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ABSTRACT New methods to perform time series classification arise frequently and multiple state-of-the-
art approaches achieve high performance on benchmark datasets with respect to accuracy and computation
time. However, often the modeling procedures do not include proper validation but rather rely only on
either external test dataset or one-level cross-validation. ATSC-NEX is an automated procedure that employs
sequential model-based optimization together with nested cross-validation to build an accurate and properly
validated time series classification model. It aims to find an optimal pipeline configuration that includes
the selection of input type and settings, as well as model type and hyperparameters. The results of a case
study in which a model for the identification of diesel engine type is developed, show that the algorithm can
efficiently find a well-performing pipeline configuration. The comparison between ATSC-NEX and some
state-of-the-art methods on several benchmark datasets shows that similar accuracy can be achieved.

INDEX TERMS Tme series classification, automated machine learning, configuration optimization,

sequential model-based optimization, nested cross-validation.

I. INTRODUCTION

In traditional classification, the order of features in the dataset
is irrelevant, whereas in time series classification (TSC) the
order matters. The goal in time series classification is to
identify which predefined class a time series belongs to by
using a classifier that has been trained using labeled data.
TSC can be based on a single (univariate TSC) or multiple
(multivariate TSC) time series.

While there are various ways to approach the TSC problem
and several software packages to perform automated machine
learning exist, these two topics have been combined only
recently by Parmetier ef al. [1]. Their approach employs
an evolutionary algorithm in hyperparameter optimization
and multi-fold cross-validation (CV) to select the best
hyperparameters and a fixed test dataset to evaluate the
resulting performance. The ATSC-NEX algorithm employs
sequential model-based optimization (SMBO) together with
nested cross-validation (nCV) procedure to build an accurate
and properly validated time series classification model. It has
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been shown that the nCV gives a less biased estimation of
the generalization ability, i.e., how well a model optimized
with the algorithm works on data that has not been used
in its training [2]. In addition, SMBO outperforms several
other often used methods such as random and grid search in
hyperparameter optimization [3]. The optimization procedure
involves the evaluation of various classifiers and their
hyperparameters, as well as multiple input types, sampling
rates, and time series sequence lengths. The selection of the
optimal configuration is done using a multi-fold CV. To the
best of our knowledge, no other approach combines these two
features in the context of TSC.

The main contributions of this article are A) a detailed
description of the ATSC-NEX algorithm, which aims to
automate the efficient development of properly validated
time series-based classifiers, and B) an evaluation of the
performance of the ATSC-NEX algorithm with an engine
identification case study and comparing its performance with
state-of-the-art models on several benchmark datasets.

The article is organized as follows. In Section II,
literature and methods related to TSC and AutoML are
briefly discussed. The ATSC-NEX algorithm is presented
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in Section III. There, the configuration optimization, nested
cross-validation, data preparation, and the used classifiers are
presented. In addition, the case study and six selected bench-
mark datasets are presented in Section III. In Section IV,
we present the results of the case study and evaluate the
performance of the ATSC-NEX algorithm on the benchmark
datasets. Finally, in Section V, conclusions from the study are
presented.

Il. RELATED WORK

A. TIME SERIES CLASSIFICATION METHODS

Many methods to perform time series classification exists.
One is to compare how similar two time series are, based
on the distances between individual samples of the time
series at a certain timestep. Euclidean distance is the simplest
distance-based similarity measure, whereas elastic distance
measures, such as dynamic time warping, can take time-wise
shifting into account.

Ye and Keogh [4] proposed shapelets for the classi-
fication of time series. Shapelet-based methods rely on
finding sequences shorter than the whole time series, called
shapelets, to represent different classes. Classification with
shapelet-based methods is done based on whether a shapelet
or shapelets appear in the sample time series or not,
regardless of the time-wise location in the time series.
Shapelets preserve the shape of the time series as opposed to
transformation-based approaches which provide higher-level
approximation of the time series [5]. Similar to shapelets,
phase-dependent interval-based TSC approaches make use of
shorter sequences than the time series [6]. However, it differs
from the shapelet-based approach by taking into account
the phase of the discriminatory features, i.e., the time-wise
location.

In some cases, the appearance of a pattern can not be
used to discriminate which class a time series belongs to,
but rather the appearing frequency of the pattern. Dictionary-
based TSC methods, such as Bag-of-Patterns [7] and Bag
of Symbolic Fourier Approximation Symbols [8], base the
classification task on histograms that represent the frequency
of different patterns appearing in the time series. These
methods transform the time series into multiple words that
describe patterns in the time series, and the histogram
is computed based on how often these words appear in
the time series. The transformation is done to reduce the
complexity of the problem by approximation using the
words [9].

Different TSC methods, or multiple models employing
the same method, can be also combined in form of an
ensemble model. For example, HIVE-COTE?2 is an ensemble
of ensembles that is built of dictionary-based Temporal
Dictionary Ensemble, interval-based Diverse Representation
Canonical Interval Forest, ROCKET-based ensemble, and
Shapelet Transform Classifier [10]. Such an ensemble model
is useful if some classes can be discriminated from others
based on, for example, a shapelet and a repeating pattern that
can be identified with dictionary-based approaches [10].
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Feature extraction-based approaches, on the other hand,
transform the time series classification into a feature-based
classification problem [11]. For example, the random convo-
lutional kernel transformation (ROCKET) method generates
a large number of random kernels that are used to transform
time series [12]. Two features are computed per transformed
time series, which can be then be used to train a classifier.
Feature-based approaches can be also based on extracting
statistical time series characteristics. For example, tsfresh
Python library [11] computes 794 features from the time
series and selects significant ones with hypothesis tests.
These features include, for example, coefficient of fast
Fourier transformation, autocorrelation, number of peaks,
and skewness [11]. Further description of the different TSC
approaches can be found in [13].

