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ABSTRACT Energy efficiency is one of the most important parameters in transportation electrification.
It allows to improve the production rate due to longer operation without charging or decrease the cost related
to transportation. To provide collision-free operation in unknown or various environment, the local path
planning algorithm should be considered. An Artificial Potential Field (APF) algorithm is commonly used
for this task, however it provides unsmooth and oscillating motion of autonomous ground vehicle (AGV),
and is prone to being trapped in a local minimum, e.g, dead-end. In such a case, the energy used to achieve
the goal position is higher than necessary. In this paper, the energy-efficient local path planning algorithm
is proposed. Future movement prediction has been introduced to APF to allow AGV to bypass obstacles in
advance. A novel method for local minimum avoidance is introduced. It is based on placement of virtual
obstacles called top quarks in critical areas. These obstacles provide additional repulsive force for the APF
based path planner. Considering the predicted stagnation-free path of the AGV, the new temporary goal
for APF is selected. Such a combination allows to reduce traveled route length, improve its smoothness, and
bypass local minima. The proposed Predictive Artificial Potential Field (PAPF) algorithm has been examined
using Husarion ROSbot 2.0 PROmobile robot, and the obtained results in form of videos are also attached as
supplementary files. In comparison to original APF, the proposed path planning algorithm allows to reduce
the used electric power by 21.4 %. PAPF provided a shorter path by up to 8.73 % and shorter time to reach
the goal position by up to 40.23 %. The movement of the AGV is also much smoother in a case of usage of
the proposed algorithm, and the proposed top quarks-based local minimum avoidance mechanism allows to
bypass the local minima.

INDEX TERMS Artificial potential field, path planning, path prediction, autonomous ground vehicle, mobile
robot.

I. INTRODUCTION
Nowadays, autonomous ground vehicles are gaining
widespread adoption in industry (factories, warehouses)
but also occur in every-day applications (e.g. self-driving
cars [1], [2], restaurants [3], [4]). Main task of these vehicles
is transportation of its load to goal position. In order to
operate autonomously, the AGV requires implementation of
path planning algorithm. This algorithm generates motion
commands based on environment information provided
by on-board sensors (local path planning algorithm) or
information about the entire environment provided by an
external source e.g. a predetermined static map (global path
planning algorithm) [5]. In a dynamic environment, using
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a global path planning algorithm may result in a potential
collision because the algorithm does not take into account
changes in the environment [6]. For this reason, usually the
global path planner is used along with the local one, which is
based on the AGV’s perception and can provide collision-free
path in dynamic environment, where the temporary obstacles
occur [7]. Performance of the path planning algorithm is a
key factor for increasing the production rate or shortening
the production cycle. Multiple approaches to path planning
optimality can be seen in the literature: minimum-time,
minimum-jerk or minimum-energy [8]. In recent years,
path planning algorithms have been intensively studied to
improve the traveled path of AGV [9]. Global path planner,
which generates entire path to the goal, can consider one
of the above-mentioned optimality indicators, however the
optimization in real-time is too complex and the robot needs
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some time to complete the calculations. For this reason,
global optimization is done for a complex environment once,
and then the pre-optimized trajectory is evaluated until the
goal is reached [10]. For local path planner, the next position
or linear velocity and direction of movement is calculated in
real-time at every control loop period. For this reason, there is
no simple way to define optimality criteria in overall traveled
path by AGV.

