high IoU values but low classification
scores to be filtered during the NMS. In this study, we propose
a novel traffic object detection model to solve this problem.

B. FEATURE EXTRACTION
Feature extraction is an essential step for object detection.
Traditional feature extraction methods are based on the use
of handcrafted features. Yao et al. [22] proposed a traf-
fic sign feature extraction method based on HOG features.
Pedro et al. [23] proposed a deformable part model (DPM) to
extract object features for both vehicles and pedestrians. The
performance of these traditional methods is limited because
they lack the ability to acquire spatial and semantic informa-
tion. Their slow extraction speeds and low representational
abilities cannot meet the requirements of autonomous driving
systems. In recent years, deep convolutional neural network
(CNN) algorithms have been widely used for feature extrac-
tion applications because of their competitive performance.
Additional feature extraction networks based on deep
learning have been proposed based on AlexNet [24], which
has a relatively small receptive field because of its limited
network depth and the number and size of its convolution
kernels. The visual geometry group network (VGGNet) [25]
simplifies the network design workflow by increasing the
network depth and stacking small convolutions to expand the
receptive field, reduce the number of network parameters,
and stack the same types of network blocks repeatedly. The
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FIGURE 1. Mismatch problems between classification and localization. “C” represents the classification score.
“F"” means the final inaccurate detect boxes with higher classification score than “T” boxes but suppress the
accurate “T” boxes with higher loU during non-maximum suppression.

network in network [26] structure first uses a global average
pooling layer to replace the fully connected layer and then
uses a 1 x 1 convolution layer to learn a nonlinear combi-
nation of the feature graph channels, which has become the
mainstream method for feature fusion. GoogLeNet [27] uses
convolution kernels of different sizes to provide enhanced
multi-scale detection capabilities. However, the large number
of required parameters limits the computational power of
this network. Residual networks (ResNets) [28] introduced a
residual block to reduce the gradient disappearance problem
in deeper neural networks, thereby allowing these networks
to acquire deeper features. Jung et al. [29] used ResNet
to perform vehicle classification and localization in traffic
surveillance systems.

The networks described above are not designed for use
in mobile or embedded devices. Improvements in calcula-
tion accuracy also cause excessive memory consumption and
computing power mismatch. The aim of this study is to design
a more efficient network by reducing the number of network
parameters without compromising network performance.
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MobileNet [30] is a convolutional neural network pro-
posed by Google that is small in size and less computa-
tionally expensive, and is thus suitable for use in mobile
devices. MobileNet uses depth-wise separable convolution
and width multiplication to reduce the number of required
network parameters. The depth-wise separable convolution
method decomposes a standard convolution into depth-wise
and point-wise convolutions. The number of floating-point
operations (FLOPs) of a standard convolution is given by
K>MHWN , whereas that of the depth separable convolution
is given by (K2+M) HWN.

depthwise + pointwise (K2 + M) HWN 1 1
cony ~ KMHWN M K?

ey

In the general network architecture, M (number of output
feature channels) > K2 (convolution kernel size squared)
(eg, K =3 and M > 32), and H, W, N are defined
as the height, width, and number of channels, respectively.
Biswas et al. [31] used an SSD and MobileNet to perform
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automatic traffic density estimation. ShuffleNet [32] mainly
uses channel shuffle methods, point-wise group convolutions,
and depth-wise convolution to modify the original residual
blocks, thus reducing the number of arguments and compu-
tations required. Chen et al. [33] proposed an efficient neural
network to perform point cloud analysis by shuffling the fea-
ture channels to capture fine-grained features. Although the
models above can achieve better performance when imple-
mented under a lightweight network framework, there is a
lot of redundancy between feature maps, which increases the
calculation of the feature map, and most of these calculations
are redundant. GhostNet was proposed as a new end-to-side
neural network architecture intended to use the redundancy
between the feature graphs to generate feature graphs at a
lower cost, as illustrated in Fig. 2. It use ““cheap operation”
to alleviate the increased computation due to content redun-
dancy between feature maps of the same layer, which can
reduce the computation and improve the detection speed of
the model while maintaining the same detection accuracy.
Based on the original feature image, the algorithm uses linear
transformation to generate ghost feature maps that can extract
the required information from the original feature maps with
lower computational costs.

