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ABSTRACT In this paper, a novel adaptive dynamic programming (ADP)-based event-triggered safe control
method is proposed to solve the zero-sum game problem of nonlinear safety-critical systems with safety
constraints and input saturation. First, the barrier function-based system transformation, the zero-sum game
problem with safety constraints and input saturation is transformed into an equivalent input saturation zero-
sum game problem, so as to guarantee that the system does not violate the safety constraints. Furthermore,
the non-quadratic utility function is introduced into the performance function to solve input saturation. Then,
a critic neural network (NN) is constructed to approximate the optimal safety value function. Subsequently,
a novel event-triggered scheme is developed to determine the update instant of the control law and the
disturbance law. Therefore, the proposed ADP-based event-triggered safe control method can ensure that the
states of nonlinear safety-critical systems satisfy the safety constraints, while greatly reducing the amount
of calculation and saving communication resources. In addition, during the learning process, the concurrent
learning is used to relax the persistence of excitation (PE) condition. According to the Lyapuov theory, it is
proved that the weight estimation error of the critic neural network and the states are uniformly ultimately
bounded (UUB), and the Zeno behavior is excluded. Finally, a simulation example verifies the effectiveness
of the proposed method.

INDEX TERMS Adaptive dynamic programming, barrier function, event-triggered control, input saturation,
safety constraints, zero-sum game.

I. INTRODUCTION
Nowadays, with the development of safety-critical systems
such as self-driving cars [1], [2] and intelligent robots [3]–[5],
the safety of the system has attracted more and more
attention. Generally, when the state of the system is always
evolving within a user-defined safety range, the system
is said to be safe, otherwise, we call that the system is
unsafe [6], [7]. In practical projects, a safe system is what
we expect [8]. Therefore, how to design a controller that
satisfies the safety constraints is a major challenge. In recent
years, many safe controller design methods have been
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proposed [9]–[11]. In [9], the method based on quadratic pro-
gramming was used to design the safe controller. Although
the scheme can guarantee local safety within each time step,
too small step size will lead to redundant calculations [10],
while too large step size will cause unsafe behavior, which
makes it difficult to guarantee the safety of the system.
In addition, calculation methods such as sum of squares [11]
can also be used to design safe controllers. However, these
methods can only be used in the case of polynomial systems
and constraints. Therefore, it is extremely urgent to find
a suitable safe controller design scheme for safety-critical
systems.

In recent years, the barrier function (BF) has proven to
be an effective tool to ensure the safety of the safety-critical
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system [12], [13]. The barrier function has been used to
transform a system with safety constraints into an equivalent
system without safety constraints, and then a safe controller
was designed to ensure the safety of the system [14]–[17].
Reference [14] had incorporated state in reinforcement
learning framework used penalty function and BF-based
state transformation. And then, this method was extended
to the case with input saturation [15]. A safe reinforcement
learning method was shown in [16], in which a control barrier
function was added into the cost function, which ensured
safety and optimality of the system. In [17], a safe non-policy
reinforcement learning method was presented to design a safe
optimal controller for safety-critical systems with dynamic
uncertainty. However, the above methods do not considered
the external disturbance, which inspired our research.

In actual projects, the external disturbance must be
considered [18]–[22]. The H∞ control is widely used as
one of the powerful control method to reduce the influence
of the external disturbance in dynamic systems [18], [19].
The H∞ control problem is usually regarded as a zero-sum
game (ZSG) problem [20].It is well known that solving the
ZSG problem is equivalent to solving the Nash equilibrium
solution of the Hamilton-Jacobi-Isaacs (HJI) equation. How-
ever, because of its own partial differential properties, it is
incredibly tough, even literally impossible to obtain analytical
solution of the HJI equation for many nonlinear systems.
Fortunately, the adaptive dynamic programming technology
has become a favorable method to solve the approximate
solution of the ZSG problem in recent years [21]–[28]. For
instance, in [24], an ADP-based method was developed to
solve the two-player ZSG problem of discrete systems with
partially unknown dynamics. In [25], the online adaptive
algorithm was used to approximate the Nash equilibrium
solution of the two-player ZSG problem for the continuous-
time nonlinear system with completely unknown dynamics.
In [26], an actor-critic-disturbance NN framework was used
to solve the two-player ZSG problem for discrete-time
affine nonlinear systems. In [27] and [28], the iterative
learning method and the model-free global dual heuristic
dynamic programming method were proposed to solve
the multi-player ZSG problem for continuous-time systems
and the discrete-time nonlinear ZSG problem, respectively.
However, it should be noted that the above-mentioned
methods and technologies are all developed under the time-
triggered control (TTC) mechanism, which may cause a
heavy computational burden and waste of communication
resources.

In order to overcome the heavy computational burden
and waste of communication resources by TTC mechanism,
the event-triggered control (ETC) mechanism has begun to
attract much attention [29]–[31]. Compared with the TTC
mechanism, the ETC mechanism only updates the controller
when the event-triggered condition is violated, which can
reduce the amount of calculation and save communication
resources [32]–[35]. Therefore, many event-triggered ADP
methods are proposed to solve the ZSG problem. In [36],

the event-triggered ADP method was proposed to solve the
partially unknown continuous-time nonlinear ZSG problem.
In [37], for the nonlinear continuous-time system ZSG
problem, an event-triggered adaptive controller was designed
to achieve the system’s anti-disturbance ability. However, the
above methods do not take into account the safety constraints
and input saturation of the system, which has a great risk in
practical applications.

Inspired by the above methods, in this paper, a new ADP-
based event-triggered safe control method is proposed to
solve the ZSG problem of nonlinear safety-critical systems
with input saturation and safety constraints. The main
contributions of this paper include the following three
aspects:

1) By using the BF function, the nonlinear safety-critical
system with input saturation and safety constraints is
transformed into an equivalent system, which satisfies
the user-defined safety constraints. And theH∞ control
problem of the transformed system is described as a
two-player ZSG problem with input saturation.

2) To reduce the amount of calculation and save commu-
nication resources, the ETC mechanism is introduced
and an event-triggered condition is derived for the
nonlinear safety-critical system, so that the safety
control law and the safety disturbance law are updated
only when the event-triggered condition is destroyed.
In addition, the Zeno behavior is excluded.

3) In this paper, an event-triggered safe control method
is proposed and in the implementation process, the
concurrent learning method is used to design the critic
neural network to approximate the optimal safety value
function for the nonlinear safety-critical system.

The rest of this paper is organized as follows. The
problem statement and problem transformation are shown in
section II. In section III, an event-triggered safe controller
design scheme is presented. In section IV, the ADP-based
event-triggered safe control method is presented, including
its derivation, proof and implementation. Section V demon-
strates the effectiveness of the proposed method through
a simulation example. Finally, conclusions are given in
section VI.

