
Received March 2, 2022, accepted April 7, 2022, date of publication April 11, 2022, date of current version April 15, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3166599

The Recurrent Reinforcement
Learning Crypto Agent
GABRIEL BORRAGEIRO , NICK FIROOZYE , AND PAOLO BARUCCA
Department of Computer Science, University College London, London WC1E 6BT, U.K.

Corresponding author: Gabriel Borrageiro (gabriel.borrageiro.20@ucl.ac.uk)

ABSTRACT We demonstrate a novel application of online transfer learning for a digital assets trading agent.
This agent uses a powerful feature space representation in the form of an echo state network, the output
of which is made available to a direct, recurrent reinforcement learning agent. The agent learns to trade
the XBTUSD (Bitcoin versus US Dollars) perpetual swap derivatives contract on BitMEX on an intraday
basis. By learning from the multiple sources of impact on the quadratic risk-adjusted utility that it seeks to
maximise, the agent avoids excessive over-trading, captures a funding profit, and can predict the market’s
direction. Overall, our crypto agent realises a total return of 350%, net of transaction costs, over roughly five
years, 71% of which is down to funding profit. The annualised information ratio that it achieves is 1.46.

INDEX TERMS Online learning, transfer learning, echo state networks, recurrent reinforcement learning,
financial time series.

I. INTRODUCTION
Financial time series provide many modelling challenges for
both researchers and practitioners. In some circumstances,
data availability is sparse, and the datasets are vast in other
circumstances; this impacts the choice of model and the
learning style. In addition, financial time series are typically
both autocorrelated and nonstationary, requiring approaches
such as integer or fractional differencing [1] to remove these
effects and facilitate correct feature selection; this is pre-
viously identified by Granger and Newbold [2] as leading
to spurious regressions if not mitigated. Another approach
to coping with nonstationarity is to allow models to learn
continuously.

Against this backdrop, we extend our earlier work [3]
where we combine sequential learning with transfer learn-
ing [4] and reinforcement learning [5]. More concretely,
we novelly transfer the learning of an echo state network [6]
to a direct, recurrent reinforcement learning agent [7] who
must learn to trade digital asset futures, specifically the
XBTUSD (Bitcoin versus US Dollar) perpetual swap on the
BitMEX exchange. Our transfer learner benefits from an
ample, dynamic reservoir feature space and can identify and
learn from the different sources of impact on profit and loss,
including execution costs, exchange fees, funding costs and
price moves in the market.

The associate editor coordinating the review of this manuscript and

approving it for publication was Chao Tong .

Perhaps the main benefit of this paper will be for financial
industry practitioners. In the numerous papers we researched
on machine learning applications to financial trading, the
researchers’ emphasis tends to be on the novelty of the
machine learning model, which inevitably has a high learning
capacity. In practically all cases, good risk-adjusted returns
are claimed, yet when one digs into the results in more detail,
one invariably finds that trading costs are not fully accounted
for. Such papers usually assume the execution of trades on the
closing prices of sub-sampled data with certainty. However,
only a price taker can obtain certainty of fill by crossing the
bid/ask spread. The price taker then observes an immediate
loss equal to the execution time half bid/ask spread.We barely
see this cost accounted for, and even when it is, such as with
the seminal work of Moody et al. [7], a fixed execution cost
is assumed. This fixed execution cost is never observed in
reality; see, for example, figure 4 of Borrageiro et al. [3],
which shows that the bid/ask spread varies by time of day.
For many assets, especially in traditional finance, the bid/ask
spread varies by day of the week as well; Dacorogna et al. [8]
demonstrate and discuss various examples of such stylised
facts. Another approach commonly taken by academic finan-
cial trading researchers is to use supervised learning and sub-
sample the high-frequency data into monthly time series.
The main reason for doing this is to ameliorate excessive
trading and thus high execution cost. Inevitably, we see the
caveat emptor of a lack of experimental data and its impact
on the generalisation performance of their chosen model.

38590 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-0063-7103
https://orcid.org/0000-0002-6460-0406
https://orcid.org/0000-0003-4588-667X
https://orcid.org/0000-0003-4414-4965

G. Borrageiro et al.: Recurrent Reinforcement Learning Crypto Agent

Furthermore, the down-sampling of data into lower frequen-
cies typically makes bearable the slow training times of many
models, such as deep q-learning networks.

We complete this section with a summary of the main
contributions of this paper. Our meta-model can process data
as a stream and learn sequentially; this helps it cope with the
nonstationarity of the high-frequency order book and trading
data. Furthermore, by using the vast high-frequency data, our
model, which has a high learning capacity, avoids the kind
of overfitting on a lack of data points that occurs with down-
sampled data. We escape the problem of over-trading that is
typically seen with the supervised learning model by learn-
ing the sensitivity of the change in risk-adjusted returns to
the model’s parameterisation. Stated another way, our model
learns from the multiple sources of impact on profit and loss
and targets the appropriate risk position. Finally, the scientific
experiment that we conduct is representative of the conditions
that would be observed in live trading; thus, we are confident
that the resulting performance can realistically be transferred
to industry use.