Deep learning (DL) and deep neural networks (DNNs)
are yet another methods that can be applied to perform
TSC [14]. The simplest DNNs architecture, multilayer
perceptron, has multiple layers that are built of neurons,
which are either linear or nonlinear functions. Each of the
neurons in the input layer of the network takes the weighted
sum of the input values as input. Similarly, from each of
the neurons, the output is fed as input weighted to each
neuron in the next layer, and this is repeated until the
output layer is reached. Weights are parameters of a neural
network which values are learned during the training process.
Among multilayer perceptron and other DNN architectures,
convolutional neural network and echo state network are
DNN architectures that can be used for the TSC in an end-to-
end manner, i.e., they can learn to extract and select relevant
features from raw data [14].

B. AUTOMATED MACHINE LEARNING

AutoML aims to automate the development of machine
learning-based models. It solves an optimization problem,
in which a large search space of candidate solutions is
evaluated to find the best one. The process includes data
preparation, feature engineering, and hyperparameter opti-
mization. Although several AutoML solutions exist, recent
surveys on AutoML show that most of the solutions do not
directly support time series classification but rather focus
on traditional feature-based classification and regression
tasks [15], [16]. Nevertheless, automating the TSC can
be performed with these packages by conducting feature
engineering beforehand to obtain features that can be used
in learning. However, recently Parmentier et al. [1] presented
an AutoML solution for solving TSC problems.

Exceptions to this are DL-based approaches, such as those
implemented in mcfly Python package [17] and multilayer
perceptron, fully convolutional neural network, and residual
network solutions described in [18]. The authors in [14]
similarly use multiple DL-based models for the TSC. The
common factor of the DL-based approaches is that they aim to
learn to distinguish classes directly from raw time series data.
However, only mcfly supports automated hyperparameter
optimization out of the box. In addition to DL-based TSC
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methods, sktime Python package [19], provides interval,
distance, shapelet, dictionary-based for the TSC. Recently
Parmetier et al. [1] presented an AutoML solution for solving
TSC problems by utilizing an evolutionary algorithm to
search for an optimal algorithm and hyperparameters from
the methods included in sktime.

The difference between AutoTSC and ATSC-NEX is
that the latter utilizes nCV to estimate the generalization
performance of the model before fixing its hyperparameters
within a multi-fold CV procedure, and only after that,
an external test dataset is used to test the developed model.
In the former, hyperparameter optimization and model
selection are done within a multi-fold CV procedure, which
can produce an optimistic estimation of the generalization
performance.

lll. METHODS

Automated machine learning aims to automate data prepro-
cessing, feature engineering, hyperparameter optimization,
and model selection processes. Here, we call this procedure
configuration optimization. The methods that ATSC-NEX
uses are described in this section.

A. CONFIGURATION OPTIMIZATION

Most machine learning models include hyperparameters that
configure the model itself (e.g., number of layers in an
artificial neural network), and ones that affect the learning
process (e.g., the learning rate of the optimizer used to
train an artificial neural network). Hyperparameters are
chosen before the model training process starts, and thus
differ from the actual model parameters, which are learned
during the model training process. A set of hyperparameters
found with optimization are data-specific, meaning that
the hyperparameters that produce sufficient results for a
dataset, probably won’t work well for another dataset.
Hence, a procedure called hyperparameter optimization is
often included in the process of developing a machine
learning-based model [20].

Hyperparameter optimization methods can be divided into
model-free, i.e., unguided, and model-based, i.e., guided,
approaches. Grid search and random search are model-free
methods, in which the trials are independent of the previous
trials. Hence, these methods are often easy to implement and
parallelize. Contrary to model-free search, SMBO methods
perform guided search by employing results of previous trials
to select a set of hyperparameters for the following trial.
To make the selection, a surrogate model of the objective
function is built. For example, random forest (RF), Gaussian
process, and Tree of Parzen Estimator (TPE) models can be
used as surrogate. The pseudo-code for the SMBO approach
is given in Algorithm 1. Metaheuristic approaches, such
as genetic algorithm and particle swarm optimization, and
gradient-based algorithms can be also used in hyperparameter
optimization [20].

We have used the TPE-based approach implemented in the
Hyperopt Python-library [3] and included multiple options
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Algorithm 1 Sequential Model-Based Optimization
Input: Number of initial configurations N;, number of
configurations with guided search N,, time limit, early
stopping criteria
Output: Configuration cp, with the lowest loss [
Random search, i.e., initialization:
1: Initialize L and C as empty lists
2: fori=1toN; do
3 Fit model m; with a random configuration c;
4. Append loss of m; to L and ¢; to C
5
6

: end for
: Fit model M; that maps C to L
Guided search:
7: for j =1to N, do
8:  Using M, get configuration c¢; that minimizes /
9:  Fit model m; with configuration c;
10:  Append loss of m; to L and ¢j to C
11:  Update M, that maps C to L
12: end for
13: ¢, = configuration in C with the lowest loss
14: return cp

regarding data input type, feature engineering, and classifiers
together with their model and learning algorithm hyperpa-
rameters. A complete list of model-specific hyperparameters
explored in this study can be found in the Appendix.

B. NESTED CROSS-VALIDATION

Cross-validation is a commonly used method in hyperpa-
rameter optimization to find a set of model hyperparameters
that minimize a certain loss metric. One-level CV is often
used in the development of ML-based models because the
computational cost of nCV can be significantly higher since
N x M models are trained instead of N models. However, in a
one-level multifold CV, the same data is used for tuning the
hyperparameters and evaluating the models. Therefore, the
estimate of model generalization performance is optimized
during the hyperparameter optimization process, which can
lead to optimistically biased estimation [21]. The nCV
procedure can be used to avoid that bias by separating
the hyperparameter tuning and the model generalization
performance estimation. The pseudo-code for the nCV is
given in Algorithm 2. The nCV procedure includes two
levels — an outer and inner loop, as shown in Figure 1. The
dataset is first divided into M equally-sized folds called outer
folds. The same hyperparameter or pipeline optimization
procedure is executed M times, each time using a different
fold out of the M folds as the outer validation dataset and
the rest M — 1 folds as the outer development dataset.
In the inner loop, the outer development dataset is further
divided into N folds, which form the inner training and
validation folds. While the inner training and validation folds
are used to find optimal model hyperparameters or pipeline,
the outer validation folds are only used to evaluate the found
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configuration. Therefore, the nCV procedure essentially
estimates the performance of the pipeline or hyperparameter
optimization method. This performance is quantified with
nCV score, which is the expected generalization performance
of a model or pipeline that the algorithm can find with the
dataset in question.

