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ABSTRACT Protection and control systems represent an essential part of distribution networks by ensuring
the physical integrity of components and by improving system reliability. Protection devices isolate a portion
of the network affected by a fault, while control devices reduce the number of de-energized loads by
transferring loads to neighboring feeders. The integration of distributed generation has the potential to
enhance the continuity of energy services through islanding operation during outage conditions. In this
context, this study presents a multi-objective optimization approach for sizing and allocating protection and
control devices in distribution networks with microgrids supplied by renewable energy sources. Reclosers,
fuses, remote-controlled switches, and directional relays are considered in the formulation. Demand and
generation uncertainties define the islanding operation and the load transfer possibilities. A non-dominated
sorting genetic algorithm is applied in the solution of the allocation problem considering two conflicting
objectives: cost of energy not supplied and equipment cost. The compromise programming is then performed
to achieve the best solution from the Pareto front. The results show interesting setups for the protection system
and viability of islanding operation.

INDEX TERMS Distribution systems, microgrids, protection system planning, non-dominated sorting
genetic algorithm, compromise programming.

I. NOMENCLATURE

A. SETS AND INDICES

β Set of sections defined by reclosers and fuses.
δ Set of sections defined by reclosers.
π Set of branches within each section.
σ Set of branches within each microgrid.
τ Set of branches within each AS’s transfer area.
9 Set of all devices installed.
M , m Set and index of microgrids.
S, s Set and index of scenarios.
W , w Set and index of ASs.

The associate editor coordinating the review of this manuscript and

approving it for publication was Arturo Conde .

Y , y Set and index of the planning period.
f Branch in short-circuit.
k Type of device: 1, recloser; 2, fuse; 3, AS; 4 IID.
tc Type of customer: residential R, commercial C ,

and industrial I .

B. VARIABLES AND FUNCTIONS
Cmψ Annual maintenance cost of a device ψ .
I ti,y,s, I

p
i,y,s Sum of section i and downstream loads

during year y and scenario s for temporary
and permanent faults, respectively.

IOGi,y,s,m Sum of loads within microgrid m in section
i, year y and scenario s.

IOi,y,s Microgrids’ loads in section i, year y,
and scenario s.
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nk Number of installed devices type k .
Si,y,s Sum of transferred loads downstream

ASs within section i, year y, and scenario s.
SWi,y,s,w Sum of transferred loads downstream the

AS w, within section i, year y, and scenario s.
Ty, Py ENS during temporary and permanent faults

in the year y.

C. PARAMETERS

λth, λ
p
h Failure rates of temporary and permanent faults

per km year of the branch h.
ϒk Maximum number of devices type k .
Ca,Ci Acquisition and installation costs.
IRR Internal rate of return
Lh Length of the branch h in km.
t tR, t

p
R Time of power outage during temporary and

permanent faults.
tSw Time of power outage until the system’s operator

restoring the loads by using ASs.

II. INTRODUCTION
The traditional fault isolation and supply service restoration
methods are essential for planning a distribution network
to reach good reliability indices. Isolation methods include
circuit breaker, reclosers and fuses action, while restoration
methods comprise manual and automatic switches operation.

About 80% of faults occur in the distribution network,
where approximately 75-90% are temporary in nature [1]. For
this reason, reclosers play the important role of mitigating
temporary failures in fast trip mode. If the fault becomes
permanent, the recloser changes its operation mode, allowing
fuses closer to the fault melt first, minimizing the impact on
the system. Permanent faults, although less frequent, have a
greater impact on the service interruption for customers, dras-
tically increasing the amount of energy not supplied (ENS).
During permanent faults, automatic switches (AS) available
in the network could change their status by the system’s
operator and transfer part of the interrupted loads, into not
faulted feeder sections, to neighbor feeders.

The integration of distributed generation (DG) brings sev-
eral benefits and new challenges to distribution companies.
A potential advantage is the islanding operation of DG units
with part of the distribution network loads, operating as a
microgrid [2]. However, the microgrid must have an adequate
control system to guarantee the quality of energy supply to
customers, in addition to safety when reconnecting with the
distribution system. This strategy enables a substantial reduc-
tion in customer service interruptions during fault conditions.
Therefore, the emergence of distribution systems with dis-
tributed generators and advanced autonomous systems offers
a valuable opportunity to improve reliability through the
islanding operation of microgrids [3], [4].

Several works consider the optimal allocation of protec-
tion and control devices without DG to improve the system

reliability, [5]–[16]. In the last decade, the integration of
DG units in distribution systems has grown exponentially,
bringing several publications approaching the optimal allo-
cation of protective devices in distribution networks with
DG units [17]–[26]. However, just a few works consider
the technical differences between dispatchable and renewable
DG [23], [24], [26].