II. PRELIMINARIES
A. PROBLEM STATEMENT
Consider the nonlinear safety-critical system with input
saturation described by equation of the form,

ẋ = f (x)+ g(x)u(t)+ k(x)d(t), |ui(t)| ≤ κ, (1)

where x = [x1, x2, . . . , xn]T ∈ Rn is the state vector,
and u(t) ∈ Rm is the control input required to satisfy
|ui(t)| ≤ κ, i = 1, 2, . . . ,m, and κ is the input boundary.
d(t) ∈ Rq is the external disturbance. Moreover, f (x) ∈ Rn

is the drift system dynamics, g(x) ∈ Rn×m is the input
dynamics, and k(x) ∈ Rn×q is the disturbance matrix.
Assume that the functions f (x), g(x), k(x) are Lipschitz
continuous. In addition, for the system (1), note that its state
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x = [x1, x2, . . . , xn]T satisfy the following safety constraints:

x1 ∈ (a1,A1),

x2 ∈ (a2,A2),
...

xn ∈ (an,An). (2)

For the nonlinear safety-critical system with safety con-
straints (2), due to the input saturation and the external
disturbance, the zero-sum differential game framework is
introduced [20]. Therefore, the following infinite horizon
performance function is defined as

J
(
x(0), u, d

)
=

∫
∞

0
2(x, u, d)dt, (3)

where 2(x, u, d) = H (x) + Z (u) − γ 2dT d with H (x) and
Z (u) are positive definite functions. Then, the ZSG problem
with input saturation and safety constraints can be expressed
as follows.
Problem 1: The infinite horizon performance function and

the nonlinear safety-critical system are given by (3) and (1),
respectively, find the Nash equilibrium solution (u∗, d∗) of the
closed-loop system with safety constraints (2).

In order to ensure that the system state is always within the
safety constraints. Next, we introduce some definitions of the
barrier function.
Definition 1 (Barrier Function [14], [15]): The function

B(·) : R → R defined on the interval (a,A) is referred to
as barrier function if

B(z; a,A) = log(
A(a− z)
a(A− z)

), ∀z ∈ (a,A), (4)

where a < 0 and A > 0. In addition, on the interval (a,A),
the invertibility of the barrier function is reflected, that is,

B−1(y; a,A) =
aA(e

y
2 − e−

y
2 )

ae
y
2 − Ae−

y
2
, ∀y ∈ R. (5)

Furthermore, the derivative of (5) is,

dB−1(y; a,A)
dy

=
Aa2 − aA2

a2ey − 2aA+ Ae−y
. (6)

Remark 1: To ensure that the safety-critical system (1)
always satisfies the safety constraints, the barrier function in
the Definition 1 has the following characteristics [14], [15].
1) The barrier function takes a finite value, if the its

parameters satisfy the safety constraints.
2) When the system state is close to the safety constraint

boundary, the barrier function changes as follows,

lim
z→a+

B(z; a,A)=−∞, lim
z→A−

B(z; a,A)=+∞. (7)

3) When the system state reaches the equilibrium, the
barrier function loses its effect, that is,

B(0; a,A) = 0, ∀a < A. (8)

For the safety-critical system (1) with the safety constraints
(2), we will use the barrier function to perform equivalent

transformation. Therefore, the following transformations are
performed

si = B(xi; ai,Ai),

xi = B−1(si; ai,Ai), (9)

where i = 1, 2, . . . , n. Then, the derivative of xi with respect
to t is dxi

dt =
dxi
dsi

dsi
dt , and after using Definition 1, we can get

ṡi =
ai+1Ai+1(e

si+1
2 − e−

si+1
2 )

ai+1e
si+1
2 − Ai+1e−

si+1
2

a2i e
s
i − 2aiAi + Aie−si

Aia2i − aiA
2
i

= Fi(si, si+1), i = 1, 2, . . . , n− 1. (10)

ṡn = ẋ
a2ne

s
n − 2anAn + Ane−sn

Ana2n − anA2n
= Fn(s)+ gn(s)u(t)+ kn(s)d(t), (11)

where

Fn(s) =
a2ne

s
n − 2anAn + Ane−sn

Ana2n − anA2n
f ([B−11 (s1) . . .B−1n (sn)]),

gn(s) =
a2ne

s
n − 2anAn + Ane−sn

Ana2n − anA2n
g([B−11 (s1) . . .B−1n (sn)]),

kn(s) =
a2ne

s
n − 2anAn + Ane−sn

Ana2n − anA2n
k([B−11 (s1) . . .B−1n (sn)]).

(12)

Then, the system (11) can be rewritten as

ṡ = F(s)+ G(s)u(t)+ K (s)d(t), |ui(t)| ≤ κ, (13)

where F(s) =
[
F1(s1, s2), . . . ,Fn(s)

]T , G(s) =[
0, . . . , gn(s)

]T and K (s) =
[
0, . . . , kn(s)

]T .
The following assumption exist for the transformed

system (13).
Assumption 1 ([32], [37]): Assume that F(s) is Lipschitz

continuous with F(0) = 0, i.e., ‖F(s)‖ ≤ fm‖s‖, where
fm is positive constant. G(s) and K (s) are upper-bounded
by ‖G(s)‖ ≤ gm, and ‖K (s)‖ ≤ km, where gm, km are
positive constants. Furthermore, the transformed system (13)
is controllable, and s = 0 is an equilibrium of (13).

B. BARRIER-FUNCTION-BASED ZSG PROBLEM
TRANSFORMATION
For the transformed system (13), similar to (3), the infinite
horizon performance function is introduced as follows

V
(
s0, u(t), d(t)

)
=

∫
∞

0
r(s, u, d)dt, (14)

where r(s, u, d) = Q(s)+Z (u)− γ 2dT d , with Q(s) = sTQs,
Q is user-defined positive-definite matrix, and γ is a positive
constant. Moreover, s0 = s(0) denotes the initial state, Z (u) is
a non-quadratic utility function to solve input saturation, and
Z (u) ≥ 0 with Z (0) = 0. Inspired by [31], [39], Z (u) can be
defined as

Z (u) = 2κ
∫ u(s)

0
tanh−1

( ξ
κ

)T
Rdξ, (15)
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where R = diag{l1, l2, . . . , lm} is a positive definite diagonal
matrix. Besides, the performance function (14) satisfies zero-
state observability. Therefore, for the transformed system
(13), the following input saturation ZSG problem is consid-
ered as follows.
Problem 2: For the transformed system (13), and the

performance function is given by (14), then, find the Nash
equilibrium u∗ and d∗ of the input saturation ZSG problem
of the safety-critical system with the safety constraints.

The safe value function is defined as follows:

V
(
s(t), u(t), d(t)

)
=

∫
∞

t
r
(
s(ν), u(ν), d(ν)

)
dν. (16)

For the safe value function (16), if it is continuous
and differentiable, then, the following nonlinear Lyapunov
equation can be derived

r(s, u, d)+
(
∇V (s)

)T (F(s)+ G(s)u+ K (s)d
)
= 0, (17)

where∇V (s) is the partial derivative ofV (s, u, d) with respect
to s.