A numerical example of the nCV procedure: f M = N =
5 and the number of samples in a dataset D is 1000, D is first
divided into M outer folds, which each contains 1000/M =
200 samples. Therefore, the 800 samples (M — 1 = 4 folds)
are fed to the inner loop. In the inner loop, the 800 samples
are divided further into N = 5 inner folds, which each
contains 800/N = 160 samples. In each N = 5 iteration of
the inner loop, a different inner fold of 180 samples is used
to validate a model trained with the remaining inner folds.
Similarly, in each M iteration of the outer loop, a different
outer fold of 200 samples is used to validate a model trained
with the remaining outer folds. The model hyperparameters
are optimized in the inner loop and the model with the best
hyperparameters is retrained with outer training folds to be
validated with the current outer validation fold. As a result,
there are M = 5 estimations for the performance, which form
the nCV score.

The ATSC-NEX algorithm makes use of nCV procedure
in estimating the generalization performance of the models.
This procedure includes the configuration optimization
discussed in Section III-A. One-level multi-fold CV is
executed after the nCV procedure to find the configuration,
i.e., the feature engineering configuration and the model
hyperparameters, for the final model. The final model is
evaluated using an external test dataset, which has been
excluded from the original dataset and not used in the model
development, as shown in Figure 1.

Accuracy is not a reliable metric when dealing with imbal-
anced datasets [22]. For example, if there are 100 samples
for class A and 10 samples for class B, 90% accuracy could
be reached with a model that always predicts A. In the
ATSC-NEX algorithm, the predictive performance of the
classifiers is measured using balanced accuracy (BAC) score
in order to take possible class imbalances into account. The
balanced accuracy score is defined by

| K
BAC = — > i, (1)
i=1

where K is the number of classes, and r; is the recall, i.e., the
number of true positive predictions divided by the sum of true
positive and false negative predictions. The BAC is rescaled

as described by

BAC — £

BAC = —— K, @

K
With rescaling, an accuracy corresponding to random guess-
ing would result in BAC score of 0. For each trial, i.e., for each
set of tested hyperparameters and pipeline configuration,
N rescaled BAC, scores are obtained from the inner CV.
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Algorithm 2 Nested Cross-Validation
Input: Dataset D, number of outer folds M, number of inner
folds N, Number of configurations N¢
Output: Estimation of generalization performance L
1: Divide D into M folds in stratified manner
Outer loop:
2: Initialize L, as empty list
3: for fold m in M folds do
4:  m = outer validation set

5:  Remaining M — 1 folds = outer training set
6: forn=1toNc do
7: Get configuration C, using an SMBO algorithm
8: Initialize L; as empty list
Inner loop:
9: for foldninM — 1 do
10: n = inner validation set
11: Remaining M — 1 folds excluding n = outer
training set
12: Initialize a model with configuration C,
13: Fit the model on inner training data
14: Append loss of the model on fold n to L;
15: end for
16: L. = average of values in L

17 end for

18:  Initialize a model with configuration C, with the
lowest L.

19:  Fit the model on outer training set

20:  Append loss of the model on fold m to L,

21: end for

22: L = average of values in L,

23: return L

In order to take the robustness of the hyperparameters
and pipeline into account, each configuration is ranked by
standard deviation weighted BAC score BAC,, obtained from
the inner CV results, as defined by

BACy = BAC; mean — 210g;o(1 + BAC; 44), 3)

where
1 N
BACr_mean = ﬁ Z BACr_N (4)
i=1

and

N

BACLw= | v D BACN ~ BAComn? O
Finally, the nCV score is computed as the mean of the
weighted BAC scores obtained from the M iterations of
the outer CV loop. Also, the standard deviation is reported.
After obtaining the nCV score, the final classifier and its
hyperparameters are fixed in one-level cross-validation using
the same optimization procedure as in the nCV. The final
classifier is trained using the hyperparameters and pipeline
configuration determined by the CV. Finally, the developed
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FIGURE 1. The nested cross-validation procedure. T and V stands for training and validation data, respectively.

classifier is tested using the external test dataset, that was
excluded from the development dataset before starting the
modeling procedure.

C. DATA PREPROCESSING AND FEATURE ENGINEERING
The pipeline optimization algorithm is allowed to explore
multiple input types, namely raw time series, features
extracted from the time series, and random convolutional
kernel transformed (ROCKET) [12] time series. The algo-
rithm utilizes tsfresh Python library [11] to extract over
700 features from the time series. The feature extraction
is done before the model development loop. However,
having a large feature set that includes irrelevant features
can have a negative impact not only on the training and
inference cost of the model but also on its accuracy [23].
Therefore as a further option, the algorithm is allowed to
choose whether or not to apply feature selection when the
feature-based data is used. The Boruta algorithm [23] is used
for feature selection. The feature selection is done based on
the current training data in both the outer and inner loops
of the nCV procedure, which is introduced in Section III-B.
Boruta is a wrapper type of feature selection algorithm for
finding all relevant features. By default, it employs a random
forest, an ensemble model, to compute feature importances.
Randomization involved in the procedure decreases the effect
of random fluctuation and correlations. However, it should be
noted that all relevant features may include highly correlated
and redundant features, and even if there is a correlation
between a feature and the output, it is not guaranteed that their
relation is causal. Hence, the authors of Boruta suggest using
other feature selection libraries in order to further narrow
down the feature set to include only highly relevant and
uncorrelated features [23].

Here, the pipeline optimization algorithm is allowed,
as an option, to choose the ROCKET method to transform
the time series data. While convolutional neural networks
learn convolutional kernels from data, the ROCKET method
transforms time series using a large number of random
convolutional kernels to create features for training [12].
The random generation decreases the training time, and
transforming input data allows the use of simpler model
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types. The kernels have random length, dilation, padding,
weights, and bias. ROCKET computes the proportion of
positive values, ppv, for each time series and kernel. These
values represent how the input time series match the different
random kernels.