The main purpose of these lightweight networks is that they
are designed to perform classification tasks and do not have
the ability to identify local features. In this study, we focus on
ways to improve the representation of local region features in
lightweight networks.

lll. PROPOSED METHOD

The method proposed in this study is based on an anchor-free
approach that can reduce the number of calculations caused
by the use of an anchor, with the aim of making the detection
method move further toward high real-time accuracy.

The proposed method is illustrated in Fig. 3. The network
architecture can be divided into three parts: backbone, fea-
ture pyramid network, and prediction head. We integrated
the convolutional block attention model (CBAM) [34] into
GhostNet to generate the attention map sequentially along
the channel-wise and spatial-wise dimensions, which can find
the attention region and extract its features more effectively
in a lightweight manner in autonomous driving scenarios.
The prediction head is built on the feature pyramid net-
work, which consists of two branches: one branch is used
for regression, including bounding box localization and IoU
prediction processes, and the other is used to perform classifi-
cation. We separate the classification and regression tasks into
two independent sub-networks and then add a synchronized
CloU-aware head to the tail of the regression branch to solve
the mismatch problem.

A. LIGHTWEIGHT BACKBONE NETWORK

Convolutional neural networks usually require a large num-
ber of parameters and floating-point operations (FLOPs) to
achieve high accuracy. GhostNet can reduce the number of
computational steps required to generate feature maps at
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TABLE 1. Overall architecture of our backbone network.

Operator Out_channel Stride
Conv2d 3x3 16 2
GhostA bottleneck 16 1
GhostA bottleneck 24 2
GhostA bottleneck 24 1
GhostA bottleneck 40 2
GhostA bottleneck 40 1
GhostA bottleneck 80 2
GhostA bottleneck 80 1
GhostA bottleneck 80 1
GhostA bottleneck 80 1
GhostA bottleneck 112 1
GhostA bottleneck 112 1
GhostA bottleneck 160 2
GhostA bottleneck 160 1
GhostA bottleneck 160 1
GhostA bottleneck 160 1
GhostA bottleneck 160 1
Conv2d 1x1 256 1

lower computational costs. In addition, GhostNet eliminated
some of the same feature maps in subsequent steps without
losing any information, thus providing a more efficient way
to generate feature maps.

GhostNet can solve the computational redundancy prob-
lem of traditional convolution operations; however, it ignores
the need for effective feature extraction. In this study, we inte-
grated CBAM into GhostNet to enhance the object area in the
feature map. CBAM is an attention mechanism that combines
spatial M, (F) and channel attention M. (F) information,
which is defined as follows:

M, (F) = o (MLP (AvgPool (F)) + MLP (MaxPool (F)))
(2)

where o denotes the sigmoid function, F denotes a fea-
ture map, MLP is a multilayer perceptron, and AvgPool and
MaxPool represent average pooling and maximum pooling,
respectively.

M, (F) =0 (f7X7 ([AvgPool (F) ; MaxPool (F)])) (3)

where o denotes the sigmoid function and f7*7 represents a
convolution operation with a filter size of 7 x 7.

The proposed module composed of CBAM is shown
in Fig. 4. Although its small model representation abil-
ity is weak and the upper limit of the potential perfor-
mance is reduced, the experimental results show that the
Ghost module with CBAM can provide stable performance
improvements with only a small number of additional cal-
culations. The architecture of the proposed backbone net-
work is shown in Table 1. Here, Conv2d nxn represents
a standard two-dimensional convolutional layer with an
nxn kernel size. GhostA represents the Ghost attention
bottleneck.
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FIGURE 2. GhostNet Module. The top part is the standard convolutional layer, and the bottom part is the Ghost
module for outputting the same number of feature maps. ¢ represents an inexpensive operation.
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FIGURE 3. Architecture of the proposed detector. P3 to P7 denote the feature maps used for the prediction. H and W are the height and width of feature

maps.

