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ABSTRACT Akinematic calibration approach is proposed for a triple-planar 3-PR(4R)R parallel mechanism
whose attitude error cannot be corrected by motion. First, the kinematic principle of the 3-PR(4R)R parallel
mechanism is presented. Then, an error mapping function model is designed based on the mechanism’s
closed-loop vector equations. The model reveals the presence of coupling errors in the mechanism, i.e., the
coupling of attitude and position errors, and is used to analyze error sensitivity as an indicator of component
machining and assembly accuracy. A kinematic inverse solution is used to build a zero-point calibration
and a full calibration method. Calibration is performed by a laser tracker-based calibration system, which
generates much lower error values and delivers much improved accuracy. Experiments demonstrate that the
proposed approach can potentially be used to calibrate parallel mechanisms with non-compensable error
terms.

INDEX TERMS Parallel mechanism, error mapping, coupling error, calibration.

I. INTRODUCTION
Parallelmechanisms are often used for fine-tuning in practical
engineering due to their high precision and high stability,
and such fine-tuning mechanisms have been studied inten-
sively by many researchers. Besides, six-degree-of-freedom
(6-DOF) mechanisms are usually adopted for attitude adjust-
ment due to their high stiffness, high precision, and high
stability. An example is the automatic attitude adjustment
system based on the Stewart 6-DOF robot and laser tracker
coordinate measurement [1].

Parallel mechanisms are also a heated research topic in
large attitude adjustment devices [2], such as the point-
ing platform of the James Webb telescope [3], the adjust-
ment platform of the VLTI-ATS auxiliary telescope [4],
and the secondary mirror adjustment platform of the VST
telescope [5]. Many researchers have conducted theoretical
studies on the parallel mechanisms for attitude adjustment.
Tian L et al. [6] modeled and controlled the redundant par-
allel adjustment mechanism on deployable antenna panels.
Ma, Z.-Q et al. [7] studied a 3-PPPS parallel mechanism for
aircraft wing attitude adjustment to improve the efficiency
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of existing wing positioning systems in the acquisition of
hinge points. Hsu, P. E. et al. [8] designed a seat adjust-
ment mechanism based on the Stewart platform. Yao J [9]
presented a Stewart platform-based mechanism to optimize
and analyze the configuration of a parallel adjustment plat-
form for satellite integrated assembly. To sum up, there has
been an abundance of theoretical research on the use of the
Stewart parallel mechanism with six degrees of freedom for
attitude adjustment applications. Similarly, the 3-PR(4R)R
three-degree-of-freedom (3-DOF) parallel mechanism in this
paper can also be applied to fine tuning or attitude adjustment.

Many studies have been conducted on the calibration of
parallel mechanisms. Using a 6-DOF parallel manipulator
as the research structure model, Hu Y et al. [10] analyzed
the geometric error sources that affected the reachable space
of the mechanism and established a positional error mode
to improve the motion accuracy of six-axis hybrid machine
tools. Chu W et al. [11] proposed a calibration method for
a redundant actuated parallel mechanism for attitude adjust-
ment, and a calibration method based on force closed-loop
feedback was used to calibrate each branch chain of the
mechanism. Sun et al. [12] modeled the error of a 3-DOF
parallel robot using the vector method. Frisoli et al. [13]
modeled the error of a parallel robot in 3-URU space adopting
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spiral theory. In addition to the common methods mentioned
above, G. Chen [14] also presented a parallel robot error mod-
eling method based on the Product-of -Exponentials (POF)
Formula.

In this paper, we explore a 3-PR(4R)R mechanism from
the perspective of kinematic calibration. First, we develop
a calibration algorithm based on the mechanism’s character-
istics and build a experimental calibration platform with a
laser tracker. Next, we conduct theoretical and experimental
analysis for zero-point calibration as well as full calibration.
Finally, the accuracy of the fine-tuning mechanism is eval-
uated. Due to the error terms coupling of this mechanism
and the characteristic that the attitude error is difficult to
be compensated, the attitude error term is often ignored in
the calibration process. The contributions of this paper : (1)
error modeling for this mechanism, revealing the error term
coupling; (2) a calibration model based on the kinematic
inverse solution is established and calibration experiments
are conducted for this mechanism to improve the motion
accuracy of the mechanism.