The most popular path planning algorithms are: Dijk-
stra’s algorithm, A-star algorithm, Probabilistic Roadmap
algorithm, Rapidly-exploring random tree algorithm, and
Artificial Potential Field algorithm. Dijkstra’s algorithm
searches for the shortest path between nodes in a graph [11].
In a case of the path planning problem, the connection
cost is related to distance, and it can provide the shortest
path to the goal [12]. The algorithm examines all neighbors
of the parent node, and then it considers these neighbors
as a next parent node. The graph is expanding to explore
entire environment. To improve performance of the algorithm
in the path planning problem, Dijkstra’s algorithm has
been modified by adding a priority queue in a case to
examine the nodes which are closer to the goal. This
modification is called A-star and nowadays is one of well-
known path planning algorithms [13]. It allows to reduce
the explored environment during the path planning process.
Such a modification significantly reduces the computation
time without any drawback on the algorithm’s convergence.
Probabilistic Roadmap and Rapidly-exploring random tree
algorithms are the most popular sampling-based algorithms.
The first one is based on randomly generating nodes of
graph in free space and connecting them in line if such a
connection is collision-free. ThenDijkstra’s algorithm is used
to find the connection between the AGV and the goal. The
algorithm is repeated until there is no connection between
these points [14]. Rapidly-exploring random tree algorithm
is based on tree growing [15]. The algorithm starts with
a random configuration and then it is expanding in the
environment. The tree is growing until there is no connection
the the goal. Another approach to solve the path planning
problem is application of optimization algorithms. In the
literature, multiple approaches with different algorithms,
objectives and requirements have been evaluated, e.g.,
membrane evolutionary algorithm [16], [17], particle swarm
optimization algorithm [18], [19], bat algorithm [20], ant
colony algorithm [21], grey wolf optimization [22]. The
common requirement of the above-mentioned approaches is
to have complete knowledge about the environment in which
the path of the AGV is planned. In many applications, such
a requirement can be acceptable, but in general, the environ-
ment, e.g., warehouse or factory, may change due to unpre-
dictable situations. Such an application requires local path
planner based on on-line information obtained from on-board
sensors.

The pioneering and most popular local path planning
algorithm is the Artificial Potential Field algorithm proposed
by Khatib in 1985 [23]. The APF algorithm navigates AGV

to the goal by continuous attractive and repulsive fields. The
attractive one is related to the goal reaching task, while the
repulsive fields are generated by obstacles. A combination
of them allows the AGV to reach a goal and provide a
collision-free movement in unknown environment. Unlike
other methods, the APF calculates subsequent linear and
angular velocities in real time considering only data obtained
from on-board sensors. It does not require a map of the entire
environment. Due to this advantage, it is commonly used
in the path planners implemented in AGVs [24]. However,
using the APF algorithm may result in the vehicle getting
trapped at a local minimum [25]. Furthermore, measurement
noise and imprecision in physical implementation may result
in oscillations and generation of a non-smooth path [26].
To alleviate the disadvantages of APF, researchers have
proposed multiple modifications of the original algorithm,
but these modifications do not cover all mentioned aspects.
In [27], the robot perception is extended by augmented reality
technology to bypass the local minima. The virtual wall
has been added to APF algorithm to prevent the mobile
robot from falling in the local minimum. In addition, the
direction of the robot’s movement is forced by a virtual
obstacle. The proposed algorithm allows to decrease the
traveled path by the mobile robot in comparison to existing
methods. Nevertheless, the smoothness of the movement has
not been taken into account. The APF has been improved
by a nature-inspired optimization algorithm by optimizing
the APF parameters in collision avoidance in [28]. The
presented approach allows to decrease the path length and
ensures the collision-free movements of the SCARA robotic
arm, but both problems related to movement smoothness and
local minimum avoidance are not addressed simultaneously.
A waypoint tracking scheme with a collision-avoidance
system using the APF with speed planning is proposed
in [29]. Since the local path planner does not usually
conform to the dynamic constraints of the vehicle motion,
the authors proposed a method to combine the dependence
of the vehicle’s speed with the curvature of the path. Such an
approach allows to eliminate severe yawing of the heading
angle of the vehicle, and it prevents possible excessive
tire slip angle of the vehicle driving at high speed. The
proposed approach is not applicable for environments with
local minima due to lack of the avoidance mechanism.
In [30], membrane pseudo-bacterial potential field algorithm
has been proposed. The algorithm uses dynamic membranes
that include a pseudo-bacterial genetic algorithm for evolving
the required parameters of APF algorithm. The goal of
the proposed algorithm was to minimize path length,
ensure collision avoidance, and provide path smoothness.
Obtained results indicate proper operation of the proposed
solution, however the local minimum avoidance has not been
considered. In [31], the integration of unmanned aircraft
vehicles (UAVs) in the dynamic national airspace to prevent
them from colliding with the other traffics. To solve the
problem, the authors proposed the dynamic APF algorithm,
which allows to generate a real-time reactive collision-free
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path for unmanned aircraft vehicles flying in dynamic
airspace. The proposed dynamic APF can prevent the UAV
from colliding into nearby unexpected moving obstacles.
This approach can be used to reduce the impact of UAVs
on nearby users of the airspace. Although topic is interesting
from the application point of view, the path smoothness and
local minimum avoidance have not been solved. In [32]
the improved black-hole potential field method and rein-
forcement learning are combined to avoid the local minima.
Such a combination allows agents to automatically adapt to
the environment with local minima. Agents can reach the
goal in an environment with new types of obstacles and
dynamic goal using the adaptation mechanism in real-time.
The warehouse problem is considered, and the efficiency
of the proposed method has been proved. Regardless of the
proposed local minima avoidance mechanism,smoothness of
movement has not been improved. In [33], a vehicle lane
change system using model predictive path planning based
on APF for speeding vehicles is proposed. It introduces a
novel combination of APF algorithm with a curve-fitting
method to consider vehicle dynamics for the lane-keeping
system. The proposed algorithm uses a curve fitting method
under vehicle dynamic constraints to plan a safe-feasible
path based on calculated waypoints by APF algorithm.
The simulation results proved that the model predictive
path planning algorithm is highly effective in high-speed
lane change scenarios to avoid dynamic obstacle vehicles.
However, in a case of the local minimum occurrence, the
algorithm can stagnate and it will not reach the goal.
Prediction-based APF approach was presented in [34]. It is
based on the subsequent obstacle detection, and then the
final movement direction of the AGV is corrected to smooth
the traveled path. The proposed algorithm modifies the
direction of AGV, considering the extreme points of the
object in front of the vehicle. It allows AGV to react in
advance to the obstacle, but the examinations were provided
only for a single obstacle environment. In a multi-obstacle
environment, the perception of the AGV is limited, and in
some situations, the extreme points of the object cannot be
appointed. Moreover, in case of modification of the orienta-
tion obtained from the original APF, the collision-free cannot
be guaranteed in a complex environment, i.e., the modified
direction may generate a collision with another obstacle. In
addition, the algorithm lacks a local minimum avoidance
mechanism.