II. PRELIMINARIES
This section provides a brief overview of the related ideas
that we use in our experimentation, namely transfer learning,
reservoir computing with echo state networks, and a form of
policy gradients reinforcement learning. Finally, we conclude
the section with a literature review of recent publications that
apply reinforcement learning in cryptocurrency trading.

A. TRANSFER LEARNING
Transfer learning refers to the machine learning paradigm in
which an algorithm extracts knowledge from one or more
application scenarios to help boost the learning performance
in a target scenario [4]. Typically, traditional machine learn-
ing requires large amounts of training data. Transfer learning
copes better with data sparsity by looking at related learning
domains where data is sufficient. Even in a big data scenario
such as streaming high-frequency data, transfer learning can
benefit from learning immediately, where data is initially
sparse, and a learner must begin providing forecasts when
asked to do so. An increasing number papers focus on online
transfer learning [9]–[11]. Following Pan and Yang [12],
we define transfer learning as:
Definition 1 (Transfer Learning): Given a source domain

DS and learning task TS , a target domainDT and learning task
TT , transfer learning aims to help improve the learning of the
target predictive function fT (.) in DT using the knowledge in
DS and TS , where DS 6= DT , or TS 6= TT .

B. ECHO STATE NETWORKS
Echo state networks are a form of recurrent neural network.
They consist of a large, fixed, recurrent reservoir network,
from which the desired output is obtained by training suitable
output connection weights. Determination of the optimal out-
put weights is solvable analytically, for example, sequentially
with recursive least squares [6]. Echo state networks are an

example of the reservoir computing paradigm of understand-
ing and training recurrent neural networks, based on treating
the recurrent part (the reservoir) differently than the readouts
from it [13]. Following Jaeger [6], the echo state property
states that:
Definition 2 (echo state property): If a network is started

from two arbitrary states x0, x̃0 and is run with the same input
sequence in both cases, the resulting state sequences xT , x̃T
converge to each other. If this condition holds, the reservoir
network state will asymptotically depend only on the input
history, and the network is said to be an echo state network.
The echo state property is guaranteed if the dynamic reservoir
weight matrix Whidden is scaled such that its spectral radius
ρ(Whidden), that is, its largest absolute eigenvalue, satisfies
ρ(Whidden) < 1. This ensures that Whidden is contractive.
The mathematically correct connection between the spectral
radius and the echo state property is that the latter is violated
if ρ(Whidden) > 1 in reservoirs using the tanh function as
neuron nonlinearity and for zero input [14].

Murray [15] states that the criteria for plausible modelling
on how the brain might perform challenging time-dependent
computations are locality and causality. As the echo state
network uses a fixed, dynamic reservoir of weights, whose
update depends on local information of inputs and activations,
with fixed and random feedback, the model offers a plausible
model of biological function. These biological aspects are
explored by Maass and Markram [16] concerning liquid state
machines and more generally with spiking neural networks in
Samadi et al. [17].

Numerous articles demonstrate echo state networks
within a reinforcement learning context. For example,
Szita et al. [18] propose a novel method that uses echo state
networks as function approximators in reinforcement learn-
ing. They emphasise that echo state networks are promising
candidates for partially observable problems where informa-
tion about the past may improve performance, such as with
k-order Markov processes. Since echo state networks are
effectively linear function approximators acting on the inter-
nal state representation built from the previous observations,
Gordon’s [19] results about linear function approximators
can be transferred to the echo state networks architecture.
Building on this, they provide proof of convergence to a
bounded region for echo state network training in the case
of k-order Markov decision processes.

Shi et al. [20] seek to model the optimal energy manage-
ment of an office. Time series inputs such as the real-time
electricity rate, renewable energy and energy demand are
made available to an echo state network q-learning model,
which determines the optimal charging/discharging/idle
strategies for the battery in the office so that the total cost
of electricity from the grid can be reduced.

Chen et al. [21] develop a fault-tolerant adaptive tracking
control method fused with an echo state network, driven by
reinforcement learning for Euler-Lagrange systems subject to
actuation faults. Specifically, the echo state network imple-
ments an associative search network, a control gain network

VOLUME 10, 2022 38591

G. Borrageiro et al.: Recurrent Reinforcement Learning Crypto Agent

FIGURE 1. A schematic of the echo state network (ESN), combined with
the direct, recurrent reinforcement learning agent (DRL). The ESN part is
inspired by the schematic of Lukoševičius [22] and the DRL part is
inspired by the McCulloch-Pitts schematic of Bishop [23].

and an adaptive critic network, resulting in enhanced learning
capabilities and stronger robustness against external uncer-
tainties or disturbances, thus better controlling performance.