Some works consider the islanding operation [18]–[24],
[26], while a few publications consider the demand and gener-
ation uncertainties to allow the operation of microgrids [26].
Most countries do not allow the DG islanding operation,
despite the benefits that this technique can provide. The most
common technical barriers comprise dualmodes of operation,
quality and control of energy, and problems of protection
systems [2]. However, some papers in the literature have
shown promising results in these topics [4], [20]–[24], [26].
Therefore, the islanding operation can be an attractive alterna-
tive to maximize the DG benefits and improve the distribution
system’s reliability.

A summary of the main features from specialized liter-
ature review is shown in Table 1. Protection and control
include devices such as circuit breakers, reclosers, fuses,
ASs, and island interconnection devices (IID). DG units are
categorized as dispatchable (D) and renewable (R), where the
second one depends on the power output uncertainties. The
reliability indices considered in the literature review includes
the cost of energy not supplied (CENS), system average inter-
ruption duration index (SAIDI), system average interruption
frequency index (SAIFI), momentary average interruption
frequency index (MAIFI), and the average system interrup-
tion duration index (ASIDI).

This work proposes an optimal allocation method of
protection and control devices in distribution networks,
considering the islanding operation and load transference
possibility in a multi-objective approach. Unlike [5]–[8],
[10]–[15], [17]–[21], this work includes DG units from dif-
ferent technologies.

DispatchableDGunits can easily operate in islandedmode,
whereas renewable DG units, like photovoltaic (PV) andwind
turbines (WT), depends on the associated uncertainties to pro-
vide the necessary power output to the load demand. In [26],
the authors define the microgrid zone manually, considering
a sum of total loads that can be easily supplied by the DG in
island mode. In [23], the island operation using dispatchable
or renewable DG units depends on the probability to generate
power greater than or equal to a certain level. In [24], the
island operation depends on the DG capacity and DG utiliza-
tion, while [25] consider the DG capacity and voltage profile.
However, evaluate the necessary energy during the island
operationmust be considered in renewable DG units to ensure
a safer island operation since the associated uncertainties
could provide lower power than the microgrid’s demand,
directly affecting the quality of energy supply and the micro-
grid’s stability. The inclusion of batteries increases reliability
in such conditions. Therefore, in contrast to [23]–[26], proper
islanding operation in microgrids powered by renewable
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TABLE 1. Main features from specialized literautre review.

DG units is ensured by comparing the necessary energy
during outage conditions and the available energy from all
distributed energy sources within the microgrid, including
battery energy storage systems (BESS). All issues mentioned
above have not been simultaneously addressed yet.

The main contributions of this work are the following:
1) The sizing and allocation of all traditional protec-

tive and control devices: reclosers, fuses, and sec-
tionalizing switches. The recloser’s protection zone is
expanded during temporary faults, increasing the relia-
bility indices. Furthermore, the proposal considers the
fuse-save scheme and load transference to neighbor
feeders;

2) The use of dispatchable and renewable DG units, tak-
ing into account their power output uncertainties. For
example, solar irradiation for PV units and wind speed
for WT units. Generation and demand uncertainties
are carried out using historical data classified by the
k-means method;

3) The inclusion of IID to provide the possibility of
islanded operation using DG units with part of
distribution network loads as a microgrid. This strategy
provides dual operation modes, allowing microgrids to
change their status during temporary and permanent
fault conditions. For microgrids supplied by intermit-
tent generation, the islanded operation is strictly subject
to the balance of energy available from distributed
energy resources and microgrid’s demand;

4) A fuzzy inference system (FIS) to estimate the batter-
ies’ state of charge (SoC) during the entire year. The
fuzzy sets and fuzzy rules are adjusted using neural
network tuning techniques. Associated uncertainties
are used as input data, and the batteries’ SoC from an
optimal power flow model is considered output data.
Also, a comparison is performed solving the allocation
problem using batteries’ SoC from both methods;

5) NSGA-II is implemented to solve the allocation prob-
lem of protective and control devices. The proposed
method includes variable crossover and mutation rates
and elitism strategy. NSGA-II generates efficient solu-
tions while the compromise programming (CP) finds
the best compromise solution among them, where
the equipment cost and the CENS are the conflicting
objectives.

III. METODOLOGY
In the problem for allocating protection and control devices,
the best place to install each type of device is found by reduc-
ing outage impacts and equipment cost and by maximizing
the reliability indices. Such devices have different behaviors
and costs to mitigate faults.