From the presented literature overview, one can see that
the solution where all above-mentioned disadvantages are
overcome does not exist. In a case of development of energy-
efficient local path planning algorithm, all these aspects
should be provided at once with collision-free operation. The
authors’ motivation of the novel APF modification was to
provide:
• collision-free operation,
• relatively short path,
• smooth movement,
• local-minimum bypassing mechanism.

All the mentioned assumptions were made to increase
the energetic-efficiency of the AGV. To the best of
authors’ knowledge, such complex requirements of local
path planning approach have not been investigated
yet.

In this paper, the APF is improved by application of the
prediction of future movements. Such an approach allows
to decrease the path length and also make a traveled path
smoother. The proposed approach has a built-in a local
minimum avoidancemechanism based on virtual objects. The
proposed Predictive APF is based on selection of new tempo-
rary goal for original APF algorithm [23]. The temporary goal
is selected to move in direction that is required to bypass the
obstacle. For this reason, the obtained path is shorter and stag-
nation in local minimum does not occur. The experimental
examinations have been made on Husarion ROSbot 2.0 PRO
mobile robot with Robot Operating System. Furthermore a
video presentation of the obtained results is attached in the
supplementary files. In addition, the energetic efficiency has
been evaluated to compare the original APF and the proposed
PAPF.

The paper is organized as follows. Section II describes
the original APF algorithm with marked implementation
requirements. The proposed PAPF algorithm is presented
in Section III, including precise description of the path
prediction algorithm, and selection of new temporary goal
procedure. In-depth analysis of the proposed PAPF algorithm
performance and impact of its parameters on traveled path by
AGV is presented in Section IV. Finally, Section V presents
our conclusions.

II. ARTIFICIAL POTENTIAL FIELD ALGORITHM
The Artificial Potential Field algorithm proposed in 1985 is
currently the state-of-the-art in local path planning [23].
It is based on the electrostatic particles interaction given
by eq. (1) [35].

F = −
kq1q2
r2

(1)

where: k is the interactions constant; q1 and q2 are
the electric charges of the particles; and r is the dis-
tance between the particles. The algorithm is divided into
to potential forces: attractive (opposite particles’ charges
q1 = −q2) and repulsive (identical particles’ charges
q1 = q2). In order to provide the collision-free and goal
reaching path, the obstacles and AGV are assumed as having
the same charge and the goal position is opposite charge
particle. In such a case, the obstacle generates repulsive
force and the goal position generates attractive force. The
graphical representation of the APF algorithm is presented
in Fig. 1. The overall force that is applied to AGV is depicted
in eq. (2).