II. KINEMATIC PRINCIPLE AND ERROR ANALYSIS
A. KINEMATIC PRINCIPLE
A sketch of the fine-tuning parallel mechanism is presented
in Fig. 1. The mechanism is composed of two platforms and
three branched chains with identical structures. The three
branched chains containing closed-loop structures are evenly
distributed between the fixed and moving platforms. Specif-
ically, P denotes the moving sub and R denotes the rotating
sub. The three branches of the moving sub Pi(i = 1, 2, 3)
are evenly distributed circumferentially on the fixed platform.
The upper short side Ai1Ai2 of the parallelogram is connected
to the moving sub slider by rotating sub Ri1, the lower short
side Bi1Bi2 of the parallelogram is connected to the moving
platform by rotating sub Ri2, and the four sides of the par-
allelogram Ai1Ai2Bi2Bi1 are connected by rotating sub Ri3,
Ri4, Ri5 and Ri6. The geometric relationships are Pi ‖ Ri1 ‖
Ri2, Ri3 ‖ Ri4 ‖ Ri5 ‖ Ri6, Ri1⊥Ri3.O is the point at which
the three branches of Ri1 meet, and O′ is the point at which
the three branches of Ri2 meet.

FIGURE 1. Simplified structure of 3-PR(4R)R mechanism.

The coordinate system of the mechanism is established,
with point O taken as the origin of the fixed coordinate
system, and the axis of R11 on the first branch chain as
X -axis. The Z -axis is established perpendicularly to the fixed

platform, being vertical upward, and Y-axis is determined
by the right-hand rule. Point O′ is set as the origin of the
reference coordinate system of the moving platform and the
axis of the rotating sub R12 on the first branch chain is taken
as the X ′-axis.The Z ′-axis is established perpendicularly to
the fixed platform, being vertical upward, and the Y ′ -axis
is determined by the right-hand rule. A1 is the midpoint of
Ai1Ai2, and Bi is the midpoint of Bi1Bi2.
li(i = 1, 2, 3) is defined as the length ofOAi, b as the length

of O′Bi, h as the length of AiBi, and the angles θi between
OAi and the positive direction of the X -axis of the fixed
coordinate system {O} as 0◦, 120◦, and 240◦, respectively.
The angle between the plane in which the parallelogram is
located and the negative direction of the Z -axis is defined
as αi(i = 1, 2, 3), and the angle between AiBi and Ai1Ai2 is
defined as βi(i = 1, 2, 3).
The coordinates of the output reference point O′ of the

mechanism in the fixed coordinate system {O} are set as[
x y z

]T and the vector closed-loop equation in the fixed
coordinate system {O} is established as:

r = l i + hi − bi. (1)

where r = OO′, l i = OAi,hi = AiBi, bi = O′Bi.
Transformation of Equation (1) yields:

li = b+ x cos θi + y sin θi

±

√
h2 − z2 − (x sin θi − y cos θi)2 (2)

The inverse solution of the position of the fine-tuning
mecha- ism is obtained by rounding off the case where Equa-
tion (2) takes the minus sign:

li = b+ x cos θi + y sin θi

+

√
h2 − z2 − (x sin θi − y cos θi)2 (3)

B. GEOMETRIC ERROR SOURCE ANALYSIS
Since the fine-tuning mechanism itself requires high accu-
racy, it is critical to establish an error model for the
fine-tuning mechanism and conduct accuracy analysis to
ensure the high accuracy of the system.

To establish a unified error model, the coordinate system
of the mechanism is first defined as shown in Fig. 2.