A. PROTECTION DEVICES AND ISLAND OPERATION
Fuses are the most basic protective equipment in distribution
networks. If a fault occurs downstream of a fuse, the high
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short-circuit current flowing through the circuit heats the
fuse link and causes it to melt, de-energizing downstream
loads [20]. This type of equipment is helpful during perma-
nent faults mainly because its low acquisition cost. However,
fuses can also melt during temporary outages, unnecessarily
de-energizing downstream customers. Therefore, reclosers
play an important role in distribution networks with fuses by
the fuse-save scheme. On the other hand, fuse-blow scheme
melts the fuse first than reclosers’ trip. Such technique
reduces the MAIFI, but at the cost of increasing the SAIDI.
The fuse-blow scheme is used in regions with high short-
circuit currents, where the coordination cannot be realized.

A recloser is an ASwith instantaneous and temporary over-
current relays, ANSI 50/51, and a reclosing relay, ANSI 79.
Instantaneous recloser’s characteristic includes a predefined
number of operations. The recloser opens the circuit to reduce
the fault propagation during permanent faults, and the circuit
remains opened until the maintenance team fix the problem.
During temporary faults, the recloser’s protective zone is
expanded overlapping the protection zone of downstream
fuses [21]. This scheme protects the fuse frommelting during
temporary faults.

Fig. 1 shows an example of a distribution system includ-
ing a circuit breaker with reclosing function installed in
branch 1 or B1, ASs in B19 and B88, a fuse in B32, and an IID
in B37. If a fault occurs downstream of the fuse, the recloser
in B1 will trip before the fuse melts. After a predefined
sequence of operations, the recloser blocks the instantaneous
function and operates slowly than the fuse, allowing it to melt
first.

AS is used by the system’s operator to isolate a fault
or transfer loads to neighbor feeders. After the recloser’s
trip during a permanent fault within its protective zone, the
system’s operator can open the AS in B19 and close the AS
in B88, transferring the loads to feeder 2 and reducing the
number of disconnected customers.

IID is a bidirectional automatic recloser with reclosing
function subjected to the synchronization verification [21].
This equipment is responsible to identify upstream faults and
perform the microgrid’s island operation. Dispatchable DG
units can operate in island mode with voltage and frequency
levels within limits set by regulatory agencies. Renewable

FIGURE 1. Example of an electrical distribution system.

DG units have their power output depending on the gener-
ation uncertainties. For instance, a PV unit with an adequate
capacity could supply a microgrid if the solar irradiation pro-
vides sufficient power to the microgrid’s loads. However, the
associated uncertainties could provide lower power than the
microgrid’s demand, directly affecting the quality of energy
supply and the microgrid’s stability. Therefore, renewable
DG units are not allowed to operate in islanded mode, except
in cases of renewable DG with BESS, where its operation
mode depends on the batteries’ SoC.

B. UNCERTAINTY MODELLING
The growth of demand in distribution networks and its
behavior during the year are uncertain. Renewable DG units
also present uncertainties in their power output. Thus, based
on [27], a set of scenarios for load demand, solar irradiation,
wind speed, and SoC are generated from annual historical
data of stochastic parameters to predict the hourly behavior
throughout a year (8760 hours).

The estimation of batteries’ SoC is based on the scenar-
ios of demand, energy price, in addition to irradiation and
wind speed due to PV and WT units, respectively. A fuzzy
decision-making approach is proposed to achieve the SoC in
each scenario. The fuzzy inference system (FIS) is shown in
Fig. 2. Each input variable is represented by three triangular
membership functions (MF).

The SoC from an entire year, obtained from the optimal
power flow (OPF) model in [28], [29], is also used for tun-
ning the FIS parameters using a neuro-fuzzy designer tool
in MATLAB R© environment [30]. Thus, 81 rules are created
for the model structure considering the four inputs mentioned
above. Besides, the output MF type is linear. Three days of
each month are considered to train the FIS to reduce the
computational response during the tuning process. Finally,
the annual hourly SoC can be estimated and applied to the
k-means method joint with the other parameters.

Fig. 3 shows the proposed structure process. Initially, all
stochastic parameters are normalized, dividing each one by
the maximum value. The annual historical data is divided into
two seasons (time blocks), summer andwinter, corresponding
to the months April-September and October-March, in that
order. Each time block presents two sub-blocks, day and
night.

FIGURE 2. SoC estimation using a Fuzzy inference system.
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FIGURE 3. Scenario generation process.