EFw = EFgoal + EFobstacles (2)
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FIGURE 1. The graphical representation of the artificial potential field’s forces.

with

EFgoal = −
kVGqV qG
|ErVG|2

·
ErVG
|ErVG|

EFobstacles = −
N∑
i=1


kVOqV qO
|ErVOi |2

·
ErVOi
|ErVOi |

, if |ErVO| ≤ do

0, otherwise

where EFgoal is the attractive force; EFobstacles is the repulsive
force; kVG and kVO is the interaction constant between AGV
and the goal, and the AGV and obstacles; qV , qG and qo is
the AGV, the goal, and obstacles charge, respectively; N is a
number of obstacles in AGV’s surroundings; ErVG and ErVOi is
the directional vector from the AGV to the goal and from the
AGV to i-th obstacle; and do is a repulsive effective range.
From the obtained EFw, the next direction and linear velocity

of the AGV can be calculated using eq. (3)-(4).

θ∗ = arctan
(
Fyw
Fxw

)
(3)

where: θ∗ is reference AGV’s orientation.

V ∗ = Limit
(
| EFw|,Vmax

)
(4)

where: V ∗ is reference AGV’s linear velocity; and Vmax is
maximum allowed AGV’s linear velocity. These equations
work properly only in simulation case due to AGV limited
dynamics. It is not possible to change the AGV orientation
rapidly. For this reason, the AGV can go dangerously near the
obstacle. To prevent this, the linear velocity equation should
take into account the error (θerror ) between the reference
orientation (θ∗) and current orientation (θ). The high error
value has to decrease the linear velocity. The modified linear
velocity equation is as follows:

V ∗ =

{
Limit

(
α · | EFw|, Vmax

)
, if abs(θerror ) ≤ θmaxerror

0, otherwise
(5)

with:

α =
θmaxerror − abs(θerror )

θmaxerror

where: θmaxerror is a margin orientation error. In this
approach, linear velocity depends linearly on θerror in range
〈−θmaxerror , θ

max
error 〉 and is zero if the AGV’s orientation error

exceed the range.
Unfortunately, the algorithm has a few problems [25],

which are ilustrated in Fig. 2, and described below:

a There is no mechanism of avoiding or bypassing the
dead-ends. If a vehicle enters a dead-end,, it cannot get
out without human intervention or another mechanism.

b In very narrow passages, the repulsive force generated
by the walls can stop the robot from getting between
them. In this situation, the goal will not be reached.

c The algorithm generates an oscillation in the presence
of obstacles, which is mainly related to the limited
dynamics of the vehicle. The obtained orientation and
linear velocity from the algorithm are set as reference
values to the motion controller of the vehicle, and
additional time is required to obtain proper orientation
and speed.

d The same situation occurs in narrow corridors. It should
be noted that the oscillations can be unstable and
eventually cause a collision.

A. ENERGETIC EFFICIENCY ANALYSIS
AGV’s are usually battery powered so the evaluation of
a path generation algorithm should also take into account
the energy consumption aspect. It is often preferable to
utilize a longer but smoother path which does not require
sudden accelerations. Such rapid maneuvers increase current
consumption and shorten the operation lifespan of the AGV.
The total energy of the AGV can be expressed using the
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FIGURE 2. Problems with potential field methods.

following formula [36]:

E(t) =
∫
t

(
mv(t)a(t)+ Iω(t)β(t)+

2fv
r
v(t)+ B

)
dt + Pst

(6)

where: m is AGV mass; I is AGV moment of inertia; fv
is a viscous friction coefficient; B is fixed power provided
for the motors to overcome the static friction; Ps is other
energy consumed for on-board embedded computer, sensors,
and control circuit; v(t) and a(t) are linear velocity and
acceleration, respectively; ω(t) and β(t) are angular velocity
and acceleration, respectively; From the depicted equation,
one can see that energy is complex function where linear
and angular velocity and acceleration have an impact on its
terminal value. For this reason, smoother path will decreases
the energy consumption. Next, the integration in time domain
causes that shorter time required to travel the route may
also decrease the required energy to reach the goal. Due to
lack of local minima avoidance mechanism in APF algorithm
and its susceptibility to oscillations, the above analysis of
eq. 6 undermines energetic efficiency of the original APF
algorithm.