FIGURE 2. Error vector diagram of the fine-tuning mechanism.
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The fixed coordinate system of themechanism is defined as
O−XYZ . The origin of the coordinate system O is located at
the nominal intersection of the three branches A11A12,A21A22
andA31A32. TheX -axis coincides withA11A12, and the Z -axis
is perpendicular to the plane where A11A12, A21A22 and
A31A32 are located. The Y -axis is determined according to
the right-hand rule.

The conjoined coordinate system of the moving platform
is defined asO′−X ′Y ′Z ′. The origin of the coordinate system
O′ is located at the nominal intersection of the three branches
of B11B12,B21B22 and B31B32 . The X ′ axis coincides with
B11B12, and the Z ′ axis is perpendicular to the plane where
B11B12,B21B22 and B31B32 are located. The Y ′ axis is deter-
mined according to the right-hand rule.

The coordinate system of the driving branch is defined
as Li − XLiYLiZLi, and the origin Li of the driving branch’s
coordinate system coincides with the origin O of the fixed
coordinate system.

The upper short side of the parallelogram near the con-
joined coordinate system of the fixed platform Ai1Ai2 is
defined as Ai − xAiyAizAi. The origin of the coordinate system
of the upper short side is point Ai. The xAi axis coincides with
Ai1Ai2, and the yAi axis is parallel to the rotation sub-axis of
this branch parallelogram. The zAi axis is determined accord-
ing to the right-hand rule.

To describe the lower short side Bi1Bi2 of the parallelogram
near the moving platform, the transition coordinate system
L ′i − X

′
LiY
′
LiZ
′
Li is established by means of rotating the con-

joined coordinate system of the moving platformO′−X ′Y ′Z ′

around the Z ′ axis by θi.
The lower short side of the parallelogram near the con-

joined coordinate system of the moving platform Bi1Bi2 is
defined as Bi − xBiyBizBi. The origin of the lower short side
coordinate system is the point Bi, and the xBi axis coincides
with Bi1Bi2 the yBi axis is parallel to the rotation sub-axis of
this branch parallelogram. The zBi axis is determined accord-
ing to the right-hand rule.

The geometric error sources are defined as follows. The
error of system Li − XLiYLiZLi generated by the rotation of
O − XYZ around Z axis is defined as 1θAi; the error of
the length of short side Ai1Ai2 is defined as 1ci; the error
in the driving branch for the rod length of the vector from
point OLi to point Ai is defined as 1l i; the attitude error of
system Ai − xAiyAizAi generated by the rotation of the driving
branch’s coordinate system Li − XLiYLiZLi around the XLi
axis is defined as1αAi; the error of the length of the long side
AijBij is defined as1hij ; the error of the unit direction vector
of the long edge AijBij is defined as 1wi; the error vector of
the point O in system O− XYZ is defined as 1r; the attitude
error vector of systemO′−X ′Y ′Z ′ with respect to the system
O−XYZ is defined as1θ ; the error of system L ′i − X

′
LiY
′
LiZ
′
Li

generated by the rotation of the dynamic system O′−X ′Y ′Z ′

around the Z ′ axis is defined as1θBi; length error of the lower
short side Bi1Bi2 is defined as 1di; error vector from point
L ′i to point Bi in system L ′i − X

′
LiY
′
LiZ
′
Li is defined as 1bi;

system Bi − xBiyBizBi is rotated by the transition coordinate

system L ′i − X
′
LiY
′
LiZ
′
Li around axisX

′
Li, and attitude state error

is defined as 1αBi.