B. MULTI-SCALE DETECTION

The overlap between different ground truths may cause ambi-
guity that is difficult to handle during the training process.
This ambiguity leads to a reduction in the detector perfor-
mance. In this study, we show that the multiscale prediction
method can effectively solve this problem. Following the
approaches of the feature pyramid network (FPN) [35] and
pyramid attention network (PAN) [36], the method in this
study uses different levels of feature layers to detect objects of
different sizes. We constructed a pyramid with five-scale fea-
ture maps{P3, P4, Ps, P¢, P7}, where the subscripts indicate
the pyramid levels. P3, P4 and P5 were extracted using the
backbone network layers {C3, C4, Cs} and by performing a
top-down convolution to reduce the degradation that occurred
as the depths of the convolutional layers increased. Pg, P7
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were processed using a 3 x 3 convolution with two strides
from Ps, Pg, respectively. Multilevel detection shares infor-
mation between the different feature layers, which can make
the detector parameters more efficient and thus improve the
detection performance.

C. CIOU-AWARE DECOUPLED HEAD

In object detection, the models that perform classification and
regression tasks are relatively independent. A classification
step is performed to divide the objects by category, and a
regression step is performed to predict the locations of the
objects. These two tasks differ in their functionality and
complexity. The different tasks should be completed using
different branches. However, one-stage detection models,
such as the YOLO series, are in a process of continuous
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FIGURE 5. Training curves for detectors with YOLOv3 head or decoupled
head which verifies that use of the decoupled head for the single-stage
model improves the convergence speed.

evolution, which means that their detector heads remain cou-
pled. Inspired by the segmenting objects by locations (SOLO)
[37] instance segmentation algorithm, we propose a new
detection head for object detection. As shown in Fig. 3, this
involves using a decoupled head to replace the coupled head.

The decoupled head contained a convolutional layer with a
1 x 1 kernel to reduce the number of channels, and this layer
was followed by two parallel branches. The classification
branch contained two convolutional layers, and the regres-
sion branch contained four convolutional layers. Experiments
have verified that the use of the decoupled head for the
single-stage model significantly improves the convergence
speed, as illustrated in Fig. 5.

The low correlation observed between the classification
score and localization accuracy reduces the dense object
detection capability of the detector. This mismatch problem
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between classification and localization causes only the clas-
sification confidence to be used for bounding box sorting
in NMS, which means that anchors with high IoU and low
classification scores will be filtered.

To solve this mismatch problem, the proposed method
adds a synchronized subnetwork at the end of the regression
branch. Specifically, the CloU-aware head adds classification
branch feature maps to increase the impact of classification
on IoU predictions. This approach was used to assist in
calculating the anchor score in the final NMS step. Therefore,
the complete prediction head contained two subnetworks and
three heads. The final score S.onr of the anchor used in the
final NMS step was obtained by adding the classification
confidence to the IoU predicted by inference.

Sconf =ap; + (1 - 0‘) CIOUi (4)

The parameter « here is a control coefficient used to bal-
ance the classification result and predict the CloU [38] in the
range [0, 1]. Sconr considers the impact of both classification
and localization on the inference results and reflects both the
category and location information of the object, which is a
more accurate detection confidence that can meet the object
detection task requirements. S¢y, is used in NMS and can
reduce the ranking of object detection with a high classifica-
tion score and poor localization by altering the influence of
the classification and localization on the score value.

In the proposed method, we used CIoU for bounding box
regression and a CloU-aware head. CIoU solves the problem
in which it is not possible to directly optimize the parts in
which the bounding box and ground truth do not overlap.
The distance between the two boxes, overlap rate, scale, and
penalty terms are all considered, making the bounding box
regression more stable as a result. This can also prevent diver-
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gence during the training. The loss function of CIoU adds the
impact term Bv based on the loss function of the distance-
IoU (DIoU) [38], which considers the length-to-width ratio
between the predicted and ground-truth boxes.