The user must define the number of clusters. Each cluster
represent a part of the stochastic parameters during the year.
Thus, the k-means method is applied to each sub-block to
reduce the stochastic parameters to the predetermined num-
ber of clusters [30]. As a result, the k-means method presents
the centroids of each cluster. Finally, these centroids generate
the set of scenarios.

C. OBJECTIVE FUNCTION AND CONSTRAINTS
The mathematical model comprises two conflicting objective
functions (OFs), the CENS and costs of all protective and con-
trol devices (1). The equipment cost includes the acquisition,
installation, and maintenance of each protective device.

Min OF (f1, f2) =
{
CENS Cequipment

}
(1)

The CENS in (2) is based on [21]. This OF evaluates the
CENS considering for each year y of the set Y . Ty and Py
can be estimated in (3) and (4), in that order. Section is
defined as a set of branches and buses belonging to a device’s
protective zone. The sum of loads I ti,y,s, I

p
i,y,s, IOi,y,s, and

Si,y,s are previously multiplied by the demand factor in the
scenario s. Functions in (5) and (6) are subjected to (7) and
(8) in that order. Such constraints are related to cases of fault f
within the microgrid zone and AS transfer area, respectively.

CENS =
∑

tc∈{R,C,I }

Cetc
∑
y∈Y

Ty + Py
(1+ IRR)y

(2)

Ty =
∑
s∈S

∑
i∈δ

∑
h∈π i

(λphLht
t
R)
[
I ti,y,s − IOi,y,s

]
(3)

Py =
∑
s∈S

∑
i∈β

∑
h∈π i

(λphLh)
[(
Ipi,y,s−IOi,y,s−Si,y,s

)
tpR

+ Si,y,stSw
]

(4)

IOi,y,s =
∑
m∈M

IOGi,y,s,m (5)

Si,y,s =
∑
w∈W

SW i,y,s,w (6)

IOGi,y,s,m = 0, f = h∀h ∈ σm (7)

SW i,y,s,w = 0, f = h∀h ∈ τw (8)

The total equipment cost is calculated as given in (9),
subjected to the amount of protection devices limited by the

user, as shown in (10). The number of acquired and installed
devices are represented by ω1 and ω2, in that order.

Cequipment =
∑
i∈ω1

Cai +
∑
i∈ω2

Cii

+

∑
y∈Y

∑
ψ∈9

Cmψ
(1+ IRR)y

(9)

nk ≤ ϒk (10)

Every solution must have a recloser in the first branch.
Besides, fuses cannot be installed in the main feeder nor
upstream reclosers and IIDs. Therefore, there is no bidirec-
tional flow through these devices.

The proposed formulation is based on the following oper-
ation strategies:

1) IIDs are configured to act and isolate the microgrids
first than reclosers during faults in the distribution net-
work. This strategy guarantees the continuous supply
of energy to the microgrid loads;

2) During faults inside the microgrid, the local protection
sensibilizes first than other protection devices, discon-
necting the DG units and sending a signal to open
the switch at the PCC. This strategy improves system
reliability by reducing the de-energized area;

3) Microgrids supplied by renewable DG can operate in
islanded mode if the energy necessary in the i-th sce-
nario plus the power losses are less than the energy
available from distributed energy resources within the
microgrid;

4) All pairs of protection devices are coordinated and have
selectivity between them. Therefore, the fuse-blow
scheme is an uninteresting solution, and it is not con-
sidered in this work.

D. COMPROMISE PROGRAMMING
The evaluation of both proposed OFs is achieved using the
CP method, which is applied to solve simultaneously two
objectives into a single OF [27]. Thus, the NSGA-II is pro-
posed to achieve efficient non-dominated solutions.

The CP identifies the closest-to-ideal solutions through
some distance measurement. These closest solutions are
called compromise solutions and are formed from the non-
dominated set, �, provided by NSGA-II method. Thus, the
solution with the smallest length is presented to the decision-
maker. Therefore, the CP seeks the compromise solution
among the objectives of a multi-criteria decision-making
problem.

The proposed OF in (1) must be normalized, as in (11),
weighting the objectives according to their importance, where
Ls is the distance metric.

Min Ls (x) =
K∑
j=1

(
αj
)s ( fj,max − fj (x)

fj,max − fj,min

)s
, ∀x ∈ �

subject to: 1 ≤ s ≤ ∞
∑K

j=1
αj = 1 (11)
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In (11), K is the number of objectives and αj is the weight-
ing factor for objective j, while fj,max and fj,min are the best and
worst values of the j-th objective. The parameter s reflects the
importance of themaximumdeviation, while the parameterαj
reflects the relative importance of the j-th objective.