C. ESTABLISHMENT OF THE ERROR MAPPING FUNCTION
The vector equation of the branch closed-loop O− Li−Ai−
Aij − Bij − Bi − Li′ − O′ − O of the fine-tuning mechanism
is:

r = O
LiR

(
l i + cij

)
+ hij − O

LiR
(
bi + d ij

)
(4)

where cij is the representation of the vector from point Ai
to point Aij in the coordinate system Li − XLiYLiZLi of the
driving branch,hij is the representation of the vector from
point Aij to point Bij in the fixed coordinate system O−XYZ ,
and dij is the representation of the vector from point Bi to
point Bij in the transition coordinate system.
After the error is introduced, Equation (4) is subtracted

under the small regression condition and the higher-order
minimum is omitted, which yields:

1r = O
LiR1e1i + sgn (j)

O
LiR

(
Li
AiR1e2i/2e1+1e3i

Li
AiRc/2e1

)
+1hijwi + h1wi +1θAiOLiR

[
l i + sgn(j)LiAiRc/2e1

]
−1θBi

O
LiR

[
bi + sgn (j) LiAiRc/2e1

]
−1θOLiR

[
bi + sgn (j) LiAiRc/2e1

]
(5)

where

O
LiR = Rot (z, θi)=

 cos θi − sin θi 0
sin θi cos θi 0

0 0 1

 ,
Li
AiR = Rot (x, αi)=

 1 0 0
0 cosαi − sinαi
0 sinαi cosαi

 ,
sgn (j) =

{
−1
1

j = 1
j = 2

,

e1 =
[
1 0 0

]T
,

1e1i = 1l i −1bi,1e2i=1ci −1di,1e3i=1αAi−1αBi.

By multiplying both sides of the equal sign of Equation (5)
by wi and using the properties of the vector mixing product,
we can get

wTi 1r = wTi
O
LiR1e1i + sgn (j)w

T
i
O
LiR

Li
AiR1e2i/2e1

+sgn (j)
(
Li
AiRc/2e1 × wi

)T O
LiR1e3i +1hij

+

{
O
LiR

[
l i + sgn (j) LiAiRc/2e1

]
× wi

}T
1θAi

−

{
O
LiR

[
bi + sgn (j) LiAiRc/2e1

]
× wi

}T
1θBi

−

{
O
LiR

[
bi + sgn (j) LiAiRc/2e1

]
× wi

}T
1θ (6)

As it can be seen from Equation(6), the position error and
attitude error of the moving platform have a certain coupling
relationship. With the fine-tuning mechanism only having
three degrees of freedom for three-dimensional movement,
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the resulting attitude error cannot be compensated by the
motion.

By subtracting the closed-loop equations representing the
error through different parallelogram long sides in the same
branch, i.e., Equation (6) for j = 2 from Equation (6) for
j = 1, and then making it OLiR=

[
oLi nLi e3

]
simplifies to:

c(oLi × wi)T1θ = 1e2iwTi oLi + c(e1 × wi)
T O
LiR1e3i

+1hi2 −1hi1 + c(oLi × wi)T1θAi
−c(oLi × wi)T1θBi (7)

By writing Equation (7) in a matrix form, we can obtain
the attitude error matrix function of the output of the dynamic
platform of the fine-tuning mechanism:

1θ=Jθε1ε (8)

where

Jθε = J−1θAJθB, JθA = c
[
oL1× w1oL2 × w2oL3 × w3

]T
,

JθB = diag [JθBi] ,

JθBi =
[
01×3wTi oLi−11c(e1 × wi)

T O
LiRc(oLi × wi)

T

−c(oLi × wi)T
]
,

1ε =
[
1εT1 1ε

T
2 1ε

T
3

]T
,

1εi =
[
1eT1i 1e2i 1hi1 1hi2 1e

T
3i 1θ

T
Ai 1θ

T
Bi

]T
.

From Equation (8), 45 error sources can be observed, but
not all of them have an effect on the attitude error in the output
of the dynamic platform of the fine-tuning mechanism.