Then, the safe Hamiltonian associated with (17) is
presented by

H
(
s, u, d,∇V (s)

)
= r(s, u, d)

+
(
∇V (s)

)T (F(s)+ G(s)u+ K (s)d
)
.

(18)

According to the Bellman’s optimal theory, the optimal safety
value function V ∗(s) satisfies the following safe HJI equation

0 = min
u

max
d

H
(
s, u, d,∇V ∗(s)

)
= min

d
max
u
H
(
s, u, d,∇V ∗(s)

)
. (19)

The safe control pair (u∗, d∗) satisfies following conditions:

∂H
(
s, u, d,∇V ∗(s)

)
∂u

= 0, (20)

∂H
(
s, u, d,∇V ∗(s)

)
∂d

= 0. (21)

According to (19), (20) and (21), the optimal safety control
law and the worst safety disturbance law can be obtained

u∗(s) = −κtanh
( 1
2κ
R−1GT (s)∇V ∗(s)

)
, (22)

d∗(s) =
1

2γ 2K
T (s)∇V ∗(s). (23)

Substituting (22) and (23) into (19), the safe HJI equation is
written as

0 =
∫
−κtanh( 1

2κ R
−1GT (s)∇V ∗(s))

0
2κtanh−1

( ξ
κ

)T
Rdξ

+∇V ∗T (s)F(s)+ sTQs

−∇V ∗T (s)G(s)κtanh
( 1
2κ
R−1GT (s)∇V ∗(s)

)
+

1
4γ 2∇V

∗T (s)K (s)KT (s)∇V ∗(s), (24)

0 = V ∗(0). (25)

Considering the BF-based system transformation, the ZSG
problem 1 can be transformed into the ZSG problem 2.
Next, the following lemma is discussed, which guarantee
the equivalence between the ZSG problem 1 and the ZSG
problem 2.
Lemma 1: Suppose that Assumption 1 is satisfied and that

the Nash equilibrium solution u∗ and d∗ solve the ZSG
problem 2 for transformed system (13) with the performance
function (14). Then, the following hold:

1) The premise of the closed-loop system satisfies the
safety constraints (2) is that the initial state x0 of
the nonlinear safety-critical system (1) is within the
interval (ai,Ai),∀i = 1, 2, . . . , n.

2) The performance function described by (14) is equiva-
lent to the performance function (3) on the premise that
the function H (x) andQ(x) satisfies H (x) = Q(B(x)) =
Q(s).
Proof: 1. According to the zero-state observability of the

performance function (14) and Assumption 1, this guarantees
the existence of the safe optimal value function V ∗(s). Based
on (18), we can get ∇V ∗(t) ≤ 0, therefore, for all t ≥ 0,
V ∗(s(t)) ≤ V ∗(s(0)) can be obtained. Therefore, it can be
known from Remark 1 that if the initial state x0 of the system
(1) satisfies safety constraints (2), V ∗(s(0)) is bounded, then,
V ∗(s(t)) is also bounded. Finally, we can get

xi(t) ∈ (ai,Ai), i = 1, 2, . . . , n. (26)

Thus, the given Nash equilibrium solution u∗ and d∗ satisfy
the constraints of ZSG problem 1.

2. By using the BF-based state transformation (9), it can
be obtained that if the system state x(t) satisfies the safety
constraints (2), then each element in s = [B1(x1), . . . ,Bn(xn)]
is finite. Then, by comparing performance functions (3) and
(14), the following equivalence relation can be obtained

J
(
x(0), u, d

)
= V

(
s(0), u, d

)
(27)

provided that H (x) = Q(s). This completes the proof. �
Remark 2: For the safe HJI equation (21), we can use

ADP-based time-triggered methods to solve it [24]–[28].
However, these time-triggered methods will cause a lot
of calculations, and resources such as storage space and
computation bandwidth are limited in practical projects.
Therefore, we will introduce the event-triggered mechanism
to overcome this trouble.

III. EVENT-TRIGGERED SAFE CONTROLLER DESIGN
In this section, the event-triggered mechanism is introduced.
Before this, we need to consider a sequence of triggering
instants {τj}∞j=0, where τj represents the jth triggering instant,
and for all j ∈ N, there is τj+1 > τj. Then, the sampled
state vector is expressed as s(τj) = sj, t ∈ [τj, τj+1), j ∈
N. In addition, the gap between the sampled state and the
current state is called the event-triggered error, and the event-
triggered error ej(t) is expressed by the following equation

ej(t) = sj − s(t), ∀t ∈ [τj, τj+1). (28)
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By using (28), the optimal safety control law and the worst
safety disturbance law can be expressed by u(sj) = u

(
s(t) +

ej(t)
)
and d(sj) = d

(
s(t) + ej(t)

)
, respectively. Meanwhile,

under event-triggered framework, the transformed system
(13) is rewritten by

ṡ = F(s)+ G(s)u
(
s(t)+ ej(t)

)
+ K (s)d

(
s(t)+ ej(t)

)
= F(s)+ G(s)u(sj)+ K (s)d(sj), |ui(t)| ≤ κ. (29)

Then, according to (22) and (23), the optimal event-triggered
safety control law and the worst event-triggered safety
disturbance law can be represented as

u∗(sj) = −κtanh
( 1
2κ
R−1GT (sj)∇V ∗(sj)

)
(30)

d∗(sj) =
1

2γ 2K
T (sj)∇V ∗(sj). (31)

Substituting (30), (31) into (19), the safe event-triggered HJI
equation is presented by

0 =
∫
−κtanh( 1

2κ R
−1GT (sj)∇V ∗(sj))

0
2κtanh−1(

ξ

κ
)TRdξ

+∇V ∗T (s)F(s)+ sTQs

−∇V ∗T (s)G(s)κtanh
( 1
2κ
R−1GT (sj)∇V ∗(sj)

)
+

1
2γ 2∇V

∗T (s)K (s)KT (sj)∇V ∗(sj)

−
1

4γ 2∇V
∗T (sj)K (sj)KT (sj)∇V ∗(sj), (32)

0 = V ∗(0). (33)

Remark 3: In this paper, a zero-sum game problem of
the nonlinear safety-critical system with input saturation
is considered. It should be pointed out that the event-
triggered mechanism is not only used to the control law,
and the disturbance law is still based on the event-triggered
mechanism.

Now, we define D∗(s) = 1
2κR
−1GT (s)∇V ∗(s), then,

a necessary assumption related to D∗(s) is given as follows.
Assumption 2: D∗(s) is Lipschitz continuous with respect

to the event-triggered error ej, and there exists following
inequality∥∥D∗(sj)− D∗(s)∥∥ ≤ Ku‖sj − s‖ = Ku‖ej‖, (34)

where Ku is a positive constant.
Theorem 1: For the transformed system (13), the optimal

event-triggered safety control law and the worst event-
triggered safety disturbance law are given by (30) and
(31), respectively. When the closed-loop system 13 is
asymptotically stable, the triggering condition is given as
follows:

‖ej‖2 ≤
(1− η2)λmin(Q)‖s‖2 + Z (u∗(sj))− γ 2

‖d∗(sj)‖2

κ2K 2
u ‖R‖

,

(35)

where

Z (u∗(sj)) = 2κ
∫ u∗(sj)

0
tanh−1

( ξ
κ

)T
Rdξ, (36)

and η ∈ (0, 1) is a user-defined design parameter, λmin(Q) is
the minimal eigenvalue of Q.