E. NSGA-II
The process of natural selection and evolution of species in
nature is a consequence of a stochastic optimization process
in a given environment and in real-time. GA is inspired by
the natural selection process, where a chromosome represents
a solution to the optimal allocation problem and its alleles
represent the allocating of the protective devices on each
branch of the distribution network [13]. Thus, the strongest
individuals survive during the optimization process by trans-
mitting to their descendants the best genes through genetic
operators such as selection, crossover, and mutation.

An integer chromosome codification is considered, where
the chromosome length depends on the number of distribution
network branches. Numbers from one to four indicate the
protection devices, while zero indicates no device allocated.

The selection stage consists of randomly choosing two
pairs of individuals from a population P and comparing their
quality (OF value). The best individual from each pair goes
through the crossover process. In this stage, genetic material
is exchanged between selected individuals. Genes are ran-
domly mixed, creating a new pair of individuals that compose
the new population. The crossover process is variable, ran-
domly modifying the individual genes. The crossover rate,
ρc, can vary according to (12). Such an approach prevents
exploration restricted only to local solutions.

ρc = kcmax −
CSS
i

ηp
(kcmax − k

c
min) (12)

In (12), the number of similar solutions is represented by
CSS
i in the i-th generation, i.e., similar solutions concern-

ing other population individuals, ηp, based on chromosome
comparison. The adjustment factor kcmin defines a minimum
crossover rate to the GA process, while kcmax is a maxi-
mum rate. Thus, the crossover process starts at high rates
and decreases as the population loses its diversity. Before
including the crossover individuals in the new population, the
mutation process begins. The population mutation rate in (13)
can also vary according to the same concept given in (12),
where the superscriptm is employed to represent themutation
parameters. Unlike the crossover process, the mutation rate
increases as similar individuals in the population increase.

ρm = kmmin −
CSS
i

N
(kmmin − k

m
max) (13)

The elitism technique allows a more efficient exchange
of genetic material between population individuals and
is frequently applied in the specialized literature [13].
In the proposed methodology, elite solutions represent
1% of the current population. Such settings are updated

every generation. GA runs until it reaches the stop criteria.
Thus, the best solution is presented.

Generally, GA improves one or several objective func-
tions using a function weighting system. In the second
case, GA must run several times to find a set of efficient
solutions [31]. Different from GA, NSGA-II can find
a set of non-dominated solutions running once through
a non-dominated sorting procedure for fitness assign-
ments [32]. Crossover and mutation operators are the same
in NSGA-II, while the selection operator presents additional
procedures based on the non-dominance level and crowd dis-
tance between other solutions [33]. Fig. 4 shows the flowchart
of the proposed methodology.

NSGA-II starts generating and evaluating a random pop-
ulation Pt , t = 0. Every evaluation process compares and
stores the best fitness for each OF. Then, the offspring popu-
lationQt is generated, evaluated, and combined with Pt into a
single double-size population, Rt . The next step evaluates the
dominance level of Rt using a counter, np. A non-dominated
solution is not worse than others in all objectives and is
better than others in at least one objective [32], presenting
np = 0. All solutions not dominated by any other individuals
are assigned to the best rank, front number 1, while other
individuals are transferred to other frontiers according to their
dominance level. Fig. 5 shows the non-dominated sorting
procedure and the crowding distance sorting.

The population to the next generation is selected from Rt
according to the frontier level, in ascending order. Since Rt
is 2N , the last frontier Fc to be included may not fit into
the new population. Then, individuals from such front are

FIGURE 4. Flowchart of the proposed solution method.
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FIGURE 5. Non-dominated sorting procedure and th crowding distance
sorting.

selected using the crowded-comparison operator in descend-
ing order, as shown in Fig. 5. The crowd distance is the
Euclidian distance between neighbors in the same frontier,
calculated as in (14), where i+ 1 and i− 1 are the neighbors
from solution i.

di =

√√√√ p∑
k=1

(
f i+1k − f i−1k

fmax
k − fmin

k

)2

(14)

The OF k belongs to the OFs’ set p. The crowded-
comparison operator provides a good spread between solu-
tions from the Pareto Front, promoting better options to the
decision-maker.

Finally, the next iteration starts with the new popula-
tion, and the process repeats until the algorithm reaches the
stop criteria. In Fig. 4, P′t contains all individuals from the
c − 1 best frontiers, and P

′′

t contains the best solutions from
the frontier Fc based on the crowded-comparison operator.
The best fitness of each OF and the non-dominated solutions
from the last population represent a compromise solution
of the user-defined set �. Thus, the CP method evaluates
this set and presents the best compromise solution to the
decision-maker.