By adding the closed-loop equations representing the
error through different parallelogram long sides in the same
branch, i.e., Equation (6) for j = 1 and Equation (6) for j = 2,
we can get:

wTi 1r = wTi
O
LiR1e1i +1hi1/2+1hi2/2

+

(
O
LiRl i × wi

)T
1θAi −

(
O
LiRbi × wi

)T
1θBi

−c(oLi × wi)T1θBi (9)

Equation (9) is written in a matrix form to obtain the
attitude error matrix function of the output of the dynamic
platform of the fine-tuning mechanism:

1r=J−1rC JrD1ε + J
−1
rC JrθJθε1ε=Jrε1ε (10)

where

Jrε = J−1rC JrD + J
−1
rC JrθJθε, JrC =

[
w1 w2 w3

]T
,

JrDi =
[
wTi

O
LiR0 1/21/201×3

(O
LiRl i × wi

)T
−
(O
LiRbi × wi

)T] ,
Jrθ = −

[ O
L1Rb1 × w1

O
L2Rb2 × w2

O
L3Rb3 × w3

]T
.

From Equation (10), it can be observed that not all the
mechanism errors have a direct effect on the position error
of the moving platform in the fine-tuning mechanism, except
for the attitude error 1θ of the moving platform. JrDi in
the columns corresponding to error sum 1e2i and 1e3i is 0,
whichmeans that there is no direct effect on the position error.

However, from Equation (8), it can be observed that the errors
1e2i and 1e3i have an effect on the attitude error 1θ of the
moving platform, which indirectly affects the position error
of the moving platform. This indicates that the coupling of
attitude error and position error of themoving platform causes
all error sources to have an effect on the position error of the
moving platform.

D. ERROR SENSITIVITY ANALYSIS
The mean and standard deviation of the sensitivity of the
attitude error source over the entire operating space are used
as a comprehensive criterion for evaluating error sensitivity:

µλθ i =

∫
Vt
λθ idVt
Vt

σλθ i =

√∫
Vt
(σλθ i − µλθ i)

2dVt
Vt

(11)

where µλθ i is the mean value of the local sensitivity λri of the
position error over the entire operating space, and σλri is the
standard deviation of the local sensitivity λri of the position
error over the entire operating space.

We use the mean and standard deviation of local sensitivity
over the entire operating space as a comprehensive criterion
for evaluating error sensitivity:

µλri =

∫
Vt
λridVt
Vt

σλri =

√∫
Vt
(σλri − µλri)

2dVt
Vt

(12)

where is µλri the mean value of the local sensitivity λri of the
position error over the entire operating space, and σλri is the
standard deviation of the local sensitivity λri of the position
error over the entire operating space.

First, by traversing all positions in this operating space,
local sensitivities λθ i and λri are calculated. Then, using
Equations (11) and (12), global error sensitivity analysis is
performed on each error source of the fine-tuningmechanism.
Finally, the nominal values of each mechanism parameter are
calculated based on the values given in Table 1. The results
are represented by the error bar graph shown in Fig. 3.

TABLE 1. Initial values temporarily given for each parameter of the
fine-tuning mechanism.

As analyzed with Fig. 3, it can be known that the sensitiv-
ities of the attitude error and position error at the end of the
fine-tuningmechanism about the distance error source in1e1
are relatively small, and the sensitivities of both1h1 and1h2
are relatively large. The position error about the angle error
source of the fine-tuning mechanism is more sensitive to1θA
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FIGURE 3. Sensitivity of each error of the fine-tuning mechanism.

than it is to1θB. If the standard deviation of the attitude error
1θ caused by the error source 1h1 is expected to be kept no
greater than 20 µm/m, the tolerance of h1 must be better than
T (h1) = ±3 × 20/9.66 = ±6.21 µm; if the standard devia-
tion of the position error 1r caused by the error source 1h1
is expected to be kept no greater than 20µm, the tolerance of
parameter h1 must reach T (h1) = ±3×20/1.65 = ±36 µm;
if the standard deviation of the position error 1r caused by
the desired error source1θAx is expected to be kept no greater
than 20µm, the tolerance of this parameter can be relaxed to
T (h1) = ±3× 20/0.2128 = ±282 µm/m.