III. THE PROPOSED PREDICTIVE-APF
The keynote of the proposed PAPF algorithm is to obtain
shorter and smoother path with a shorter time to reach the
goal, and bypass the local minima in order to provide
energy efficient path planning algorithm. To obtain such
a behaviour of the path planning algorithm, the authors
developed a prediction-based approach. In real-time, the
future movements are predicted to obtain the next path in
predetermined horizon of prediction. This information is used

FIGURE 3. The general diagram of the proposed predictive artificial
potential fields algorithm.

to determine the temporary goal for the AGV. Therefore, the
current direction of AGV is corrected to react to obstacles
in advance, and avoid unnecessary movements. In addition,
the predicted path is used to detect AGV’s stagnation in
the local minimum. In such a case, the virtual obstacles,
called top quarks, are created to force the AGV to select
goal-reaching path. The general diagram of the proposed
Predictive Artificial Potential Fields algorithm is presented
in Fig. 3

A. PREDICTION OF FUTURE MOVEMENTS
The visualization of the proposed prediction mechanism is
presented in Fig. 4, while algorithms steps are enumerated
below:
(i) First a direction line is defined as current original APF

force direction,
(ii) Successive path positions are generated using the orig-

inal APF algorithm with a constant position increment
and predefined number of steps,

(iii) Perpendicular distance between each point and the
direction line is computed,

(iv) The point with the largest distance is selected as the
new temporary goal,

(v) New APF force is calculated for the temporary goal
instead of the global one for the AGV’s movement.

The prediction of future movements is based on the state-
of-the-art local path planning algorithm, which is APF in this
particular case. The novel algorithm uses only two intuitive
parameters: horizon of prediction (λ) and step-size (1). The
first one determines length of the predicted path, e.g., 2 m,
while the second one is used to manipulate the distance
between consecutive points, e.g., 0.01 m. The next position
of AGV is generated using the original APF algorithm with
constant position increment (1) until the final predicted
trajectory path is shorter then the predefined horizon of
prediction (λ). Using eq. (2) and eq. (3) for previous predicted
position as actual one, the direction of next step is obtained.
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FIGURE 4. The idea of the proposed path planning algorithm based on
the APF and path prediction.

Next the predicted position is updated in this direction by
step-size. Such a prediction allows to obtain local path in
predefined horizon, which will be used in the next steps of
PAPF algorithm. The path prediction procedure is presented
in Algorithm 1:

Algorithm 1 Path Prediction Algorithm
1: Set predicted_path[0] to current AGV position

2: Set goal to global goal position

3: Set imax to λ/1

4: for i = 1 to imax do

5: Calculate APF force EFw for previous position

(predicted_path[i− 1])

6: Set predicted_path[i] as predicted_path[i− 1] moved

in obtained direction by 1

7: end for

8: return(predicted_path)

It should be noted that the prediction is calculated in real-
time on the AGV. For this reason, the step-size should be
small enough to provide the highest accuracy of predicted
path, and large enough to allow the real-time prediction, e.g.,
for above-mentioned parameters, the prediction requires to
calculate the APF algorithm 200 times per control loop.

Next, the obtained predicted path is used to determine
new temporary goal for AGV in order to provide shorter and
smoother path.

B. TOP QUARK-BASED MECHANISM
One of the main problem of APF algorithm, and many other
local path planning algorithms, is the stagnation in local
minimum. To solve the problem, the additional mechanism
is required [35]. In the proposed PAPF algorithm, the novel
local minimum avoidance mechanism is based on detection
of algorithm stagnation during the described prediction of
future movements. In such a case, a virtual heavy particle,
called top quark (which is the most massive of all observed
elementary particles), is placed in the detected localminimum
and then the prediction of future movements procedure is

repeated until the predicted path is free of the stagnation
problem. In order to solve dead-lock related to the lack of
non-stagnation path, the maximum number of repetition is
limited toM times. The top quark has been called heavy due
to significantly larger interaction constant (kVQ) assumed for
this kind of obstacle (i.e., kVO � kVQ). The modified force
equation including the proposed top quarks is as follows:

EFw = EFgoal + EFobstacles + EFtop quark (7)

with

EFtop quark = −
Mcurr∑
i=1


kVQqV qQ
|ErVQi |2

·
ErVQi
|ErVQi |

, if |ErVQ| ≤ do

0, otherwise

where EFtopquark is the repulsive force; kVQ is the inter-
action constant between AGV and top quarks; qQ is top
quark charge; Mcurr is a number of created top quarks
by the proposed local minimum avoidance mechanism
(0 ≤ Mcurr ≤ M ); ErVQi is the directional vector from the
AGV to i-th top quark; and do is a repulsive effective range.
The idea of the novel top quark local minimum avoidance
mechanism proposed in this paper and used in the PAPF
algorithm is presented in Fig. 5. The figure presents the six
iterations (subfigures B-G) of future path prediction. It is
shown that each stagnation point in previous prediction is
used to place the top quark. The next path prediction take into
the account top quark in the same way as the other obstacles
but with higher interaction constant (kVQ).