IV. NUMERICAL RESULTS
A135-bus unbalanced distribution system has been employed
to evaluate the proposed methodology, as shown in Fig. 6.
This adapted network has 13.8 kV and 8.028 MVA. The
planning horizon was established 20 years. Also, the demand
increase is 2% per year, and the IRR is 5%. The recloser
time is 0.01 hours for two reclosing shots in temporary
faults (t tR). Thereafter, the instantaneous function is blocked.
If necessary, the recloser trips again and takes 4 hours of
average repair during permanent faults (tpR). The restoration
time is 0.08 hours, which represents the time to the sys-
tem operator control the necessary ASs and transfer loads
to neighbor feeders (tSw). Each bus’s demand consump-
tion and ENS cost are divided as follows: 50% residential
with $1.5/kWh, 30% commercial with $3/kWh, and 20%
industrial with $4.64/kWh. The equipment cost is shown
in Table 2 [21].

TABLE 2. Costs of protection devices.

Five DG units are installed in the 135-bus system, where
two are supplied by synchronous DG units (SG), two by pho-
tovoltaic panels, and one by a full-converter wind DG. Also,
two BESS are installed near renewable DG units. BESS1 and
BESS2 have 0.5 MW and 1 MW, respectively. SG units have
1.2 MVA capacity, while PV and WT units have 0.6 MVA.
The power factor of dispatchable SG units is 0.92, while for
PV and WT units, it is 0.98 and 0.90, respectively. Neighbor
feeders 2 and 4 have 1.2 MW of available capacity, while
feeders 3 and 5 have 0.75 MW. The power output calculation
from PV and WT units considering associated uncertainties
is based on [34].

Scenarios from solar irradiation and wind speed are taken
from [35]. The set for load demand is taken from [36], and
the energy price is taken from [37]. Protective devices are
limited to 6 reclosers (R), 15 fuses (F), 4 AS, and 5 IID. The
equipment cost of each device depends on its nominal current.

The proposed method is implemented in C++ general
programming language due to its speed and computational
efficiency.

A. CONVERGENCE CAPABILITY, TUNING PARAMETERS,
AND RESULTS OVERVIEW
The convergence capability and tuning parameters of the
proposed methodology are evaluated using the hypervol-
ume metric [38]. The hypervolume indicator, HV, is a well-
knownmethod for assessingmulti-objective optimizers. Such
a method calculates the region enclosed by the Pareto Front
solutions and a reference point. Usually, the reference point is
the anti-ideal solution, i.e., the worst value from each objec-
tive function [39]. Posteriorly, HV is calculated by dividing
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FIGURE 6. Distribution test system.

the region above Pareto Front solutions and the entire area,
computed using the ideal solution and the reference point.

Fig. 7 shows the Pareto Front for different runs, each of
them considering a different number of generations (G) and
population size (P). The similarity between most Pareto Front
solutions and the HV indicators highlights the proposed
methodology’s capability. Tests performed highlight that the
number of generations and population size equal to or higher
than 50 and 100, respectively, can achieve a HV higher than
0.85. The increase in the number of generational cycles and
population size raises the HV. This value begins to stabilize
for G and P greater than or equal to 200 and 1000.

The main differences between HVs are related to solver
finding individuals with the lowest cost in one objective
in contrast to other. For example, Run 6 presents a better

FIGURE 7. Pareto Fronts and their respective hypervolumes (HV).

HV regarding Run 5 because some solutions have lower
equipment costs (see red circle). Thus, despite solutions in the
middle of Pareto Front being better in Run 5, Run 6 presents
slightly better HV using a lower population size.

Tests performed in this study have average computational
times varying between 4 seconds (G10; P 100) and 14.5 min-
utes (G300; P1500). Computation times depends mainly on P
and G values. Such time can take 30 minutes (G300; P1500)
for tests which save all solutions found by the solver, as shown
in Fig. 8.

The test with better hypervolume, Run 1, is chosen to
detail in this section. Therefore, the number of generations
and population is defined as 300 and 1500, respectively.
Maximum and minimum mutation and recombination rates
are defined before using the same technique, and their values
are 0.9, 0.5, 0.1, and 0.025, in that order.

FIGURE 8. Solutions found by NSGA-II.