Proof: Select V ∗(s) as the Lyapunov candidate function.
With the optimal event-triggered safety control law (30) and
the worst event-triggered safety disturbance law (31), we take
the derivative of V ∗(s) along the trajectory of the event-
triggered system (29), and we have

V̇ ∗(s) = ∇V ∗T (s)
(
F(s)+ G(s)u∗(sj)+ K (s)d∗(sj)

)
= ∇V ∗T (s)F(s)+∇V ∗T (s)G(s)u∗(sj)

+∇V ∗T (s)K (s)d∗(sj). (37)

According to (24), we can get

V ∗T (s)F(s) = −
∫
−κtanh(D∗(s))

0
2κtanh−1

( ξ
κ

)T
Rdξ

− sTQs+∇V ∗T (s)G(s)κtanh
(
D∗(s)

)
−

1
4γ 2∇V

∗T (s)K (s)KT (s)∇V ∗(s). (38)

In addition, from the optimal safety control law (22) and the
worst safety disturbance law (23), we have

∇V ∗T (s)G(s) = −2κtanh−1
(u∗(s)
κ

)T
R, (39)

∇V ∗T (s)K (s) = 2γ 2(d∗(s))T . (40)

Substituting (38), (39) and (40) into (37), we have

V̇ ∗(s) = −sTQs−
∫
−κtanh(D∗(s))

0
2κtanh−1

( ξ
κ

)TRdξ
+∇V ∗T (s)G(s)κtanh

(
D∗(s)

)
−

1
4γ 2∇V

∗T (s)K (s)KT (s)∇V ∗(s)

− 2κtanh−1
(u∗(s)
κ

)T
Ru∗(sj)

+ 2γ 2(d∗(s))T d∗(sj). (41)

In addition, according to [31], [39], (15) can be expressed as

Z (u) = 2κ
∫ u(s)

0
tanh−1

( ξ
κ

)T
Rdξ

= 2κuTRtanh−1
( u
κ

)
+ κ2R̄ln

[
1−

u2

κ2

]
, (42)

where R̄ = [l1, l2, . . . , lm] ∈ R1×m, 1 = [1, 1, . . . , 1]T ∈
Rm. And substituting (42) into (41), we have

V̇ ∗(s) = −sTQs− κ2R̄ln
[
1−

u∗2

κ2

]
− 2κtanh−1

(u∗(s)
κ

)T
Ru∗(sj)

− γ 2(d∗(s))T d∗(s)+ 2γ 2(d∗(s))T d∗(sj). (43)
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Then, according to (42), the second term in equation (43) can
be rewritten as

κ2R̄ln
[
1−

(u∗2
κ2

)]
= 2κu∗TRtanh−1

(u∗
κ

)
+ κ2R̄ln

[
1−

u∗2

κ2

]
− 2κu∗TRtanh−1

(u∗
κ

)
− 2κ

∫ u∗(sj)

0
tanh−1

( ξ
κ

)T
Rdξ

+ 2κ
∫ u∗(sj)

0
tanh−1

( ξ
κ

)T
Rdξ

= 2κ
∫ u∗(s)

u∗(sj)
tanh−1

( ξ
κ

)T
Rdξ

− 2κu∗TRtanh−1
(u∗
κ

)
+Z

(
u∗(sj)

)
. (44)

The third term in equation (43) becomes

2κtanh−1
(u∗(s)
κ

)T
Ru∗(sj)

=

∫ u∗(sj)

u∗(s)
2κD∗T (s)Rdξ

−∇V ∗T (s)G(s)κtanh(D∗(s)). (45)

Substituting (44) and (45) into (43), we have

V̇ ∗(s) = −sTQs− Z (u∗(sj))

+

∫ u∗(sj)

u∗(s)
2κ
[
tanh−1

( ξ
κ

)
+ D∗(s)

]T
Rdξ

− γ 2(d∗(s))T d∗(s)+ 2γ 2(d∗(s))T d∗(sj). (46)

Let ξ = −κtanh(ν), and based on Assumption 1, then the
third term in (46) can be expressed as∫ u∗(sj)

u∗(s)
2κ
[
tanh−1

( ξ
κ

)
+ D∗(s)

]T
Rdξ

≤

∫ D∗(sj)

D∗(s)
2κ2(ν − D∗(s))TRdν

= κ2
(
D∗(sj)− D∗(s)

)TR(D∗(sj)− D∗(s))
≤ κ2K 2

u ‖R‖‖ej‖
2. (47)

Therefore, substituting (47) into (46), we can obtain

V̇ ∗(s) ≤ −sTQs− Z (u∗(sj))+ κ2K 2
u ‖R‖‖ej‖

2

+ γ 2(d∗(sj))T d∗(sj)
≤ −η2λmin(Q)‖s‖2 + (η2 − 1)λmin(Q)‖s‖2

−Z (u∗(sj))

+ κ2K 2
u ‖R‖‖ej‖

2
+ γ 2
‖d∗(sj)‖. (48)

According to the above proof, we can know that if the
triggering condition (35) is satisfied, then, for any s(t) 6= 0,
there is V̇ ∗(s) ≤ −η2λmin(Q)‖s‖2 < 0. Therefore,

according to Lyapunov theory, the closed-loop system (13)
is asymptotically stable. The proof is completed. �
Remark 4: For the safe event-triggered HJI equation (32),

due to its partial differential characteristics, its analytical
solution is almost impossible to obtain. Therefore, in the next
section, an ADP-based event-triggered safe control method
is presented to solve the approximate optimal solution of the
safe event-triggered HJI equation (32).

IV. APPROXIMATE SOLUTION OF ADP-BASED
EVENT-TRIGGERED SAFE CONTROL
In this section, an ADP-based event-triggered safe control
method is proposed for the zero-sum game problem of safety-
critical systems with input saturation. First, a critic NN is
developed to approximate the optimal safety value function.
Then, according to the Lyapunov theory, the stability of the
nonlinear safety-critical system is analyzed. Finally, the Zeno
behavior is excluded.

A. CRITIC NN DESIGN
According to the Weierstrass approximation theorem [40],
the optimal safety value function V ∗(s) can be approximated
by a critic NN as follows:

V ∗(s) = W T
c φ(s)+ ε(s), (49)

where Wc ∈ Rn denotes the ideal weight vector, φ(s) ∈ Rn

denotes the activation function, n is the number of hidden
neurons and ε(s) ∈ R is the reconstruction error of NN. The
derivative of (49) with respect to s is

∇V ∗(s) = ∇φT (s)Wc +∇ε(s), (50)

where∇V ∗(s),∇φ(s) and∇ε(s) mean the derivative of V ∗(s),
φ(s) and ε(s) with respect to s, respectively.