The detection of the local minimum is based on a pre-
diction of additional path-length (λstagnation) and calculating
the the mean position of these predicted points (Epstagnation).
If all predicted points are in a range equal to R from the
mean position then it is assumed that the robot’s stagnation
problem occurs. Next, the top quark is placed to Epstagnation,
and the procedure of prediction of future path is repeated. The
result of the proposed local-minimum avoidance mechanism
is stagnation-free path that is used to select new temporary
goal.

C. SELECTION OF NEW TEMPORARY GOAL
The new temporary goal is selected as the most distant point
from the last predicted path, i.e., stagnation-free path, from
the direction of classic APF. The procedure of the selection
is as follows:
(i) calculate the EFw force for current AGV’s position,
(ii) create a linear function (i.e., A·x+B·y+C = 0, where:

x and y are the point coordinates; A, B and C are the
function parameters) of the direction of obtained force
called as directional line,

(iii) calculate distance (d) between each position (Ep) in the
predicted path and the directional line using following
formula:

d =
|A · px + B · py + C|√

(A2 + B2)
(8)

(iv) select the farthest point from the directional line.
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FIGURE 5. Top quark-based local minimum avoidance mechanism used in the proposed PAPF algorithm.

TABLE 1. Parameters of APF and PAFP algorithms.

Such a definition of new temporary goal is supported by
triangle inequality, which states that for any triangle, the sum
of the lengths of any two sides must be greater than or equal to
the length of the remaining side. If in the predicted path, the
obstacle forced AGV to avoid it, then the most distant point
from the initial direction is selected, so the AGVmoves to this
position in advance. The additional remark should be noted:
when the obstacle is just in range of horizon of prediction,
then the temporary goal will be moved smoothly from the
direction path to goal, to the point that has to be reached
to avoid the obstacle during next AGV positions. These two
information proves that the obtained path by PAPF should
be shorter and smoother (or at least the same) then the one
obtained by APF.

D. CALCULATE NEXT AGV’s LINEAR VELOCITY AND
ORIENTATION
The last step in the proposed PAPF is to calculate the linear
velocity and orientation of AGV. The PAPF uses the modified
APF equation of EFw force (eq. (7)), but it takes the temporary
goal instead of the global one. Next, the linear velocity and
orientation is calculated using eq. (3) and eq. (5).

FIGURE 6. The photo of laboratory environment for test (I).

FIGURE 7. Impact of the horizon of prediction to shape of traveled path
by AGV.

It is worth to point out that the proposed PAPF algorithm
should guarantee collision-free path due to usage of the
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TABLE 2. Indicators obtained in Test (I)-(V).

FIGURE 8. Comparison of the proposed PAPF and the classical APF algorithms in Test (I).

extended APF equations. Modifications of the original
approach is generating temporary goal instead of calculated
force for global goal, and in a case of local minimum
occurrence, considering top quarks.

IV. EXPERIMENTAL VALIDATION
The validation of the proposed prediction-based path plan-
ning algorithm was made using the Husarion ROSbot
2.0 PRO mobile robot and Robot Operating System.
The APF and PAPF algorithms were implemented in
C++ programming language and they are based only
on the LiDAR sensor (i.e., 360 degree laser scanner).

The photo of the laboratory environment is presented in
Fig. 6, while the algorithms parameters are summarized
in Table 1.

In a case of APF parameters, which are common for
both algorithms, they have been chosen taking into account
mobile robot size, the environment size, and obstacles size.
In addition, the interaction constants were selected empiri-
cally to provide a collision-free movement with safe margin
to obstacles. For the proposed PAFP algorithm, the horizon of
prediction (λ) is the most important parameter and selection
process has been visualized in next subsection. The step-size
(1) and coefficients in the rest of parameters were selected
empirically with particular emphasis on the correctness
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FIGURE 9. Comparison of the proposed PAPF and the classical APF algorithms in Test (II).