VOLUME 10, 2022 41783



C. Reiz et al.: Multiobjective Approach for Optimal Placement of Protection and Control Devices

All solutions found by NSGA-II are shown in Fig. 8.
Solutions highlighted in dark blue represent the set � or
Pareto Front between both objectives CENS and equipment
cost. Such a set includes 300 non-dominated solutions. Col-
ors green, yellow, red, and orange represent the studied
cases I, II, III, and IV, in that order, also belonging to the
Pareto Front. Other individuals, highlighted in light blue,
were evaluated during the resolution process.

Solutions with similar equipment costs can reach a CENS
difference of around $299,000, while solutions with sim-
ilar CENS can reach an equipment cost difference of
$455,000, as shown in Fig. 8. Maximum andminimum values
from CENS and equipment cost are $564,684, $111,483,
$428,057, and $37,085. The individual with the highest
CENS is also a non-dominated solution. Such individual has
merely the substation protection, R1. On the other hand,
the individual with the highest equipment cost is dominated
by other solutions. The cost of each control or protective
device depends on the nominal current. Therefore, solutions
with higher equipment costs include the maximum number
of devices allowed and are installed in branches with higher
current flow.

Fig. 9 shows a comparison of Pareto Front solutions based
on the number of protection and control devices. The first
individual has the highest CENS value from left to right,
while the last one has the lower value. All solutions have a
reclosing relay in the substation due to restrictions imposed
on such equipment. 61% includes more than one recloser.
Solutions with at least one fuse represent 99.67% of Pareto
Front individuals, while 13% include the maximum allowed
number. ASs are present in 80.33% of solutions, with 26,67%
including the maximum permitted limit. IIDs have minor
participation in the entire set, with 44% of solutions with
at least one device installed. Only 4% of solutions include
four IID. The same behavior is observed in reclosers, where
only 6.33% of Pareto Front solutions consider four or more
of such devices. Reclosers can reduce large amounts of ENS,
but its costs have low attractiveness from the equipment cost
point of view.

Individuals with two reclosers represent 46.33% of Pareto
Front solutions, while cases with three reclosers represent

FIGURE 9. Pareto front solutions with the CENS in descending order.

8.33%. Companies usually recommend up to 3 devices in
series due to the difficulties imposed when defining how to
coordinate such equipment. Therefore, the associated high
cost naturally avoids solutions with many reclosers in series.

Fuses and ASs are the most attractive options for the pro-
posed methodology. Many IIDs can be allocated when ENS
reduction is more relevant than the costs involved.

B. STUDY CASES CONSIDERING SOC SCENARIOS FROM
OPF MODEL
Different scenarios are evaluated to show how the decision-
maker preferences influence the most appropriate solution
produced by the proposed approach. Such methods are
defined by changing each OF’s weighting factor in the com-
promise programming. Thus, four compromise solutions are
evaluated as follows:

I) CP with a high emphasis on the CENS, i.e., α1 =
0.9 and α2 = 0.1;

II) The CP emphasizing the CENS, α1 = 0.7 and α2 =
0.3;

III) OFs with the same weighting factor, αj = 0.5,∀j;
IV) The CP focusing on the equipment cost, α1 = 0.2 and

α2 = 0.8.

Table 3 shows the cost of all protective and control devices
installed in each case study. Also, Fig. 10 shows the compact
test systemwith all protection devices allocated for each case.

The low cost of fuses encourages their installation in large
quantities in most solutions of Pareto Front. Fuses allocation
by the method occurred even on lines with low load, such

TABLE 3. Size of each devices in all case studies.
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FIGURE 10. Case studies.

as branches 3-4 and 39-40. These allocations are strategic
because a fault in such lines can compromise a significant
portion of the distribution network.

Transferring loads to neighboring feeders using AS is an
attractive strategy, with cases I, II, and III including such
devices. In cases I and II, due to emphasis on CENS, all ASs
allowed are installed. Feeders 2 and 4 are the preferred choice
in most solutions from Pareto Front because of their higher
capacity. In Case III, only feeders with higher capacity are
allocated. In some solutions, line segments downstream ASs
includes fuses to reduce the fault propagation, such as AS1 in
cases I and II.

IID in microgrids supplied by renewable DG units repre-
sents 8% of Pareto Front solutions. However, this strategy
has low attractiveness from the equipment cost point of view,
including the compromise solutions in cases II, III, and IV.
Thus, most solutions have no microgrids supplied by renew-
able DG.

The section with WT unit is the preferred choice in case I
than the section with only PV units and BESS due to their

higher total capacity and the possibility to operate in islanded
mode in more scenarios. WT units present a better power
output during the day concerning PV units, which can’t pro-
duce energy at night. Besides, microgrid MG3 has a long line
length and more loads than the section with only PV units
and BESS. Such details can also provide more advantages in
allocating an IID in WT unit region.