According to (30), (31) and (50), the optimal event-
triggered safety control law and the worst event-triggered
safety disturbance law can be written as

u∗(sj) = −κtanh
( 1
2κ
R−1GT (sj)

(
∇φT (sj)Wc +∇ε(sj)

))
,

(51)

d∗(sj) =
1

2γ 2K
T (sj)

(
∇φT (sj)Wc +∇ε(sj)

)
. (52)

Because the ideal weightWc is not known, the optimal event-
triggered safety control law and the worst event-triggered
safety disturbance law cannot be applied to the control
process. Therefore, V ∗(s) is approximated as follows:

V̂ (s) = Ŵ T
c φ(s), (53)

where Ŵc ∈ Rn is an approximation of the ideal weight Wc.
The derivative of (53) with respect to s is

∇V̂ (s) = ∇φT (s)Ŵc. (54)

Then, the optimal event-triggered safety control law and
the worst event-triggered safety disturbance law can be
approximated as

û(sj) = −κtanh
( 1
2κ
R−1GT (sj)∇φT (sj)Ŵc

)
, (55)

d̂(sj) =
1

2γ 2K
T (sj)∇φT (sj)Ŵc. (56)
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Substituting (55), (56) into (18), the approximate safe event-
triggered Hamiltonian is rewritten as
Ĥ
(
s, û(sj), d̂(sj), Ŵc

)
= r

(
s(t), û(sj), d̂(sj)

)
+ Ŵ T

c ∇φ(s)
(
F(s)+ G(s)û(sj)

+K (s)d̂(sj)
)

= ec, (57)

where r
(
s(t), û(sj), d̂(s)

)
= sTQs+Z

(
û(sj)

)
−γ 2d̂T (sj)d̂(sj).

For the critic NN learning, it is desired to get Ŵc to minimize
the objective function E = (1/2)eTc ec through the gradient
descent method [41]. Therefore, the weight vector of critic
NN is updated with
˙̂Wc = −ac

σ

(σ Tσ + 1)2
eTc

= −ac
σ

(σ Tσ + 1)2
[
r(s(t), û(sj), d̂(sj))+ σ T Ŵc

]
,

(58)

where σ = ∇φ(s)
[
F(s) + G(s)û(sj) + K (s)d̂(sj)

]
and

ac > 0 is the learning rate. Let the weight estimation error as
W̃c = Wc − Ŵc, and substituting W̃c into (58), we have

˙̃Wc = −ac
σσ T

(σ Tσ + 1)2
W̃c + ac

σ

(σ Tσ + 1)2
eH . (59)

where eH = −∇εT (s)[F(s)+ G(s)û(sj)+ K (s)d̂(sj)].
However, for the update rule (58), according to

[42]–[45], we know that the PE condition of σ/(σ Tσ + 1)
is required to ensure convergence of Ŵc toWc. Nevertheless,
due to the existence of hidden-layers in term σ/(σ Tσ + 1),
the PE condition is difficult to verify. Besides, to obtain the
persistence of the excitation signal, a common way is to add
exploration noise, which may cause the system to violate
safety constraints, or even instability. This creates obstacles
to the learning of critic NN.

Therefore, to overcome the above problem, the concurrent
learning method is adopted [42]–[45], the critic NN weights
can be updated by past data and current data. Define the
residual equation error at time tk as

ec(tk ) = r
(
s(tk ), û(sj), d̂(sj)

)
+ Ŵ T

c σk , (60)

where k ∈ {1, 2 . . . , l} is the index of a past data s(tk ),
tk ∈ [τj, τj+1), j ∈ N, and l is the number of past samples.
Then, r

(
s(tk ), û(sj), d̂(sj)

)
= s(tk )TQs(tk ) + Z

(
û(sj)

)
−

γ 2d̂T (sj)d̂(sj), σk = ∇φ
(
s(tk )

)[
F(s(tk )) + G(s(tk ))û(sj) +

K (s(tk ))d̂(sj)
]
, and eH (tk ) = −∇εT (s(tk ))[F(s(tk )) +

G(s(tk ))û(sj) + K (s(tk ))d̂(sj)]. Similarly, for the critic NN
learning, we have defined a new objective function as follow:

Ek =
1
2
eTc ec +

1
2

l∑
k=1

eTc (tk )ec(tk ). (61)

Therefore, a novel weight update rule for the critic NN is
given by

˙̂Wc = −ac
σ

(σ Tσ + 1)2
ec − ac

l∑
k=1

σ (tk )ec(tk )(
σ T (tk )σ (tk )+ 1

)2 .
(62)

FIGURE 1. The flowchart of the ADP-based event-triggered safe control
method.

Substituting the weight estimation error W̃c = Wc − Ŵc into
(62), we have

˙̃Wc = −ac
[ σσ T

(σ Tσ + 1)2
+ Sk

]
W̃c

+ ac
[ σ

(σ Tσ + 1)2
eH + SpeH (tk )

]
, (63)

where Sk =
∑l

k=1
σ (tk )σ (tk )T(

σT (tk )σ (tk )+1
)2 , and

Sp =
∑l

k=1
σ (tk )(

σT (tk )σ (tk )+1
)2 .

Remark 5: In this paper, the flowchart of the ADP-base
event-triggered safe control method is shown in Figure 1.
It should be noted that both the approximate optimal safety
control law and the approximate worst safety disturbance
law are updated based on the event-triggered mechanism.
This improves the utilization efficiency of communication
resources and greatly reduces the amount of calculation.
Remark 6: In the update rule (62) of the critic NN, the

effect of the first term is similar to that of (58), that is,
it is used to minimize the objective function. On the other
hand, since the traditional PE condition is difficult to verify,
we adopt the method of concurrent learning, in which current
data and past data are used to update the weights of the critic
NN. That is the effect of the second term in (62).