In some cases, the available dataset can be imbalanced,
i.e., there is a large difference between the number of
samples of multiple classes. Naturally, some applications
require high accuracy for the minority class, for example,
when a rarely occurring fault in a system is being predicted
and most of the data represent healthy operation. There
are multiple ways to solve the class imbalance issue. One
approach is to set weights for the training samples. The
higher the sample weight, the more that sample affects the
computed loss, and therefore, the learning of the model.
In the weighting approach, minority classes are given higher
weights than majority classes. The weights can be defined,
for example, as the inverse of the class incidences in the
training dataset. Another approach to address class imbalance
is to resample the dataset either by oversampling and/or
undersampling. In oversampling, the number of minority
class samples is increased, while in undersampling, majority
class samples are removed [24]. It is also possible to
combine oversampling with data cleaning methods, i.e.,
undersampling in the sense they remove noisy samples that
were generated with oversampling [25]. Yet another way to
address class imbalances is ensemble learning, where each
ensemble is trained using different subsets of majority class
samples [24]. Here, we have utilized the synthetic minority
oversampling technique (SMOTE) algorithm [22]. SMOTE
first computes k nearest neighbors for the original minority
class samples (all or a fraction). Then, for each of the
input features (i.e., attributes), the difference between the
feature value of the original sample and that of the randomly
chosen nearest neighbor is computed. A new feature value
for a new synthetic sample is then computed by adding up
the original feature value with the computed difference and
by multiplying it with a randomly chosen value between
0 and 1 [22]. Finally, despite the input type, the training
and validation input data was standardized by subtracting
the value of each sample with the mean of the training
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TABLE 1. Classifiers evaluated in this work.

Classifier Abbreviation
AdaBoostClassifier® ADAB
DecisionTreeClassifier® DT
kNeighborsClassifier® KNN
LogisticRegression® LOGREG
PassiveAggressiveClassifier® PASAGR
RandomForest® RF
RidgeClassifier® RIDGE
RidgeClassifierCV? RIDGECV
C-Support Vector Classifier® SvC
SGDC* SGDC
BalancedBaggingClassifier® BBAG
Gradient boosting decision tree° GBDT

Multilayer perceptron? ANN
aScikit-learn, PImbalanced-learn,
°LightGBM, YTensorflow-Keras v.2

samples and dividing by the standard deviation of the training
samples.

D. CLASSIFIERS

Thirteen classifiers were included in the framework to be
compared in the case studies. Ten classifiers are from
the Scikit-learn library [26], balanced bagging classifier
from Imbalanced-learn library [24]. In addition, gradient
boosting decision tree algorithm implemented in LightGBM
library [27] was included in the framework, as well as
multilayer perceptron classifier using the Keras API of
Tensorflow library version 2.1 [28]. The included classifiers
are listed in Table 1 together with their abbreviations used in
this work. Each Scikit-learn classifier was set up to configure
weights for the samples representing different classes as the
inverse of the class incidences in the training dataset.

1) LINEAR CLASSIFIERS
Linear models included in the classifier evaluation are logistic
regression, passive-aggressive classifier, ridge, and ridge with
internal CV, and stochastic gradient descent classifier. For
each, the Scikit-learn implementation is used.

The logistic regression model predicts class probability Pry
as described by

eﬁzx
14 YK epl

where k is the class index, K is the number of classes,
x is the independent variable value vector, and ,BT 1S
the transposed weight vector that is learned during model
fitting [29].

The passive-aggressive classifier is a model that is updated
online, taking one input sample at a time and updating the
weights accordingly [30]. The Scikit-learn implementation of
the algorithm uses the hinge loss function by default in the
learning process. The ridge classifier involves the regulariza-
tion of the size of the model coefficients during the learning
phase, which can reduce the variance of the predictions. The
regularization strength is defined by the parameter A. Here,

(6)

Pry =
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both ridge classifiers with and without cross-validation are
considered. The ridge classifier with cross-validation tunes
A internally, whereas the optimization algorithm tunes it for
the ridge classifier without cross-validation. The stochastic
gradient descent classifier implemented in Scikit-learn can fit
multiple types of linear classifiers using the steepest gradient
descent in the training. The model type can be chosen with
a parameter that defines the loss function. Here, the default
loss function (hinge) was used, which results in fitting a linear
support vector machine.

2) TREE-BASED CLASSIFIERS

Five tree-based classifiers, namely decision tree, random
forest, balanced bagging classifier, Adaboost, and gradient
boosting decision tree, were included in the search as well.
The decision tree is the most basic tree-based estimator
that is built of simple if-else rules. These are called splits
and each branch can be split again into multiple branches
until a leaf, i.e., decision, node is reached. The Scikit-learn
implementation of the decision tree considers all features
by default when searching for the best one to be used for
splitting.

The other tree-based estimators used here are ensembles,
that combine a number of base tree estimators to achieve
better predictive performance than a single classifier can
achieve. The random forest and balanced bagging classifier
both rely on bagging. Whereas the decision trees use the
whole training dataset in constructing a tree and all features
in splitting the nodes, a randomly sampled subsets of the
training dataset are used in bagging approaches. In addition,
the maximum number of features to be considered in splitting
the nodes can be limited in bagging. The final classification
result is based on majority voting. Bagging can potentially
reduce the variance of an estimator without increasing bias if
the model is unstable [29]. The balanced bagging classifier
implementation of imbalanced-learn Python library is used
with decision tree and random forest base estimators. The
balanced bagging classifier balances the imbalance of the
training dataset internally using random undersampling by
default. For the random forest, the Scikit-learn implementa-
tion is used in this work.