The proposal in case III comprises a good relation between
both OF, being an interesting option for the decision-maker.
The solution of cases I and II can be an interesting alternative
depending on the period the company seeks the return on
investment (ROI). The allocated devices last longer than the
planning period established in the tests performed. Therefore,
the equipment cost can be better spread over a more extended
period. Moreover, the proposed method presents other solu-
tions, allowing the decision-maker to choose the best solution
based on the company’s interest.

C. RESULTS CONSIDERING FIS
Estimating batteries’ SoC using the OPF model provides
a more realistic scenario regarding the island operation of
microgrids supplied by renewable DG units and BESS. How-
ever, such a technique combined with the proposed method
increases the computational response, leading a higher time to
plan the protection system. Therefore, a FIS is also proposed
to estimate the batteries’ SoC.

Fig. 11 compares batteries’ SoC between the OPF model
and the FIS during seven days in January. The correlation
coefficient is calculated to analyze the affinity between data
provided by OPF model and FIS during the entire year.
The higher the correlation coefficient, the greater the affinity
between the data.

The FIS model uses the input parameters of demand, irra-
diation, wind speed, and energy price to predict the SoC.
As shown in Fig. 11, such a technique provides similar
results with a slight deviation. In some cases, the difference
is higher because the input parameters present uncommon
behavior regarding other days (see Sunday). However, the
overall results are similar, presenting a strong affinity, with
a correlation coefficient of 0.6826 [40].

FIGURE 11. Comparison between batteries’ SoC from OPF model and FIS.
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Tests are performed again, changing batteries’ SoC from
OPF model to FIS. A comparison of Pareto Frontier from
both methods is shown in Fig. 12. The k-means method
reduces the scenarios using all data at the same time. Thus, the
replacement of SoC data promotes a slight difference in time
blocks and input parameters used in each technique, leading
to changes in the CENS and equipment cost.

Fig. 13 shows a comparison between devices considered
in Pareto Front solutions from both methods. Solutions with
more than one recloser represent 54,33% of Pareto Front
solutions against 61% using the OPF model. Solutions with
at least one fuse also represent 99,67% of Pareto Front,
while cases with the maximum number allowed are 14%,
i.e., higher chances of allocating more fuses considering
the FIS.

ASs are present in 77,67% of solutions compared to
80,33% using the OPF model. However, cases with the max-
imum number allowed are higher considering the FIS, with
28,33%. 43,66% of Pareto Front include IID, 0,44% less
than using the OPF model. Cases with IID in microgrids
supplied by renewable DG represent 4,33% of Pareto Front
solutions compared to 4% using the OPF model. Thus, the
FIS provides close conditions of islanded operation. Con-
sequently, the solver finds similar solutions concerning the
tests using the OPF model. The hypervolume using the FIS is
0.8721. Therefore, even with the difference in the input data,

FIGURE 12. Pareto fronts from OPF model and FIS.

FIGURE 13. Comparison between pareto front solutions with the CENS in
descending order.

the results are similar, indicating that solving the opti-
mal allocation problem using FIS also provides realistic
results.

V. CONCLUSION
This work proposes a method to solve the allocation problem
of protection and control devices in distribution networks
with microgrids. The NSGA-II solves the problem in a multi-
objective approach, considering the CENS and equipment
costs. The method includes the possibility of load transfer-
ence and microgrids’ island operation considering dispatch-
able and renewable DG and BESS. Besides, the proposal
considers uncertainties parameters to provide more realistic
results. A set of solutions is presented, highlighting the best
compromise solution between OFs. These results allow the
decision-maker to choose the best solution based on their
interests.

Using a FIS to estimate de batteries’ SoC also provides
good results in solving the optimal allocation problem of
protection and control devices. Thus, such a technique is an
attractive option depending on how fast the decision-maker
needs the results for planning the protection system.

This proposal determines the size and location of control
and protection devices based on the distribution company’s
perspective. Include the customer damage function (CDF) to
improve apart from other OFs could provide a more interest-
ing setup. Also, it is assumed that coordination is possible in
all solutions found. However, this is a feature that should be
checked in future work.

Microgrids can be a promising strategy to improve conti-
nuity and reliability indices, as observed here and by related
works cited in the literature review. Cases of microgrids
supplied by renewable DG units present low attractive-
ness from the equipment cost point of view. This strategy
may be more interesting, for example, if the reduction of
CO2 and NO2 emissions have been considered an environ-
mental restriction. Therefore, further studies must be car-
ried out to evaluate the islanding operation of renewable
DG units.
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