The CloU is defined as:
0? (bi, b‘ft)
CIOU,'ZIOUI'——Z—,BV (5)
G
V
S 6
p (1 —=1IoU;j) +v ©

4 ’ W‘lg[ " wi 2 (7)
V= —7 arctan—_ - | — arctan—
72 hlgt h;

where f is a trade-off parameter and v is a parameter used to
measure the consistency of the aspect ratio. Furthermore, p(-)
is the distance between the central points of the two boxes,
and c is the diagonal length of the smallest enclosing box that
covers the two boxes.

The loss functions of the proposed model are as follows:

N
1 R
L = 5 D FL(pi. pi) ®)
i
N 2 (p, b’?")
1 o ( i» Uj
Lioe = Yo 1—loUi+ ——5—=+pv (9)
Pos iePos Ci
1 N
Linw = 5 3" BCE (CIoU,-, CIOU,-) (10)
Pos iePos
Actotal = Ecls + L:loc + ﬁiou (11)

The total loss function of the proposed model comprises
the following three parts: The first is the classification loss
L5, which includes focal loss (FL). L, is part of the CloU-
aware head, which includes the binary cross-entropy loss, and
Lioc is part of the bounding box regression. L, and L;,, are
only computed for positive examples.

D. DATA AUGMENTATION

Deep convolutional neural networks have been successfully
applied in the field of computer vision. This type of network
is data-driven and requires a large quantity of training data.
As the depth of network architecture increases, an increas-
ing number of parameters must be learned. In the proposed
method, traditional global pixel augmentation methods (e.g.,
random scaling, cropping, translation, shearing, and rotation)
were used to enhance data diversity. We also used data aug-
mentation methods that have been proposed in recent years,
as illustrated in Fig. 6; for example, MixUp [39] mixes two
random samples proportionally, and the classification results
are then distributed proportionally; Cutout [40] replaces the
sampled regions at random with zero-pixel values, and the
ground truth remains unchanged; CutMix [41] fills parts of
other images from the training dataset into the sample, and
the ground truth is then distributed with a certain proportion-
ality. This can improve the robustness of the model without
incurring additional cost.
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IV. EXPERIENCE AND RESULTS

A. DATASET AND EVALUATION METRICS.

The common objects in context (COCO) [42] datasets were
used to evaluate the generalization ability of the model,
and the BCTSDB [43] and KITTI [44] datasets were used
to test the model’s detection ability in traffic scenarios.
BCTSDB is a traffic sign dataset that includes 15,690 images
and 25,243 annotations with 14121 training images and
1569 test images, and has labels that are divided into three
categories: prohibitory, mandatory, and warning. The KITTI
dataset includes three categories, comprising vehicles, pedes-
trians, and cyclists, and consists of 7481 training images and
7518 test images, with 80,256 labelled objects in total. In this
study, all of our experiments followed the COCO format. The
training set was randomly selected from the dataset and the
remainder was used as the test set. The training set was used
to train the model and the test set was used to test the model
performance. The final experimental results were obtained by
repeating this operation thrice and averaging the results.

The experiment used the average precision (AP) to com-
pare the different models and their respective accuracies,
including AP (IoU =.50-.95), APsy (IoU =.50), AP75 (IoU
=.75), AP, (large, area > 96%), APy (medium, 32 2 < area
< 962), and APs (small, area < 322), followed by the COCO
evaluation format. Both recall and precision are considered
during the calculation of the AP, which takes the average
value of the precision rates at each recall point over a range
from O to 1. Precision is the ratio at which the original object
is detected accurately, and recall is the proportion of labeled
objects in the image that are detected correctly. AP to AP75
considers accuracy from the perspective of IoU, and APg to
AP, evaluates model performance from the scale diversity of
objects.

When compared with the original convolution, the theoret-
ical speed-up ratio of the Ghost module is given by

n-h-w.c-k-k

oW ock k4 (s—1)-
c-k-k N

%~c-k~k+%-d~dws+c—l

rs =

“hw-d-d

“ |3

~s o (12)

where d x d has a similar magnitude to k x k, and s < c.
Here, k x k represents the convolutional kernel size, /' and
w’ give the height and width of the output data, respectively,
d x d represents the linear operation kernel size, and N is the
channel number of the feature maps. The Ghost module has
1 identity mapping and m-(s—1) = %-(s—1) linear operations.
In this study, we used d = 3 and s = 2 in the following
experiments for both the effectiveness and efficiency.