Whereas random forests and balanced bagging classifiers
employ bagging, the Adaboost and gradient boosting decision
tree classifiers utilize a technique called boosting. In con-
trary to bagging, boosting procedure includes sequential
construction of several tree-based estimators. After fitting
one tree, its predictive performance is evaluated sample
by sample. Based on the result, weights are assigned for
the training samples and the weighted samples are then
used to fit the next tree. The final classification is formed
using majority voting of the weighted predictions of each
tree [29]. For the gradient boosted decision trees (GBDT),
the implementation of the LightGBM Python library is used
here. LightGBM is essentially a gradient boosting algorithm
but feature-wise and sample-wise bagging can be enabled as
well [27].
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3) OTHER CLASSIFIERS

The neighbors-based classifier is simple as it saves the
training examples and the class prediction is based on
majority voting of the nearest neighbors. The number of
nearest neighbors k defines how many nearest neighbors
are considered in the classification phase, and it is one of
the parameters of the k-nearest neighbors classifier that can
be tuned [31]. The weights for the neighbor points can
be computed in different ways. Here, the uniform and the
distance weighting are considered in the hyperparameter
optimization. Whereas the distance-based weighting takes
the inverse of the distances between the input sample and
its k nearest neighbors into account, the uniform assigns
the same weight for each neighbor as the name suggests.
C-SVC is a type of support vector machine (SVM) that
can employ, for example, linear, polynomial, radial basis
function, and sigmoid kernels [32]. Fitting an SVC is based
on structural risk minimization and aims to find a hyperplane
that maximizes the distance between the hyperplane and the
data points of different classes that are closest to it [33].
A kernel is a function that is used to compute how similar
two input samples are [32].

Multilayer perceptron classifier is a feed-forward neural
network model. Adam optimization algorithm is used in
this study for optimizing the network weights. Optimized
hyperparameters of the multilayer perceptron are here the
number of layers and hidden neurons in the network, learning
rate, batch size, and probability of dropout that is one type of
regularization approach.

E. CASE STUDY - ENGINE TYPE IDENTIFICATION

In the case study, the aim is to identify a ship’s diesel
engine type from its exhaust gas temperature behavior.
The engine type identification dataset consists of eight
measurement signals of engine exhaust gas temperatures
after a turbocharger. From the turbocharger, the exhaust gas
continues to an exhaust gas economizer as shown in Figure 2.
In the economizer heat is recovered from it to improve the
efficiency of the system. Four of the eight signals are from
the ship’s four main engines (MEs) of the same type, and
four signals from four different auxiliary engines of two
different types (AE1 and AE2, respectively). The length of
the signals is approximately 3350 timesteps with a six-minute
sampling interval, corresponding to approximately 14 days
worth of data. The signals were first divided into 17 time
series subsets with 197 timesteps in each. These time series
were shuffled so that the signals in one subset are not from
the same period of time, since the data from each engine
is collected simultaneously and the operation of engines is
coupled to some extent as shown in Figure 3. Next, two
of the 17 subsets, i.e., 16 time series in total, were chosen
randomly and excluded from the dataset to be used as an
external test dataset. The rest of the subsets, i.e., 120 time
series, were used in the classifier development. The time
series in the development and external test datasets are shown
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FIGURE 3. Exhaust gas temperature measurements from three types of
engines used as classifier development data.

in Figures 3 and 3, where ME time series represent the
main engine exhaust gas temperature behaviour, and AEl
and AE2 corresponding behaviour of the two auxiliary engine
types. Similar kinds of patterns can be seen between the three
engine types, as well as within the engine types, although
the different time series start from the different operation
points.

Multiple options for the input time series length, the
sampling rate and the amount of overlap between two
successive input sequences in the training data were included
in the configuration optimization. These options, as well as
the classifier input type and resampling options, are shown
in Table 2. Tsfresh was used to extract over 700 features
from the time series as described in the methods section.
As the final preparation step before classifier development,
the subsets that form the outer and inner validation folds
in the nCV procedure are fixed to ensure comparability of
the results. The 15 development subsets form five outer
folds with three subsets per fold. This means that in each
iteration, twelve subsets are used for the model development
and three for validation. The inner folds for nCV are created
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by dividing each set of outer development datasets into six
folds.

F. BENCHMARK DATASETS

Six benchmark datasets from the UCR time series classifi-
cation archive [34] are also used to evaluate the algorithm
and the results with our algorithm are compared to the
reference ones. It should be noted that the reference results
are average values from 100 repetitions where the whole
dataset is randomly resampled into the development and test
datasets, whereas here, the development and test datasets are
used as provided on the website. Thus, a direct comparison
of the results can not be made, but the result should never-
theless give an idea of the performance of the ATSC-NEX
algorithm.

The ACSF1 dataset represents power consumption of home
appliances including coffee machines, computers, freezers,
fridges, Hi-Fi systems, lamps, microwaves, mobile phone
chargers, printers, and TVs. The time series in the BME
dataset has three segments. The first or last segment has
a positive bell arising, but the middle segment does not.
The segments that do not have the bell can have different
levels. The FordA dataset represents measurement data from
an automotive subsystem. The ItalyPowerDemand dataset
represents the electricity demand in Italy in 1997. The
training data includes 67 days’ worth of data. The target is to
distinguish days recorded between April and September from
the period from October to March. The SyntheticControl is a
simulated dataset that represents control chart patterns, i.e.,
the level of a machine parameter changing over time. The
target is to distinguish six different patterns, for example,
a cyclic one or an increasing trend. The Trace dataset is a
simulated dataset that represents instrumentation failures in a
nuclear power plant.

IV. RESULTS

The automated classifier development approach is evaluated
in the context of ship engine type identification, and the
results are presented in this section. First, the algorithm is
run with only one classifier type included at a time to find
out which input configuration and hyperparameters work the
best for specific classifier types. The results of the classifier
evaluation set a baseline for the algorithm evaluation, here
referred to as ALL_IN experiment, in which all the classifiers
are included in the search space and the algorithm attempts to
find well-performing classifiers for the ship engine problem.
Each experiment is repeated five times, which are here
referred to as runs. The classifier development and testing are
made on a machine with Intel i19-9900k CPU and 16 Gb of
RAM. In this study, graphics processing units (GPUs) were
not used in the computations, although some models could
benefit from it.