III. CALIBRATION PRINCIPLES AND
EXPERIMENTAL STUDIES
A. ANALYSIS OF CALIBRATION PRINCIPLE
The principle of kinematic calibration is to identify the error
between the theoretical value of each parameter in the kine-
matic model and the actual value of each parameter in the real
mechanism, and then compensate the error to the control sys-
tem, so as to improve the motion accuracy of the mechanism.
Generally, the kinematic calibration process involves these
steps: establishing an error model, collecting experimental
data, identifying the mechanism parameters, compensating
the control parameters, and verifying the identification per-
formance. In this part of the study, the error model is estab-
lished based on the kinematic inverse solution.

B. ZERO CALIBRATION PRINCIPLE AND ALGORITHM
The derived inverse solution of Equation (3) in a general form
as:

l = f
(
O′, ψ

)
(13)

where l is the input parameter,O′ is the end output positional
data,ψ is the mechanism parameters included in the inverse
solution, and f

(
O′, ψ

)
is the kinematic inverse solution.

Using the inverse solution of Equation (8), the error
between the theoretical value and the true value for the jth
position data can be obtained as:

1l j = l j − f
(
O′

mj, ψ r
)

(14)

where 1l j is the error between the theoretical value and the
true value of the jth position, O′

mj is the measured position
data at the jth position, ψ r is the true value of the mechanism
parameters included in the inverse solution, and l j is the actual
input parameters at the jth position.
The following formula is used to calculate the actual input

parameter l j of the fine-tuning mechanism at the jth position:

l j = f
(
O′

tj, ψ t
)

(15)

where O′
tj is the theoretical positional data output from the

end of the mechanism at the jth position, and ψ t is the
theoretical value of themechanism parameters included in the
kinematic inverse solution of the fine-tuning mechanism.

The kinematic calibration process of the fine-tuning mech-
anism is to make the error infinitely close to zero based on the
following branch construction equation:

1lij = Lij
(
li0, ψ r

)
= li0 + lij − f

(
O′

mj, ψ r
)
= 0 (16)

where 1lij is the error of the moving sub position of the ith
branch chain at the jth position, Lij is the error function of the
ith branch chain at the jth position, li0 is the initial value of
the moving sub position of the ith branch chain, and lij is the
changed value of the moving sub position of the ith branch
chain at the jth position.
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From Equation (16), it can be seen that the indepen-
dent variables of the error function include two parts: the
initial value of the position of the moving sub of the
fine-tuning mechanism li0, and the mechanism parameters of
the fine-tuning mechanism ψ r .

If only zero calibration is performed on the mechanism,
it can be seen from Equation (16) that the independent vari-
ables of the three error functions lij (i = 1, 2, 3) correspond-
ing to the jth position include three unknowns li0 (i = 1, 2, 3),
and theoretically, only one change is needed to fine-tune the
position of the mechanism. To ensure the error of the actual
measurement data does not influence the zero calibration pro-
cess, it is necessary to increase the number of measurements.
The zero calibration process after multiple measurements are
considered will make the initial value of the mechanism input
closer to the true value, thus improving the motion accuracy
of the mechanism.

Assuming that the positional data of n fine-tuning mech-
anisms are measured, 3n independent equations can be
obtained as:

L11 (l10) = 0; L21 (l20) = 0; L31 (l30) = 0
L12 (l10) = 0; L22 (l20) = 0; L32 (l30) = 0
. . . . . . . . .

L1n (l10) = 0; L2n (l20) = 0; L3n (l30) = 0

(17)

Therefore, the zero calibration problem of the fine-tuning
mechanism is transformed into the problem of solving the
optimal solution of a nonlinear system of equations including
Equation (17). Specifically, the number of equations is much
greater than the number of unknowns, and the nonlinear
least-squares method is usually used to find the optimal solu-
tion of the system of equations.

C. FULL CALIBRATION PRINCIPLE AND ALGORITHM
If the mechanism is to be fully calibrated, it is known from
Equation (16) that the three error functions lij(i = 1, 2, 3)
corresponding to the jth position contain nine independent
variables. Therefore, theoretically only three changes are
needed to fine-tune the mechanism’s position. To ensure the
error of the actual measurement data does not influence the
full calibration process, it is necessary to increase the number
of measurements. The full calibration process after multiple
measurements are considered will make the initial value of
the mechanism input closer to the true value, thus improving
the motion accuracy of the mechanism.