B. UNIT VALIDATION EXPERIMENT

The experimental parameters are presented in this section. All
experiments in this study used the same computational hard-
ware to demonstrate the performance of the proposed method.
The computer was configured using two NVIDIA TITAN V
graphics cards, with a total of 24 GB of video random access
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FIGURE 6. Data augmentation for traffic object. On the basis of commonly used data augmentation, Cutout, Mixup and CutMix were

used to increase variety of image data.

TABLE 2. Detection results based on the BCTSDB dataset.

Model Params(M)  FPS mAP (%)
YOLOV3 61.9 55.8 58.5
YOLOV3-SPP 63.0 55.7 59.5
YOLOV3-GhostNet 23.49 62.5 63.8

memory (VRAM). The network structures were implemented
using PyTorch. The default hyper-parameters used in the
proposed method and other SOTA object detection methods
are the same as those used in MMDetection [45]. The input
images were resized to a maximum of 640 x 640 pixels
without changing the aspect ratio. The backbone networks of
the different methods were pre-trained using the ImageNet
dataset. Other settings for all experiments were consistent
with MMDetection unless otherwise specified. For the pro-
posed method, the initial learning rate was set at 2.5 x 10’2,
and the warm-up ratio was set at 0.1.

To test the effectiveness of GhostNet, we replaced Darknet
in YOLOv3 with GhostNet and compared the results obtained
with those from the original YOLOvV3 and YOLOv3-SPP.
As shown in Table 2, the experimental results proved that
GhostNet can provide significant improvements in terms of
the number of parameters required, computational complex-
ity, and accuracy.

The results of the comparison of the different models on the
COCO-val dataset are shown in Table 3. These results show
that the CloU-aware approach with a decoupled head can
improve the correlation between localization and classifica-
tion, and can thus effectively improve the detection accuracy.
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The score for each anchor was calculated using Sconr. The
hyper-parameter « is used to balance the effects of classi-
fication and regression. We evaluated different o values on
the COCO-val dataset. Experiments showed that the best
performance was obtained at « = 0.5. In particular, when
o = 1, this means that the classification alone is used
for the confidence calculation, whereas the influence of the
bounding boxes is not considered. The experimental results
in Table 4 show that the performance at @ = 1 is not as high
as that when o takes other values, indicating the effectiveness
of the CloU-aware method.

The results in Table 5 show that the proposed Ghost
attention bottleneck can achieve a better performance than
the other models in the ImageNet dataset. The visualization
results for our proposed model (Ghost attention bottleneck)
with a baseline (GhostNet) are illustrated in Fig. 7. The first
row shows the original images of traffic signs in the BCTSDB
dataset. The second row shows the visualization results for the
baseline, and the third row shows the visualization results for
the proposed model. The figure clearly shows that the Ghost
attention bottleneck can cover the object region to be detected
and provide a better performance than the baseline model.

Ablation experiments are performed to verify the effec-
tiveness of the proposed module. The CloU-aware decoupled
head, data augmentation, and anchor-free model were gradu-
ally added to the YOLOv3-GhostNet 1.1x baseline. The same
parameters and training schemes were used in each ablation
experiment. The ablation results for the COCO dataset are
listed in Table 6. Owing to factors such as density and small
objects on a single image in the dataset, most detection algo-
rithms achieve low accuracy on the COCO dataset. In the
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TABLE 3. Comparison of the different methods on the COCO-val dataset.