FIGURE 10. Comparison of the proposed PAPF and the classical APF algorithms in Test (III).

of stagnation detection and computational requirements of
prediction. Calculation time of path prediction in ROSbot
2.0 PRO is as follows:
• λ = 1 m and 1 = 0.01 m:
single path prediction takes 15 ms;
M paths prediction takes 147 ms

• λ = 1 m and 1 = 0.03 m:
single path prediction takes 5 ms;
M paths prediction takes 51 ms

• λ = 2 m and 1 = 0.03 m:
single path prediction takes 10 ms;
M paths prediction takes 98 ms
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FIGURE 11. Comparison of the proposed PAPF and the classical APF algorithms in Test (IV).

FIGURE 12. Comparison of the proposed PAPF and the classical APF algorithms in Test (V).

One can see, that calculation time depends linearly on step-
size and horizon of prediction. The path planning algorithm
control loop period was set to 100 ms. For this reason, the
authors decided to chose step-size equal to 1 = 0.03.

Such a step-size does not impact significantly on the quality
of predicted path, but significantly reduce the calculation
time. It has been assumed that additional 25% of horizon of
prediction (λstagnation = 25% · λ) is calculated for detection
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FIGURE 13. Comparison of the proposed PAPF and the classical APF algorithms in Test (VI) with additional subplots
presenting position, orientation, linear velocity and angular velocity in time domain.

of stagnation. In a case of obstacle-free environment, the
AGV covers a distance equal to λstagnation, while in the
case of local minimum presence, the AGV stagnates and
the distance is shorter. The stagnation occurs if the distance
covered by AGV is less than a half of the distance which
should travel in straight line. Due to this, the radius R was set
to 25%. λstagnation).
The proposed PAPF has been evaluated considering the

following aspects:
• impact of the horizon of prediction parameter to AGV
behaviour and traveled path,

• comparison of original APF and the proposed PAPF
taking into account the time required for goal reaching,
and the traveled path length,

• energetic efficiency of the proposed PAPF in compari-
son to the original PAPF.

A. HORIZON OF PREDICTION
As was mentioned in Section III, the horizon of prediction
value should be selected considering the AGV, environment,
and assumed obstacles dimensions, but also the used sensor
and AGV’s perception, due to the proposed PAPF is still
a local path planning algorithm. Another aspect is related
to computational requirements, i.e. performance of AGV
computer, control loop period and expected number of
predicted points. The longer path is predicted in the PAPF,
then the AGV will react in advance to obstacle, but if the
predicted path will be too long, then the prediction may be
generated without information about the environment behind
the obstacle, and may provide imprecise prediction of future
movements in complex environment. In Fig. 7, the traveled
paths of the original APF and the proposed PAPF for 5 differ-
ent horizon of prediction (λ ∈ {0.5, 0.75, 1.0, 1.5, 2.0} m)
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FIGURE 14. Local minimum avoidance using the proposed PAPF
algorithm.

are presented. The obtained results in form of videos are
also attached as supplementary file. The AGV goal position

was a 7 m from a robot in the straight path. One can
see that longer horizon of prediction provides the smoother
and shorter path. For horizon of prediction equal to 2 m,
an unsmooth movement occurs (orange rectangle in Fig. 7),
which was caused by above-mentioned inaccurate prediction
in long horizon due to lack of perception behind the obstacle.
Analysing size of the Husarion ROSbot 2.0 PRO and
the available environment, the Authors selected horizon of
prediction equal to 1 m for next examinations. This value of
λ provides significantly smoother and shorter path.

B. EXAMINATIONS
Both algorithms have been evaluated in six environments.
The environments have been created to present behaviour
of APF and the proposed PAFP in narrow passages, driving
along the long wall and in occurrence of local minimum.
Another aspect was to create an environments where there is a
obstacle between the AGV and the temporary goal to validate
the collision-free operation of the proposed approach.

The obtained results are presented in the form of three
selected moments in Fig. 8-13 for Test (I)-(VI), respectively.
These are also attached as videos in supplementary file.
In figures at left column an original APF is presented, while at
right column is the proposed PAPF. Each captured moment of
experiment consists of two elements: the real photo and the
current perception of the robot visualized in RViz package
(the part of the ROS). The RViz presents, the AGV’s position
and orientation, calculated output direction by path planning
algorithm, and marked as red line, already traveled path.
In a case of the proposed PAPF, there is additional drawings:
(i) orange line is a predicted path, (ii) red point at the predicted
path is a temporary goal, and (iii) in a case of local minimum
within a horizon of prediction, a light red path as abandoned
predicted path with placed a top quark at the stagnation
point marked as white dot. In Fig. 13, the additional
plots of mobile robot’s position, orientation, and linear and
angular velocities in time domain have been presented under
the captured moments of experiments. Additional captured
moments related to local minimum avoidance are presented
in Fig. 14. The path’s quality indicators, i.e., duration of the
movement and path length, are summarized in Table 2.