A. ENGINE TYPE IDENTIFICATION
The nCV scores obtained with each classifier and the
ALL_IN experiment are shown in the Figure 6, including all
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FIGURE 4. Exhaust gas temperature measurements from three types of
engines used as external test data.

five runs. The maximum deviations from the average values
are observed with GBDT and PASAGR, whereas particularly
small deviations are obtained with ADAB, DT, LOGREG,
RIDGE, RIDGECY, and SVC classifiers. However, Figure 6
shows that the balanced accuracy on the outer validation
folds has relatively high variance. For example, the difference
between the minimum and maximum outer validation folds
BAC is approximately 65% with GBDT. The large minimum
and maximum ranges are due to the differences between
outer validation folds and how different accuracy the models
reached. However, Figure 6 shows that the nCV scores
(unweighted BAC) are very close to each other, showing
the robustness of the algorithm in individual classifier
evaluation. Similar to the inner CV scores, the ridge and
ridge CV models achieve the highest accuracy. To take a
closer look at what causes this variance, Figure 7 shows
the five-run BAC average of each obtained with each outer
fold separately. For this purpose, the same samples were
used to construct the five outer validation folds within each
run.

Figure 7 shows a clear trend that the average BAC for the
fourth fold was worse compared to the other folds in each
experiment, suggesting that the samples in the fourth outer
fold are more difficult on average to classify than the samples
in the other outer validation folds. The average BAC for the
first and third outer folds were the highest two in most of the
experiments.

Within each run, the five outer development folds were
used to find five best-performing configurations using SMBO
in the inner loop of the nCV procedure as described in
Section III-B. 23 out of 25 optimization runs resulted in either
RIDGE (9 times) or RIDGECV (14 times) being the best
model of all. In two optimization runs, ADAB and LOGREG
resulted in the best performance. The average BAC of each
of these classifiers is shown in Figure 8. The results show
superior performances for RIDGE and RIDGECYV classifiers
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TABLE 2. Options for the input time series data properties.

Data property Options

Additional information

Input time series sequence length (SL)
Sampling rate (SR)

Input time series sequence overlapping (OL)
Input type

Is feature selection applied

Is ROCKET used to transform the input data
Is oversampling with SMOTE applied

true, false
true, false
true, false

25%, 40%, 55%
6 min, 12 min
25%, 50%, 15%
feature-based, time series

Fraction of original time series length
Percentage how much two successive sequences overlap

Always false when input is time series
Always false input is feature-based
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FIGURE 5. (a) ACSF1, (b) BME, (c) FordA, (d) ItalyPowerDemand, (e) SyntheticControl, and (f) Trace benchmark datasets.
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ALL_IN experiment.

in comparison to other evaluated classifiers. From the two,
RIDGE had higher average BACs for all but the fourth fold.
The average balanced accuracy scores in the inner CV over
the five runs and folds were 79.2%, and 77.5% for RIDGE
and RIDGECV models, respectively. The average scores for
the five folds were close to each other with RIDGE, but much
higher deviance is visible with the RIDGECV. A nearly as
high average BAC was obtained in the ALL_IN experiments,
which is due to the search successfully ending up in finding
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a RIDGE or RIDGECV model with a well-performing
configuration. Nevertheless, the variance in the ALL_IN
experiments is naturally higher since the search space is
much larger and those experiments would have required
more iterations within the hyperparameter optimization to
converge to similar configurations as in RIDGE or RIDGECV
in the individual classifier experiments. The RIDGECV
average scores are spread more than those of RIDGE, most
likely caused by the internal cross-validation of RIDGECV
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FIGURE 8. Average balanced accuracy of the best models found in the
inner loop with the five outer training datasets.
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FIGURE 9. Evolution of the balanced accuracy score within
hyperparameter optimization in the inner cross-validation loop (lines
represents the average of five outer training datasets and five runs.

and having fewer samples for training in comparison to
RIDGE.

1) FINAL CLASSIFIERS

The ALL_IN runs resulted twice in both RIDGECV and
RIDGE classifiers and once in LOGREG classifier. Balanced
accuracy scores of 79.7-90.6% were obtained with the former,
each with ROCKET transformed time series input data.
LOGREG was an exception to this, as only 68.8% accuracy
was reached using feature-based input data. This suggests
that more iterations would be required for the algorithm to
converge to the same solution each time, which is logical,
as the dimension of the configuration optimization search
space is much higher compared to the runs that included only
one classifier at a time.

The balanced accuracy of the classifiers within nCV and
on external test dataset is compared in Figure 10. With all
except the SGDC classifier, the balanced accuracy is higher
compared to the corresponding average nCV score, which
suggests that the samples in the external test dataset are
somewhat easier to classify than the ones in the development
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FIGURE 10. Balanced accuracy of developed classifiers in nCV and on
external test dataset, sorted by the former. Both are the average of five
runs.

dataset. The largest differences between nCV score and
external test accuracy are shown with ANN and KNN, for
which the difference is 21.5% and 20.9%, respectively. The
corresponding differences for other classifiers are 1-13.2%,
except for SGDC which accuracy on the test dataset is 2.8%
worse on average than the nCV score. Compared to other
methods, the ANNSs often require more samples for training,
which might be the reason why the difference between the
nCV score and external test score is high. The corresponding
difference of the kNN model suggests that it is also more
sensitive to the amount of training data than the other studied
models.

The evolution of the configuration optimization during
the final cross-validation for the different classifiers and in
the experiment where all classifiers were included in the
same search, is shown in Figure 11. It shows that, after
evaluating 75 random configurations, the balanced accuracy
starts to increase when the guided search with Hyperopt
begins, even though with some classifiers the evolution
seemed to stall before that. This shows the power of SMBO
approaches.

The stability of the configuration optimization algorithm
is evaluated by comparing the configurations found for
each classifier type and in the experiment in which all
classifiers were included in the search. The results show,
as expected, that the highest overlapping (75%) between the
successive time series used in the model development results
in the best accuracy-wise performance, as 97.1% of all runs
(68 out of 70). An exception to this was one of the five
runs with the RF and RIDGECV models, for which the
algorithm found overlapping of 50% to be optimal. Similarly,
in 80% of the runs (56 out of 70), the longest sequence length
of 55% was found to be optimal. The sequence length of
40% appeared in the results once with the RIDGECYV in the
ALL_IN experiment, and the shortest 25% sequence length
was resulted in the best accuracy 13 times out of 70 (18.6%).
The shortest sequence length worked the best with the BBAG
classifier in each of the five runs and four out of five runs
for the ADAB model. Also within the majority of the GBDT
runs (60%), it was found to be the best sequence length.
At the same time, the original sampling rate was found to be
the best 65 times out of 70 (92.9%). Two of these appeared
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FIGURE 11. Evolution of the balanced accuracy score within
hyperparameter optimization in the final CV (lines represent the average
of five runs).

with the LOGREG classifier and once with three other
classifiers.