Model Head Backbone AP (%) APso (%) AP5 (%) FPS
YOLOV3 Coupled DarkNet-53 21.6 44.0 19.2 56
RetinaNet Decoupled ResNet-50-FPN 359 55.8 38.4 52
CloU-aware RetinaNet CloU-aware ResNet-50-FPN 37.1 56.3 405 52
Decoupled head
TABLE 4. Effectiveness of different coefficients on the COCO-val dataset.
a AP (%) APs (%) AP75(%) APs (%) APy (%) AP (%)
1.0 349 52.2 374 16.7 38.4 46.8
0.7 35.8 53.1 38.5 18.1 39.9 49.5
0.5 36.0 52.8 39.0 18.4 40.2 50.0
0.3 359 51.6 39.2 18.2 40.1 50.2
TABLE 5. Classification results with different attention module when using the light-weight network on ImageNet[24] dataset.
Model Attention Parameters (M) FLOPs(M) Top-1 Acc. (%) Top-5 Acc. (%)
MobileNetV1 0.7x None 2.30 283 65.1 86.3
MobileNetV1 0.7x SE 2.71 283 67.5 87.5
MobileNetV1 0.7x CBAM 2.71 289 68.5 88.5
GhostNet 1.0x None 5.08 141 71.5 89.7
GhostNet 1.0x SE 5.20 141 73.9 91.4
GhostNet 1.0x CBAM 5.20 147 75.1 91.9
TABLE 6. Ablation experiments on COCO val dataset.
Methods Parameters (M) FLOPs (G) AP (%) AR™10 (94) AR™edum (94
YOLOV3-GhostNet 1.1x 3.74 6.76 23.7 289 32.6
+ CloU aware decoupled head 4.6 (+0.86) 9.66(+2.9) 25.8(+2.1) 32.8(+3.9) 35.5(+2.9)
+anchor-free 4.46 (-0.14) 8.96(-0.7) 26.4(+0.6) 37.3(+4.5) 42.4(+6.9)
++data augmentation 4.46 (+0) 8.96(+0) 28.8(+2.4) 39.1(+1.8) 442(+1.8)
table, AR is the average recall because we used the COCO TABLE 7. Experimental results on COCO val dataset.
format to evaluate different methods. AR™=10 means AR
given 10 detections per image, and AR™4U™ means AR for Model AP (%)  Params.(M)  FLOPs(G)  FPS
medium objects (32% < area < 962). As can be seen from YoloV3-Tiny 16.6 3.86 5.62 64
the results listed in the table, the component CloU-aware YoloV4-Tiny 21.7 6.96 6.06 51
d led head hor-f del d dat tati YOLOX-Tiny 32.8 5.06 6.45 59
( ecouple €ad, anchor-iree model, an ata augmer_lleg 10N YOLOV5-s 36.7 730 17.1 62
improved the AP by 2.1%, 0.6%, and 2.4%; AR™*='Y by YOLOV3- 30.1 3.74 6.76 68
3.9%, 4.5%, and 1.8%; and AR™4U™ by 2 9%, 6.9%, and MobileNetV2
Ours. 332 6.95 5.97 72

1.8%, respectively.

C. OVERALL VERIFICATION EXPERIMENT

To verify the generalization of the model, we compared
the performance of the proposed model with those of other
models on the COCO-val dataset, as presented in Table 7,
which lists the detection results based on the YOLO series.
The experiments demonstrated that our model remains com-

VOLUME 10, 2022

petitive on common datasets. Compared with YOLOv3-
MobileNetV2, our methods can improve the detection accu-
racy by 3.1% while increasing the detection speed because of
fewer computations. Although our method is 3.5% lower than
YOLOvVS5-s in terms of accuracy (mean AP or mAP), it offers
advantages in terms of both the parameters and computation.
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[

FIGURE 7. Visualization of feature maps. The first row shows the original images. The second row shows the
visualization results for GhostNet and the third row shows the visualization results for our proposed model.

TABLE 8. Experimental results on BCTSDB val dataset.