One can see that he proposed PAPF provides much
smoother path. The predicted trajectory successfully gives
the information about the new temporary point, and the
goal position is reached faster than the original APF. From
the plots presented in Fig. 13, one can see that the robot
oscillations occur for original APF due to limited dynamic
of the mobile robot, i.e. reference signal is changing faster
than mobile robot can reach it. In such a case, the linear
velocity is reduced for APF algorithm due to eq. 5. In the
proposed PAPF, the reference orientation is much smoother,
and there is no reason to reduce the linear velocity. The
indicators presented in Table 2 proves the efficiency of
the proposed PAPF. The time required to reach the goal
is around 21.5 % shorter than the original APF, and also
the traveled path is significantly shorter by up to 8.29 %.
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In Test (III), the proposed PAPF presents that even in narrow
gap, the algorithm provides collision-free path, and still the
traveled path in comparison to original APF in that part of
environment is much smoother.

C. ENERGETIC EFFICIENCY MEASUREMENT
As was mentioned in Section II, the smoother path, shorter
path, and less time required to reach the goal should provide
significant improvement of energetic efficiency. To prove that
assumption, the energy consumption of ROSbot 2.0 PRO
with the original APF and with the proposed PAPF path
planners have been compared. The efficiency measurement
were performed using the XTAR VC4S battery charger.
The batteries used in the mobile robot are 3x XTAR
18650-350PCM 3500mAh Li-ION Protected 3,7V 10A. The
procedure of the measurement was as follows:
• charge the batteries,
• program the robot to start experiment automatically,
• insert fully charged batteries,
• turn on the mobile robot,
• turn off the mobile robot right after the goal is reached,
• charge the batteries and sum the read the charged
capacities.

To provide higher accuracy of efficiency measurements, each
experiment was performed 3 times, i.e. 3 experiments for
original APF, and 3 experiment for the proposed PAPF. The
goal was 〈10, 0〉 m and three obstacles were placed in the
AGV’s path, similar to setup presented in Fig. 7. The obtained
results are as follows:
• original APF: 149.7 mAh
• the proposed PAPF: 117.6 mAh
The application of the proposed PAPF allowed

to reduce electric energy consumption by
32.1 mAh (21.4 %).

V. CONCLUSION
Application of the proposed algorithm into the local path
planning algorithm results in a significant reduction of
consumed energy, goal reaching time, and path length.
The original APF algorithm has been used in both: the
prediction of future movement of the AGV, and as local
path planning algorithm with a new temporary goal instead
of the global one. Such a combination guarantees the
collision-free operation, smoother movement and shorter
path selection. The proposed approach allows to decrease
power consumption by over 20%.

Moreover, the proposed algorithm allows to bypass the
local minimum. The proposed top quark-based mechanism
prevents the AGV from stagnation in a local minimum, and
allows to bypass the local minimum with a smooth move-
ment. The results are also presented in video form included
as supplementary files. The proposed local path planning
algorithm should be considered in industrial AGVs, where
the energy-efficiency is very important due to significant
payload. In case of transportation of pallets with weight
up to 300 kg, the non-smooth movement provided by the

original APF algorithm would significantly decrease the
current batteries capacity. It has been experimentally proved
that the proposed approach successfully solves the problem
of non-smooth movement. Another aspect important for the
application is time required to reach the goal. The proposed
approach significantly decreases the task execution time.

Future work will focus on dynamic obstacles avoidance in
an energy-efficient way. The research group’s aim of research
related to local path planning algorithms is to provide
the efficient algorithm that can be safety implemented
in industrial AGVs in dynamic environments and with
significant payload. In such a case, the smoothness of the
robot’s path and it’s continuous movement have a significant
impact to energetic-efficiency and production rate due to
availability to execute more tasks per single batteries charge.

APPENDIX
The brief presentation of the proposed Predictive Artificial
Potential Field algorithm one can see in the following URL:

https://youtu.be/FJSlUPzLjqQ

or QR code:
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