B. STABILITY ANALYSIS
Next, the main theorem of this paper is given, in which
the stability of the system is analysed by using Lyapunov
theory. Before this, we need the following necessary assump-
tions [30]–[32], [36], [37].
Assumption 3: The derivative of the critic NN activation

function and the control dynamics G(s) are Lipschitz
continuous, i.e., ‖∇φ(s) − ∇φ(sj)‖ ≤ Bφ‖ej(t)‖, ‖G(s) −
G(sj)‖ ≤ Ag‖e(sj)‖, where Bφ and Ag are positive constants.
Assumption 4: There are known positive constants bec , bε,

and lφ , have ‖eH‖ ≤ bec , ‖∇ε(s)‖ ≤ bε, and ‖∇φ(s)‖ ≤ lφ .
Theorem 2: Suppose that Assumptions 1, 2, 3, 4 are

satisfied. Consider the transformed system (13), the weights
of critic NN are updated by (62), the approximate optimal
event-triggered safety control law û(sj) is given by (55), and
the approximate worst event-triggered safety disturbance law
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d̂(sj) is given by (56). Then, the system is asymptotically
stable, and the critic NN weight estimation error W̃c is
guaranteed to be UUB, if the condition

‖ej‖2 ≤
(1− η2)λmin(Q)‖s‖2 + Z (û(sj))− γ 2

‖d̂(sj)‖

32‖R‖−1‖Ŵc‖
2

≡ ‖eT ‖2 (64)

and the inequality of the weight estimation error W̃c

‖W̃c‖ >

√√√√ 2‖R‖−1g2mb2ε +
∑l+1

k=1 b
2
ec

λmin[ψ(ω,ω(tk ))]− 2‖R‖−1g2ml
2
φ

(65)

are satisfied, where 32
= A2gl

2
φ + B2φg

2
m, and

λmin[ψ(ω,ω(tk ))] denotes the minimal eigenvalue of
ψ(ω,ω(tk )).

Proof: The Lyapunov candidate function is given by,

L(t) = L1(t)+ L2(t)+ L3(t), (66)

where L1(t) = V ∗(s(t)), L2(t) = V ∗(sj) and L3(t) =
(1/2)W̃ T

c a
−1
c W̃c. The stability analysis includes the following

two cases.
Case 1:When t ∈ [τj, τj+1), events are not triggered. The

derivative of (66) can be obtain as follows,
L̇1(t) = (∇V ∗(s))T (F(s)+ G(s)û(sj)+ K (s)d̂(sj)),
L̇2(t) = 0,

L̇3(t) = W̃ T
c a
−1 ˙̃Wc.

(67)

Substituting (38), (39) and (40) into L̇1(t), we can obtain

L̇1(t) = ∇V ∗T (s)F(s)+∇V ∗T (s)G(s)û(sj)

+∇V ∗T (s)K (s)d̂(sj)

= −sTQs− Z (û(sj))

+

∫ û(sj)

u∗(s)
2κ
[
tanh−1

( ξ
κ

)
+ D∗(s)

]T
Rdξ

− γ 2(d∗(s))T d∗(s)+ 2γ 2(d∗(s))T d̂(sj). (68)

For the third term in (68), according to Assumption 1 and
(47), we can get∫ û(sj)

u∗(s)
2κ
[
tanh−1

( ξ
κ

)
+ D∗(s)

]T
Rdξ

≤

∫ D̂(sj)

D∗(s)
2κ(ν − D∗(s))TRdν

= κ2
(
D̂(sj)− D∗(s)

)TR(D̂(sj)− D∗(s))
≤ κ2‖R‖‖D∗(s)− D̂(sj)‖2, (69)

where D̂(sj) = 1
2κR
−1GT (sj)∇φT (sj)Ŵc, and substituting

(50) into D∗(s), we have

D∗(s) =
1
2κ
R−1GT (sj)

(
∇φT (sj)Wc +∇ε(s)

)
. (70)

According to (70), D̂(sj) and the weight estimation error
W̃c = Wc − Ŵc, we can obtain

‖D∗(s)− D̂(sj)‖2

=
∥∥ 1
2κ
R−1GT (s)

[
∇φT (s)(W̃c + Ŵc)+∇ε(s)

]
−

1
2κ
R−1GT (sj)∇φT (sj)Ŵc

∥∥2
=

1
4κ2‖R‖2

∥∥GT (s)(∇φT (s)W̃c +∇ε(s)
)

+
[
GT (s)∇φT (s)− GT (sj)∇φT (sj)

]
Ŵc
∥∥2. (71)

According to Assumptions 2, 3, 4, and the Young’s inequality
‖c+ d‖2 ≤ 2‖c‖2 + 2‖d‖2, we have

‖GT (s)∇φT (s)− GT (sj)∇φT (sj)‖2

=
∥∥[∇φ(s)(G(s)− G(sj))]T
+
[(
∇φ(s)−∇φ(sj)

)
G(sj)

]T∥∥2
≤ 2

∥∥∇φ(s)(G(s)− G(sj))∥∥2
+ 2

∥∥(∇φ(s)−∇φ(sj))G(sj)∥∥2
≤ 2(A2gl

2
φ + B

2
φg

2
m)‖ej(t)‖

2. (72)

Substituting (72) into (71), we have

‖D∗(s)− D̂(sj)‖2

≤
1

κ2‖R‖2
‖GT (s)∇φT (s)W̃c‖

2

+
1

κ2‖R‖2
‖GT (s)∇ε(s)‖2

+
1

κ2‖R‖2
(A2gl

2
φ + B

2
φg

2
m)‖ej(t)‖

2
‖Ŵc‖

2

≤
1

κ2‖R‖2
g2ml

2
φ‖W̃c‖

2
+

1
κ2‖R‖2

g2mb
2
ε

+
1

κ2‖R‖2
(A2gl

2
φ + B

2
φg

2
m)‖ej(t)‖

2
‖Ŵc‖

2. (73)

Therefore, substituting (73) into (69), we can get∫ û(sj)

u∗(s)
2κ
[
tanh−1

( ξ
κ

)
+ D∗(s)

]T
Rdξ

≤ κ2‖R‖‖D∗(s)− D̂(sj)‖2

≤ ‖R‖−1g2ml
2
φ‖W̃c‖

2
+ ‖R‖−1g2mb

2
ε

+‖R‖−1(A2gl
2
φ + B

2
φg

2
m)‖ej(t)‖

2
‖Ŵc‖

2. (74)

Similarly, for the last two terms in (68), using the inequality
2cd ≤ c2 + d2, we have

−γ 2(d∗(s))T d∗(s)+ 2γ 2(d∗(s))T d̂(sj) ≤ γ 2d̂T (sj)d̂(sj).

(75)

Finally, substituting (74) and (75) into L̇1(t), we have

L̇1(t) ≤ −sTQs− Z
(
û(sj)

)
+ γ 2d̂T (sj)d̂(sj)

+‖R‖−1g2ml
2
φ‖W̃c‖

2
+ ‖R‖−1g2mb

2
ε

+‖R‖−1(A2gl
2
φ + B

2
φg

2
m)‖ej(t)‖

2
‖Ŵc‖

2
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≤ −η2λmin(Q)‖s‖2 + (η2 − 1)λmin(Q)‖s‖2

−Z
(
û(sj)

)
+ γ 2
‖d̂(sj)‖2

+‖R‖−1g2ml
2
φ‖W̃c‖

2
+ ‖R‖−1g2mb

2
ε (76)

+‖R‖−1(A2gl
2
φ + B

2
φg

2
m)‖ej(t)‖

2
‖Ŵc‖

2. (77)

On the other side, substituting (63) into L̇3, we can obtain

L̇3(t) = W̃ T
c a
−1
c
˙̃Wc

= −W̃ T
c [

σσ T

(σ Tσ + 1)2
+ Sk ]W̃c

+ W̃ T
c [

σ

(σ Tσ + 1)2
eH + SpeH (tk )]. (78)

Next, we define ω =
σ

(σT σ+1) , $ =
σ

(σT σ+1)2
,

ω(tk ) =
σ (tk )

(σ (tk )T σ (tk )+1)
, and $ (tk ) =

σ (tk )
(σT (tk )σ (tk )+1)2

. Then,

L̇3 can be written as

L̇3(t) = −W̃ T
c [ωω

T
+ Sk ]W̃c + W̃ T

c $eH + W̃ T
c SpeH (tk ).