Assuming that the positional data of n fine-tuning mech-
anisms are measured, 3n independent equations can be
obtained as (18), shown at the bottom of the page.

Similarly, the full calibration problem of the fine-tuning
mechanism is transformed into the problem of solving the
optimal solution of a nonlinear system of equations including
Equation (18). Specifically, the number of equations is much
greater than the number of unknowns, and the nonlinear
least-squares method is usually used to find the optimal solu-
tion of the system of equations.

D. CALIBRATION SYSTEM CONSTRUCTION AND
CALIBRATION EXPERIMENTS
The built calibration experiment system is shown in Figure 4.

FIGURE 4. Calibration experimental system.

In the experimental calibration system, the coordinate sys-
tem of the laser tracker is set as the measurement coordinate
system {M}, with the fixed coordinate system {O} of the
fine-tuning mechanism fixed to the fixed platform and the
motion coordinate system {O′} fixed to the moving plat-
form. In the measurement process, it is difficult to measure
the kinematic system of the fine-tuning mechanism directly.
Therefore, a fixed point P is introduced on the moving plat-
form as an auxiliary measurement point, through which the
position of the kinematic system is measured. The position
relationship between the three coordinate systems is shown
in Fig. 5. Through calibration experiments, the position of
the origin of the moving platform in the fixed system {O} is
calculated, and according to the position relationship shown



L11
(
l10 h1 θ1

)
= 0; L21

(
l20 h2 θ2

)
= 0; L31

(
l30 h3 θ3

)
= 0

L12
(
l10 h1 θ1

)
= 0; L22

(
l20 h2 θ2

)
= 0; L32

(
l30 h3 θ3

)
= 0

. . . . . . . . .

L1n
(
l10 h1 θ1

)
= 0; L2n

(
l20 h2 θ2

)
= 0; L3n

(
l30 h3 θ3

)
= 0

(18)
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FIGURE 5. Measuring coordinate system.

in Fig. 5, we can get:

r = OP + PO′ (19)

where r is the representation of vectorOO′ in system {O},OP
is the representation of the vector of point P in the system
{O}, and PO′ is the representation of the vector of point P
to the origin {O′} of the dynamic system of the fine-tuning
mechanism in system {O}.
Since the data measured in the measurement system are

represented in the laser tracker’s coordinate system {M}, the
data in Equation (19) are transformed into the laser tracker’s
coordinate system {M}, which is obtained from the coordinate
transformation formula:

OP = O
MR

(
MP − MO

)
,PO′

=
O
MR

MPO′ (20)

where O
MR is the rotation matrix from system {M} to system

{O}, MP is the vector representation of point P in system {M},
MO is the vector representation of the fixed system’s originO
in system {M}, and MPO′ is the representation of the vector
PO′ in system {M}.

Substituting Equation (20) into Equation (19) yields:

r = O
MR

(
MP − MO

)
+

O
MR

MPO′ (21)

As analyzed above, it is necessary to measure the fixed
coordinate system {O}, including the position of its origin O
in system {M}, the position of point P in system {M}, and
the position of the origin O′ of the fine-tuning mechanism’s
motion coordinate system in system {M}. The position of
each of the measurement points is shown in Fig. 6.

Table 2 shows the three sets of data for the auxiliary
measurement point P.
The coordinate system data of the fixed platform of the

fine-tuning mechanism and the value of vector MPO′ can be
obtained as follows by fitting the calculation:

M
O R =


0.530648 −0.847574 −0.005559

0.847556 0.530674 −0.005868

0.007923 −0.001598 0.999967

 , (22)

MO =


1884.021187

30.760965

115.522375

 .

TABLE 2. Data of auxiliary measuring point P .

TABLE 3. Zero calibration result.