Model Backbone Params. (M) FLOPs(G) AP (%) APs (%) AP (%) APs(%) APy(%) AP (%) FPS
Faster R-CNN[11] ResNet50 60.52M 121.84 70.2 94.7 86.0 65.3 76.5 84.5 28
Cascade R-CNN[12]  ResNet50 68.93M 118.81 75.8 96.7 92.5 72.9 79.3 89.2 23
RetinaNet[8] ResNet50 37.74M 95.66 59.7 89.4 71.2 472 72.5 83.3 52
YOLOV3[6] Darknet53 61.95M 78.22 59.5 92.7 70.4 54.2 70.1 83.8 56
FCOS ResNet50 31.84M 78.67 68.6 95.8 83.9 62.7 75.7 83.9 61
YOLOV5-m CSPDarknet 21.2M 49.0 79.3 99.1 95.2 - - - -
YOLOX-s[46] CSPDarknet 9.0M 26.8 77.2 95.7 91.6 75.4 79.6 85.4 53
YOLOv3[6] Mobilenetv2 x1.0 3.74M 6.76 50.5 90.2 51.4 43.8 63.8 75.8 68
YOLOX-s[46] Mobilenetv2 x1.0 3.91M 5.87 75.2 96.3 91.4 73.7 77.3 83.7 63
Ours. Improved GhostNet  6.95M 597 78.6 98.7 94.5 75.1 82.6 88.4 72
80 B
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£ 504 = . o El ;
40 Ty fﬁ" 5 f
30 - l‘\«; —— Qurs. ‘I — Qurs.
B N — YOLOv3 I YOLOX mobile
(a)y — YOLOv3 mobile (b) —— YOLOX
20 T T T T T 50 T T T T
0 100 200 300 0 100 200 300
Epoch Epoch

FIGURE 8. mAP curves for the different methods on the BCTSDB dataset. The figure shows that the proposed algorithm has high accuracy and

can converge faster.

Specifically, the computational cost of our method is one-
third of that of YOLOvV5-s, which means that the proposed
method is more competitive in lightweight object detection
applications.

The results of the comparisons between the performances
of the different methods are presented in Table 8, which lists
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the detection results that include those for the multi-stage
algorithms (faster R-CNN, cascade R-CNN) and the single-
stage algorithms (RetinaNet, FCOS, YOLOvS5, YOLOv3,
YOLOX). Our method achieved high detection accuracy with
fewer parameters, which yielded more competitive results,
with AP, AP50, and AP75 values of 78.6%, 98.7%, and
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TABLE 9. Experimental results on KITTI val dataset.

Car Pedestrian Cyclist
Methods Easy(%) Moderate(%) Hard(%) | Easy(%) Moderate(%) Hard(%) | Easy(%) Moderate(%) Hard(%) Time (ms)

Regionlets[47] 84.75 76.45 59.70 73.14 61.15 55.21 70.41 58.72 51.83 -
Faster R-CNN[11] | 87.97 79.11 70.62 78.97 65.24 60.09 71.40 61.86 53.97 142
Sensekitti[48] 94.79 93.17 84.38 82.72 68.41 62.72 82.90 73.48 64.03 -
Mono3D[49] 84.52 89.37 79.15 80.30 67.29 62.23 77.19 65.15 57.88 -
MS-CNN[50] 93.87 88.68 76.11 85.71 74.89 68.99 84.88 75.30 65.27 -
SSD[7] 87.34 87.74 77.27 50.38 48.41 43.46 48.25 52.31 52.13 30
YOLOV3[6] 84.37 77.69 75.62 82.58 76.29 73.36 85.14 80.07 77.65 28
ASSDI[51] 89.28 89.95 82.11 69.07 62.49 60.18 75.23 76.16 72.83 30
RFBNet[52] 87.31 87.27 84.44 66.16 61.77 58.04 74.89 72.05 71.01 23
Ours. 94.48 91.03 82.05 85.32 78.31 76.29 83.04 81.54 78.76 19

FIGURE 9. Detection Results on KITTI dataset. The above figure shows the proposed algorithm accurately
detecting objects in a traffic scene on the KITTI object detection dataset.

94.5%, respectively. A comparison with generic multi-stage
networks and single-stage networks shows that our method
has the advantages of low computational requirements and
a low number of parameters that allow it to overcome the
memory limitations in the autonomous driving field. Com-
pared with some lightweight networks, including the original
YOLOX-s, YOLOv3, and YOLOX with the MobileNetv2
lightweight backbone network, our method can obtain higher
detection accuracy. It is evident from the results that our
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method can achieve a performance comparable to that of
YOLOVS with alow number of parameters and computations.