(79)

According to the Young’s inequality aT b ≤ aT a
2 +

bT b
2 , the

second term of (79) is rewritten as

W̃ T
c $eH ≤

1
2
W̃ T
c $$

T W̃c +
1
2
eTHeH

≤
1
2
W̃ T
c ωω

T W̃c +
1
2
eTHeH . (80)

Similarly, for the third term of (79), we have

W̃ T
c SpeH (tk ) ≤

1
2
W̃ T
c

l∑
k=1

$ (tk )$ T (tk )W̃c

+
1
2

l∑
k=1

eH (tk )T eH (tk )

≤
1
2
W̃ T
c

l∑
k=1

ω(tk )ωT (tk )W̃c

+
1
2

l∑
k=1

eH (tk )T eH (tk ). (81)

Substituting (80) and (81) into (79), we have

L̇3(t) ≤ −W̃ T
c [ωω

T
+ Sk ]W̃c +

1
2
W̃ T
c ωω

T W̃c

+
1
2
eTHeH +

1
2
W̃ T
c

l∑
k=1

ω(tk )ωT (tk )W̃c

+
1
2

l∑
k=1

eH (tk )T eH (tk )

≤ −W̃ T
c [ωω

T
+ Sk ]W̃c +

1
2
W̃ T
c [ωω

T
+ Sk ]W̃c

+
1
2
[
l∑

k=1

eH (tk )T eH (tk )+ eTHeH ]

≤ −
1
2
W̃ T
c [ωω

T
+

l∑
k=1

ω(tk )ωT (tk )]W̃c

+
1
2

l+1∑
k=1

b2ec

≤ −
1
2
λmin[ψ(ω,ω(tk ))]‖W̃c‖

2
+

1
2

l+1∑
k=1

b2ec , (82)

where ψ(ω,ω(tk )) = ωωT +
∑l

k=1 ω(tk )ω
T (tk ), and

λmin[ψ(ω,ω(tk ))] denotes the minimal eigenvalue of
ψ(ω,ω(tk )).

Finally, substituting L̇1(t), L̇2(t) and L̇3(t) into L̇(t), we can
get

L̇(t) ≤ −η2λmin(Q)‖s‖2 + (η2 − 1)λmin(Q)‖s‖2

−Z
(
û(sj)

)
+ γ 2
‖d̂(sj)‖2 + ‖R‖−1g2ml

2
φ‖W̃c‖

2

+‖R‖−1(A2gl
2
φ + B

2
φg

2
m)‖ej(t)‖

2
‖Ŵc‖

2

+‖R‖−1g2mb
2
ε −

1
2
λmin[ψ(ω,ω(tk ))]‖W̃c‖

2

+
1
2

l+1∑
k=1

b2ec . (83)

Therefore, if conditions (64) and (65) are satisfied, we can
easily get L̇(t) ≤ −η2λmin(Q)‖s‖2 < 0 for all s(t) 6= 0.

Case 2: When t = τj+1, events are triggered. Consider the
difference operation of L(t), we have

1L(t) = L(sj+1)− L
(
s(τ−j+1)

)
= 1L1 +1L2 +1L3. (84)

In case 1, when events are not triggered, we can
know that L̇(t) < 0 for all t ∈ [τj, τj+1). Here,
s(τ−j+1) is given by the definition of the derivative, namely,
s(t−j+1) = lim1t→0 s(τj+1 − 1t). Then, the following
conclusions can be obtained,

1L1(t) = V ∗(sj+1)− V ∗(s(τ
−

j+1)) ≤ 0, (85)

1L2(t) = V ∗(sj+1)− V ∗(sj), (86)

1L3(t) =
1
2

[
W̃ T
c (sj+1)a

−1
c W̃c(sj+1)

− W̃ T
c
(
s(τ−j+1)

)
a−1c W̃c

(
s(τ−j+1)

)]
≤ 0. (87)

Substituting 1L1(t), 1L2(t) and 1L3(t) into (84), we can
obtain

1L(t) = V ∗(sj+1)− V ∗(s(τ
−

j+1))+ V
∗(sj+1)− V ∗(sj)

+
1
2
[W̃ T

c (sj+1)a
−1
c W̃c(sj+1)

− W̃ T
c (s(τ + 1−j+1))a

−1
c W̃c(s(τ

−

j+1))]

≤ V ∗(sj+1)− V ∗(sj)

≤ −K(‖ej+1(tj)‖). (88)

where K(·) denotes a class K function, and
ej+1(τj) = sj+1 − sj. According to the characters of the
class K function, the 1L(t) is continuously decreasing for
all t = τj+1.
Based on the proof of above two cases, it can be obtained

when the condition (64) and the inequality related to W̃c
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(65) are satisfied, the closed-loop system is asymptotically
stable and the weight estimation error of the critic NN W̃c is
guaranteed to be UUB. The proof is completed. �
Remark 7: Due to the weight estimation error W̃c in

the NN approximation process, then, two different event-
triggered conditions are obtained, i.e., the event-triggered
condition (35) in Theorem 1 and the event-triggered condition
(64) in Theorem 2. In the implementation process, it is more
appropriate to use the condition (62), where 3 is obtained
through many experiments.

C. MINIMUM SAMPLING PERIOD ANALYSIS
For the transformed system (13) with the optimal event-
triggered safety control law (22) and the worst event-
triggered safety disturbance law (23), if there exists the
minimal intersampling time 1tmin = minj∈N{τj+1 − τj} = 0,
which will cause the Zeno behavior to occur [30], [31]. Then,
the following Theorem 3 will be given to ensure that Zeno
behavior is excluded.
Theorem 3: Consider the event-triggered condition is

given by (35), and the sampled data system (29). Suppose
that Assumptions 1, 4 are satisfied. Then, the minimal
intersampling time 1tmin = minj∈N{τj+1 − τj} has a lower
bound that is not zero, that is,

1tmin ≥
1
fm
ln
(
1+
‖ej‖
Dm

)
> 0, (89)

where fm and Dm =
fm‖sj‖+D

fm
are positive constants.