MPO′
=


47.583753

167.196757

27.233236

 (23)

E. ZERO CALIBRATION RESULTS
With the data for auxiliary measurement point P in Table 2,
Equation (22) and Equation (23) are substituted into Equa-
tion (21) to obtain the actual value r output from the fine-
tuning mechanism. Then, the actual value obtained from this
measurement and the corresponding command input value of
the mechanism are substituted into Equation (17) to obtain
the zero calibration results of the fine-tuning mechanism,
as shown in Table 3.

F. FULL CALIBRATION RESULTS
The actual value r obtained from the measurement and the
corresponding command input value of the mechanism are
substituted into Equation (18) to obtain the full calibration
results of the fine-tuning mechanism, as shown in Table 4.

TABLE 4. Full calibration result.
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FIGURE 6. Location of each measuring point.

FIGURE 7. Comparison of errors before and after calibration.

Fig. 7 compares the errors of the moving sub positions
before and after calibration in an error bar graph. Specifically,
the marked points represent the mean error values and the

ranges the standard deviations of the errors. From Fig. 7,
it can be seen that the errors of the three branches become
closer to the mean error value of 0 after zero calibration or
full calibration. Branch 2 exhibits the most obvious change
in the mean error value, dropping from 1.320 740 mm before
calibration to 1.263 188 × 10−14 mm after zero calibra-
tion, and to 1.263 187 × 10−14 mm after full calibration.
Branch 1 exhibits a very small data variation, which indi-
cates that the initial value of Branch 1 is closer to the real
value.

IV. ACCURACY EVALUATION
A. POSITION ACCURACY AND POSITION
REPEATABILITY EVALUATION
The position accuracy and position repeatability of the
fine-tuningmechanism before and after calibration are shown
in Table 5 and Table 6. In this paper, the largest position
accuracy and position repeatability values obtained after
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TABLE 5. Position accuracy before and after calibration.

TABLE 6. Position repeatability before and after calibration.

TABLE 7. Position distance accuracy before and after calibration.

TABLE 8. Position distance repeatability before and after calibration.

calibration are taken as the final position accuracy and
position repeatability of the fine-tuning mechanism, i.e.,
0.59132 mm for position accuracy and 0.008164 mm for
position repeatability.

B. POSITION DISTANCE ACCURACY EVALUATION AND
POSITION DISTANCE REPEATABILITY EVALUATION
The position distance accuracy and position distance repeata-
bility results of the fine-tuning mechanism before and after
calibration are shown in Table 7 and Table 8. In this paper,
the largest position distance accuracy and position distance
repeatability values obtained after calibration are taken as the
final position distance accuracy and position distance repeata-
bility of the fine-tuning mechanism, i.e., −0.11983 mm for
position distance accuracy and ±0.14463 mm for position
distance repeatability.

V. DISCUSSION OF THE RESULTS
As revealed by the comparative data in Table 5, Table 6,
Table 7, and Table 8, the position accuracy, position repeata-
bility, position distance accuracy, and position distance
repeatability of the fine-tuning mechanism are improved
significantly after calibration. This means that the calibra-
tion performance is remarkable and the fine-tuning mech-
anism meets the requirements for use in terms of each
indicator.

VI. CONCLUSION
In this paper, we analyze the kinematic principle of a
3-PR(4R)R 3-DOF fine-tuning mechanism by the position
inverse solution of the mechanism, analyze the error sources,
establish an error mapping function, and then analyze the
sensitivities of the error sources. The kinematic calibration
principle is applied to establish a zero calibration model and
a full calibration model. The measurement principle of the
laser tracker is proposed to build an experimental calibration
platform, and the error value is reduced significantly. After
calibration, the position accuracy, position repeatability, posi-
tion distance accuracy, and position distance repeatability of
the fine-tuning mechanism are 0.59132 mm, 0.008164 mm,
−0.11983 mm, and±0.14463 mm. These results suggest that
the proposed approach delivers remarkable calibration per-
formance and significantly improved accuracy. The proposed
approach offers an inspiring means of calibrating parallel
mechanisms with non-compensable error items.
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