The optimization algorithm found the feature selection
to generally result in better performance as, with ANN,
PASAGR, SHDC, SVC, LOGREG, DT, and RF models,
the final pipeline configuration was found with the feature
selection enabled when feature-based input was used. With
GBDT, the feature-based input worked better without feature
selection, and with BBAD and ADAB models, the feature
selection was enabled three out of five and two out of three
times, respectively.

The final ANN and RIDGECV models achieved sim-
ilar average accuracy on the external test dataset, but
feature-based input worked better for the former in all five
runs and ROCKET transformed time series for the latter
similarly in all five runs. The KNN and RIDGE models also
achieved the best accuracy using ROCKET transformed time
series, whereas three out of five times it worked the best for
DT, GBDT, and RF. Similar to ANN, the feature-based input
was the best for the PASAGR classifier, but its average BAC
was only 61%. In fact, in 51% of the runs, feature-based
input was found to result in better accuracy than ROCKET
transformed time series, but the average BAC of the former
was 67% with a standard deviation of 12%, and 81% with
a standard deviation of 6% for the latter. Either feature or
ROCKET-based input was found to be best in 60% of runs
with ADAB, DT, GBDT, LOGREG, and RF models. There
was no clear pattern in the configurations with these models,
which suggests that more iterations should be run in the
configuration optimization.

Nevertheless, the results show that there is no input type
that works the most optimally for all data-driven model types,
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experiment where all classifiers were included in the search.

which is also why an automated algorithm to find optimal
model and data processing methods is useful. The found input
configuration shows that the algorithm is relatively stable but
with some classifiers, the algorithm would most likely require
more iterations.

2) CLASSIFIER DEVELOPMENT TIME

Figure 12 shows the development time of the classifiers
measured as real-time, sorted from left to right by the
nCV scores. The development time for the most accurate
classifiers, according to the nCV, i.e., RIDGECV and RIDGE
classifiers, was slightly less than four hours on average.
The ALL_IN run resulted in the third-highest nCV score
with a development time of six hours on average. The
computations were performed on one machine. However,
the computational performance of the algorithm can be
optimized by utilizing parallel computing and some model
types could utilize GPUs to reduce the training time. The
folds of the outer loop in the nCV procedure could be
performed in parallel. In addition, the iterations of the SMBO
algorithm to initialize the surrogate model can be parallelized
since the hyperparameters for these iterations are selected
randomly. In this study, the number of outer folds was five,
i.e., the nCV procedure could be performed at least five times
faster with parallelization.

B. BENCHMARK RESULTS

In this study, six benchmark datasets described in
Section III-F were used to evaluate the performance of
the ATSC-NEX algorithm. The results obtained with the
ATSC-NEX algorithm are shown in Table 3.

Out of the thirteen classifier types, the algorithm found
the RF classifier to work best on the ACSF1 and ItalyPow-
erDemand datasets. In both, the algorithm also found that
transforming the time series data with the ROCKET method
produces better results than the feature-based approach.
With ACSF1 and ItalyPowerDemand datasets, the BACs
on nCV were 71.1% with a standard deviation of 12.4%
and 90.8% with a standard deviation of 14.2%, while the
corresponding BACs on the external test set were 78.9% and
88.1%, respectively. The ROCKET method was also found to
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TABLE 3. Performance of classifiers developed with ATSC-NEX on the selected benchmark datasets.

Balanced accuracy

Development time

Benchmark dataset  Classifier Input type nCV External test Real CPU
ACSF1 RF ROCKET 71.1% (+ 12.4%) 78.9% 33h 6.1h
BME RIDGE ROCKET 100.0% (£ 0.0%) 92.0% 02h 0.5h
FordA BBAG Features® 100.0% (+ 0.0%) 100.0% 02 h 1.0 h
ItalyPowerDemand RF ROCKET 90.8% (+ 14.2%) 88.1% 1.5h 23h
SyntheticControl KNN ROCKET 98.0% (+ 4.8%) 99.6% 0.5h 23h
Trace BBAG Features® 100.0% (+ 0.0%) 100.0% 0.04 h 0.1 h

4Statistical features computed from time series data

TABLE 4. Comparison of balanced accuracy of the selected state-of-the-art models [34] and ATSC-NEX on the selected benchmark datasets.

Classifier ACSF1 BME FordA  ItalyPowerDemand SyntheticControl Trace
TS-CHIEF 80.7%  99.6%  94.8% 96.2% 99.9% 100.0%
HIVE-COTE v1.0 85.0% 982%  94.4% 95.8% 99.4% 100.0%
InceptionTime 82.7%  99.6%  95.9% 96.0% 99.6% 100.0%
ROCKET 80.7%  99.7%  94.2% 96.2% 99.8% 100.0%
ResNet 824%  999%  93.1% 95.7% 99.4% 100.0%
STC 83.8% 93.0% 93.4% 95.4% 99.2% 100.0%
ProximityForest 63.8% 999%  85.0% 95.6% 99.8% 100.0%
WEASEL 81.8%  948%  96.9% 94.7% 98.7% 100.0%
S-BOSS 81.5%  86.5%  90.7% 86.9% 96.5% 100.0%
BOSS 76.8%  86.6%  92.1% 87.1% 96.7% 100.0%
cBOSS 757%  785%  91.6% 92.7% 95.1% 100.0%
TSF 63.5%  962%  81.6% 95.9% 99.2% 99.3%
RISE 76.0%  78.6%  94.0% 94.5% 67.8% 98.5%
Catch22 77.8%  90.5%  90.9% 87.8% 96.7% 100.0%
Best 857%  999%  96.9% 96.2% 99.9% 100.0%
Average 78.0%  93.0%  92.0% 93.6% 96.3% 99.8%
ATSC-NEX 789%  92.0% 100.0% 88.1% 99.6% 100.0%

perform better than the feature-based approach on the BME
and SyntheticControl datasets, where the best results were
obtained with the RIDGE and KNN models, respectively. The
nCV BAC on the BME and SyntheticControl datasets were
100% and 98.0%, respectively, with a standard deviation of
4.8% for the latter. The corresponding BACs on the external
test datasets with the BME and SyntheticControl datasets
were 92% and 99.6%, respectively. With the FordA and
Trace datasets, the BBAG classifier with feature-based input
outperformed other options and achieved 100% BAC in both
nCV and external test dataset.