Proof: According to (28), the derivative of the event-
triggered error ej(t) with respect to t is

dej(t)
dt
= ėj(t) = ṡj − ṡ = −ṡ, ∀t ∈ [τj, τj+1). (90)

By using the approximate optimal event-triggered safety
control law (55), and the approximate worst event-triggered
safety disturbance law (56), we have

‖ėj‖ = ‖ṡj − ṡ‖ = ‖ṡ‖

=
∥∥F(s)+ G(s)û(sj)+ K (s)d̂(sj)

∥∥
≤ ‖F(s)‖ + ‖G(s)û(sj)‖

+‖
1

2γ 2K (s)KT (sj)∇φT (sj)Ŵc‖. (91)

Since the control input satisfies ui(t) ≤ κ , then, we can
deduce û(sj) ≤ κ . In addition, based on Assumptions 1, 4,
we can get

‖ėj‖ ≤ ‖F(s)‖ + ‖G(s)û(sj)‖

+‖
1

2γ 2K (s)KT (sj)∇φT (sj)Ŵc‖

≤ fm‖s‖ + gmκ +
1

2γ 2 k
2
mlφ‖Ŵc‖

≤ fm‖s‖ + D

≤ fm‖sj − ej‖ + D

≤ fm‖sj‖ + fm‖ej‖ + D, (92)

where D = gmκ + 1
2γ 2

k2mlφ‖Ŵc‖.

TABLE 1. Parameters of the single link robot arm.

According to [30], [31], we can get the following inequality
from (92)

‖ej‖ ≤
fm‖sj‖ + D

fm

(
efm(t−τj) − 1

)
(93)

for all t ∈ [τj, τj+1). Then, we can obtain that the jth
intersampling time satisfies

τj+1 − τj ≥
1
fm
ln
(
1+
‖ej‖
Dm

)
> 0, (94)

where Dm =
fm‖sj‖+D

fm
. To sum up, the intersampling time

1tmin > 0. Consequently, the Zeno behavior is excluded. The
proof is finished. �

V. SIMULATION
In this section, a single link robot arm system simulation
example is given to demonstrate the effectiveness of the
proposedmethod. Consider the single link robotic arm system
represented by

θ̈ (t) = −
Mgl

G̃
sin(θ (t))−

D̃

G̃
θ̇ (t)+

1

G̃
u(t)+ kd(t), (95)

where θ(t) and θ̇ (t) represent angle position and angle
velocity, respectively. Other parameters of the single link
robotic arm system are shown in the Table 1. In addition,
let x = [x1, x2]T = [θ, θ̇ ]T , and the initial state is selected
as x0 =

[
x0(1), x0(2)

]T
= [2, 2]T . Then, (95) can be

written as[
ẋ1
ẋ2

]
=

 x2

−
Mgl

G̃
sin(x1)−

D̃

G̃
x2

+
 0

1

G̃

 u
+

[
0
k

]
d .

In addition, the states of the single link robot arm system
satisfy the following safety constraints,

x1 ∈ (−1.5, 3), x2 ∈ (−3, 3). (96)

Therefore, in order to deal with safety constraints, the barrier-
function-based system transformation (9) is used to obtain the
following transformed system without safety constraints,

ṡ = F(s)+ G(s)u+ K (s)d, (97)
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FIGURE 2. Evolution of the state x(t) without using the proposed method
in this paper.

where

F(s) =


a2A2

(
e
s2
2 − e−

s2
2

)
a2e

s2
2 − A2e−

s2
2

a21e
s1 − 2a1A1 + A1e−s1

A1a21 − a1A
2
1

f
(
B−1(s)

) a22es2−2a2A2+A2e−s2
A2a22−a2A

2
2

,

G(s) =

 0
1

G̃

a22e
s2 − 2a2A2 + A2e−s2

A2a22 − a2A
2
2

,
K (s) =

 0

k
a22e

s2 − 2a2A2 + A2e−s2

A2a22 − a2A
2
2

. (98)

For the transformed single link robot arm system (97),
the initial state is selected as s0 =

[
s0(1), s0(2)

]T
=[

B
(
x0(1); a1,A1

)
,B
(
x0(2); a2,A2

)]T , and the learning rate
of the critic NN is ac = 0.1. The important parameters of
triggering condition are chosen as R = 1,Q = 2I , γ = 4,
and |u| ≤ κ = 7 is the input boundary. On the other hand,
the activation function of the critic NN is given by φ(s) =[
s21 s1s2 s

2
2

]T , and the sampling time is set to 0.05s.
The simulation results of the proposed method are

displayed in Figures 2-10. In Figure 2, by using the classical
event-triggered control method, the system states can quickly
converge to zero, however, the system states cannot satisfy the
given safety constraints. Compared with Figure 2, in Figure 3,
the event-triggered safe control method can ensure that the
system states quickly converge to zero, while still satisfying
the given safety constraints. In Figure 4, based on the event-
triggered safe control method, the evolution process of the
state s(t) is given. Figure 5 depicts that the convergence
process of the critic NN weights, and finally converges to

Ŵc =
[
−3.3073 1.6670 −2.0424

]T
. (99)

In Figure 6 and Figure 7, we can see the convergence
process of the optimal event-triggered control law and
the worst event-triggered disturbance law, respectively.

FIGURE 3. Evolution of the state x(t) by using the proposed method in
this paper.

FIGURE 4. Evolution of the state s(t) by using the proposed method in
this paper.

FIGURE 5. Convergence of the critic NN weights.

The evolution process of the event-triggered threshold eT and
the event-triggered condition ej(t) is displayed in Figure 8.
As shown in Figure 9, the sampling period is given, and the
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FIGURE 6. Comparisons of the evolution disturbance input by the
event-triggered and the time-triggered.

FIGURE 7. Comparisons of the evolution disturbance input by the
event-triggered and the time-triggered.

FIGURE 8. Development of the event-triggering condition.

minimum sampling period is 0.15s. Finally, in Figure 10, the
result means that the event-triggered safe control method only
uses 260 samples, which is in sharp contrast to the time-

FIGURE 9. Sampling period during the learning process.

FIGURE 10. Sample numbers.

triggered method that requires 1200 samples. Furthermore,
it greatly reduces the amount of calculation, and saves
communication costs.

VI. CONCLUSION
In this paper, an event-triggered safe control method was
proposed for a class of nonlinear safety-critical systems with
safety constraints and input saturation by using adaptive
dynamic programming. First, by using the barrier function
to transformed the system with safety constraints and input
saturation, and a system with only input saturation was
obtained. Moreover, the non-quadratic utility function was
introduced into the performance function to solve input
saturation. Then, for relieving the computation pressure and
saving communication cost, the event-triggered mechanism
was introduced into the transformed system, and a new
event-triggered condition was presented, in which the states
was sampled and updated when the triggering condition
was broken. Then, the optimal safety value function was
approximated by a critic neural network, the approximate
optimal safety control law and the approximate worst safety
disturbance law can be obtainedand. During the learning
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process, the past data and current data were used to relax
the persistence of excitation condition. Then, the stability of
the proposed method was analyzed by the Lyapunov theory.
Finally, the simulation results showed the feasibility of our
proposed method. In the future, we will extend the proposed
method to multi-agent systems.
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