The mAP curves for the different methods when applied to
the BCTSDB dataset are shown in Fig. 8, demonstrating that
the proposed model converges more rapidly and has a higher
AP value.

We also evaluate the proposed method using the KITTI
dataset. As shown in Table 9, the detection accuracy of the
proposed method is significantly improved compared to that
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FIGURE 10. Detection Results on BCTSDB dataset. The above figure shows the proposed method can
stably and accurately detect traffic signs in different backgrounds.

of the existing algorithms. The size of the image used in
this part was the same as that of the original dataset.. Our
method also demonstrated the shortest processing time while
maintaining high detection accuracy.

Fig. 9 and 10 show the detection results obtained for
the KITTI and BCTSDB datasets, respectively. The results
clearly show that our method can effectively detect objects in
traffic scenes.

D. DISCUSSION

In AVs, real-time performance and accuracy are two impor-
tant performance indicators. This ensures that the AVs detect
objects quickly and accurately and make autonomous driving
safe. The main purpose of the proposed method is to improve
the model in two aspects. In the unit validation section,
we verified the effectiveness of the proposed module Ghost-
Net with attention, CloU-aware decoupled head, anchor-free,
and data augmentation. The overall section compares the
proposed method with a lightweight detection method on
public datasets. The results show that the number of param-
eters of our proposed method is slightly improved, and the
two important indicators of detection accuracy and real-time
performance are improved, which can promote the reliability
of vision-based object detection algorithms in autonomous
driving systems. Although the proposed method has been
improved compared to other existing methods, it also faces
many problems. For example, the verification of the current
algorithm is based on public datasets, whereas in actual traffic
scenarios, the influence of weather, illumination, and other
factors reduces the generalization ability of the detection
model. It will take years to the fully automated environment,
in such a mixed (AVs and human-driven vehicles) traffic
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scene at present, the relationship between visual perception
objects among multiple vehicles is a challenging problem.

V. CONCLUSION

In this study, we propose an anchor-free lightweight object
detector for autonomous driving applications. The detector
can achieve a high detection accuracy and trade-off with a
small-sized model. The approach incorporates an attention
scheme in a lightweight neural network called GhostNet and
adds an IoU branch to the anchor-free decoupled detector
to rank the large number of candidate detections accurately.
Data augmentation is used to enhance the robustness of the
detection model in real-world scenarios. Extensive experi-
ments on COCO, KITTI, and BCTSDB datasets verified the
effectiveness of the proposed algorithm.

Furthermore, the proposed method achieved high detection
accuracy when using a small size detection model; when
applied to real traffic scenarios, the interference in real com-
plex scenarios is not considered. In future work, ALODAD
will be improved by the application of specific data augmen-
tation methods or domain adaptation techniques.

A. ABBREVIATIONS

Abbreviations  Full Name

AR Average Recall

ARMax=10 AR given 10 detections per image

ARmedium AR for medium objects
(322 <area<96?)

AP Averaged AP at IoUs from 0.5 to
0.95 with an
interval of 0.05
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APsg AP at IoU threshold 0.5

AP75 AP at IoU threshold 0.75

AP AP for objects of large scales
(area>962)

APy AP for objects of medium scales
(322 <area<962)

APg AP for objects of small scales
(area<32?)

AVs Autonomous Vehicles

BCTSDB BUU Chinese Traffic Sign Detection
Benchmark

CBAM Convolutional block attention model

CloU Complete IoU

DIoU Distance-IoU

FLOPs Floating-point operations per second

FPN Feature pyramid network

GhostA Ghost attention bottleneck

HOG Histogram of Oriented Gradients

ToU Intersection over union

NMS Non-Maximum Suppression

SOTA State-of-the-art

SSD Single Shot multibox Detector

SVM Support Vector Machine

VRAM Video random access memory

YOLO You Only Look Once
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