Although nCV is computationally less efficient than,
e.g., multi-fold CV, the development time (real-time and
CPU-time) in Table 3 shows that even with extensive
optimization in a relatively large search space, a good solution
can be found with the ATSC-NEX in a relatively short
time.

The benchmark results obtained with the ATSC-NEX and
fourteen other methods are shown in Table 4. As mentioned
in Section III-F, a direct comparison between the ATSC-NEX
and other methods shown in Table 4 can not be made.
Still, the comparison can be used to estimate how well the
ATSC-NEX performs. With the ACSF1, BME, and ItalyPow-
erDemand datasets, the BAC obtained with the ATSC-NEX
algorithm is 6.1-8.1% lower than with the best state-of-the-
art classifiers. With the other three datasets, the ATSC-NEX
algorithm achieves similar performance (ItalyPowerDemand
and SyntheticControl), or has a slightly higher BAC (3.1%
with the FordA dataset). However, when comparing the
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BAC:s obtained with the ATSC-NEX with the average values
obtained with the other models, the differences are lower.
This suggests that similar performance can be achieved with
the ATSC-NEX algorithm. One benefit of the ATSC-NEX
is that the algorithm can find the best working methods
for a specific problem through optimization. Extending
the ATSC-NEX algorithm to cover other signal processing
algorithms, feature engineering methods, and model types
can potentially improve the performance of the developed
models further, which makes it an intriguing topic to study
in the future.

V. CONCLUSION

We have presented an algorithm to develop a time series
classification model. The algorithm employs the SMBO to
optimize the pipeline configuration, including the selection
of an optimal input data shape and preprocessing method, and
model type from multiple options available. The algorithm
is designed in such a way that it is straightforward to
implement other preprocessing methods and model types to
be explored. The results of the case study show that the
proposed algorithm can efficiently find an optimal pipeline
configuration among 14 model types and several input
configurations. The comparison of ATSC-NEX to state-of-
the-art TSC methods shows that ATSC-NEX can achieve
similar performances. Since ATSC-NEX employs nCV in
the estimation of generalization performance, the estimate
can be expected to be more reliable compared to those
methods that only perform one-level CV. Naturally, the more
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TABLE 5. Model specific hyperparameters and their allowed values in
this study.

Classifier =~ Hyperparameter and options
Base_estimator: (RF, DT)

ADAB N_estimators: (25, 50, ..., 250)

Learning_rate: Random uniform float (le-3, 1)

Cp_alpha: Random uniform float (1e-3, le-1)

Max_depth: (4, 5, ..., 20)

DT Max_leaf_nodes: (2, 3, ..., 40)
N_estimators: (50, 75, ..., 1000)
N_neighbors: (3, 4, 5, 6)

KNN Weights: (‘uniform’, ‘distance’)

C: Random uniform float (le-1, 1)

LOGREG  \1.y iter: (50, 75, ... 1000)

C: Random uniform float (le-1, 2)

PASAGR " \rax_iter: (50, 75, ... 1000)
Ccp_alpha: Random uniform float (le-3, le-1)

RF Max_depth: (4, 5, ..., 20)
Max_leaf_nodes: (2, 3, ..., 40)
N_estimators: (50, 75, ..., 1000)

RIDGE Alpha: Random uniform float (1e-3, 10)

Max_iter: (50, 75, ..., 500)
C: Random uniform float (le-1, 1)
SvC Degree: (2, 3)
Kernel: (‘linear’, ‘poly’, ‘rbf’)
Alpha: Random uniform float (le-5, le-2)
L1_ratio: Random uniform float (1e-3, 3e-1)
SGDC Lr: ‘optimal’
Max_iter: (50, 75, ..., 1000)
Penalty: ‘elasticnet’, ‘11°, ‘12’, None
Base_estimator: (RF, DT)
BBAG N_estimators: (6, 8, ..., 40)
Max_features: Random uniform float (5e-1, 8e-1)
Bagging_fraction: Random uniform float (5e-1, 9e-1)
Bagging_freq: (5, 10, 25, 50)
Feature_fraction: Random uniform float (Se-1, 9e-1)
Lr: Random uniform float (le-4, le-2)
Max_depth: (4, 5, ..., 20)
GBDT N_estimators: (50, 75, ..., 300)
Num_leaves: (2, 3, ..., 20)
Reg_alpha: (0, le-1, 2e-1, 3e-1)
Reg_lambda: (0, le-1, 2e-1, 3e-1)
Valid_sets: 10 % of training samples
Early_stopping_rounds=10
Batch_size: (32, 64, 96, 128)
Dropout_rate: Random uniform float (le-2, 4e-1)
Lr: Random uniform float (le-4, le-2)
N_epochs: (1000, 1500, 2000)
N_neurons_per_hidden_layer: (16, 24, ..., 64)
ANN N_layers: (1, 2, 3, 4)
Validation_split: 0.2
Callbacks:
ReduceLLROnPlateau(factor=0.2, patience=5, min_Ir=1e-5)
EarlyStopping(patience=30)
ModelCheckpoint(save_best_only=True)

reliable estimate comes with a higher computational cost. The
computational cost, however, can be improved by executing
the outer loop of the nCV procedure in a parallel manner,
and by parallelizing the model training iterations that are
used to initialize the surrogate model used by the SMBO
algorithm. As future work, expanding the search space to
include more signal processing, feature engineering methods,
and model algorithms and studying the effect of such
expansion on the resulting model performance would be of
interest.

APPENDIX
A complete list of model specific hyperparameters and their
allowed values in this study are shown in Table 5.
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