C. POLICY GRADIENT REINFORCEMENT LEARNING
In this section, we summarise our previous preliminary
overview of the policy gradients method [3]. Williams [24]
introduced policy gradient methods in a reinforcement learn-
ing context. Whereas the majority of reinforcement learning
algorithms tend to focus on action value estimation, learning
the value of and selecting actions based on their estimated
action values, policy gradient methods learn a parameterised
policy that can select actions without the use of a value
function. Williams also introduced his reinforce algorithm

1wij = ηij(r − bij) ln(∂πi/∂wij), (1)

where wij is the model weight going from the j′th input
to the i′th output and wi is the weight vector for the i′th
hidden processing unit in a network of such units, whose
goal it is to adapt in such a way as to maximise the scalar
reward r . The learning rate is ηij and the weight update
of equation 1 is typically applied with gradient ascent. The
reinforcement baseline bij, is conditionally independent of
the model outputs yi, given the network parameters w and
inputs xi. The characteristic eligibility of wij is ln(∂πi/∂wij),
where πi(yi = c,wi, xi) is the probability mass function
determining the value of yi as a function of the parameters
of the unit and its input. Baseline subtraction r − bij plays an
important role in reducing the variance of gradient estimators
and Sugiyama [25] shows that the optimal baseline is given as

b∗ =
Ep(r|w)

[
rt‖
∑T

t=1 ∇ lnπ (at |st ,w)‖2
]

Ep(r|w)
[
‖
∑T

t=1 ∇ lnπ (at |st ,w)‖2
] ,

where the policy function π (at |st ,w) denotes the probability
of taking action at at time t given state st , parameterised by
w. The main result of Williams’s paper is
Theorem 1: For any reinforce algorithm, the inner product

ofE[1w|w] and∇E[r|w] is non-negative and if ηij > 0, then

this inner product is zero if and only if ∇E[r|w] = 0. If ηij is
independent of i and j, then E[1w|w] = η∇E[r|w].
This result relates ∇E[r|w], the gradient in weight space

of the performance measure E[r|w], to E[1w|w], the aver-
age update vector in weight space. Thus for any reinforce
algorithm, the average update vector in weight space lies in
a direction for which this performance measure is increasing
and the quantity (r−bij) ln(∂πi/∂wij) represents an unbiased
estimate of ∂E[r|w]/∂wij.

1) POLICY GRADIENT METHODS IN FINANCIAL TRADING
Moody et al. [7] propose to train trading systems and portfo-
lios by optimising objective functions that directly measure
trading and investment performance. Their model tries to
target a position directly, and the model weights are adapted
to maximise the performance measure. The performance
function that they primarily consider is the differential Sharpe
ratio. The annualised Sharpe ratio [26] is

sr = 2520.5 ×
µ− rf
σ

,

where µ is the strategy’s return, σ is the standard deviation
of returns, and rf is the risk-free rate. The differential Sharpe
ratio is defined as

dsrt
dτ
=
bt−11at − 0.5 at−11bt

(at−1 − a2t−1)
3/2

,

where the quantities at and bt are exponentially weighted
estimates of the first and second moments of rt

at = at−1 + τ1at = at−1 + τ (rt − at−1)

bt = bt−1 + τ1bt = bt−1 + τ (r2t − bt−1),

with τ ∈ (0, 1]. They consider a batch gradient ascent update

1θT = η
dsrT
dθ

,

where

dsrT
dθ
=

1
T

T∑
t=1

dsrT
drt

{
drt
dft

dft
dθ
+

drt
dft−1

dft−1
dθ

}

=
1
T

T∑
t=1

{
bT − aT rt

(bT − a2T)
3/2

}{
drt
dft

dft
dθ
+

drt
dft−1

dft−1
dθ

}
.

(2)

The reward

rt = 1pt ft−1 − δt |1ft |

depends on the change in reference price pt , previous position
ft−1 and transaction costs δt which are applied only if there
is a change in position |ft − ft−1| > 0. The position function
is typically differentiable and bounded −1 ≤ ft ≤ 1. This
position function depends on the model inputs and parame-
ters ft , f (xt ; θ t). The right half of equation 2 shows the
dependency of the model parameters on the past sequence
of trades. To correctly compute and optimise these total
derivatives requires the use of recurrent algorithms such as

38592 VOLUME 10, 2022

G. Borrageiro et al.: Recurrent Reinforcement Learning Crypto Agent

backpropagation through time [27], [28] or real-time recur-
rent learning [29]. An undesirable property of the Sharpe ratio
is that it penalises a model that produces returns larger than

r∗t =
bt−1
at−1

,

which is counter-intuitive relative to most investors’ notions
of risk and reward [7]. Gold [30] extends Moody et al. [7]
work and investigates high-frequency currency trading with
neural networks trained via recurrent reinforcement learning.
He compares the performance of linear networks with neural
networks containing a single hidden layer and examines the
impact of shared system hyper-parameters on performance.
In general, he concludes that the trading systems may be
effective but that the performance varies widely for different
currency markets, and simple statistics of the markets cannot
explain this variability.

D. REINFORCEMENT LEARNING WITHIN
CRYPTOCURRENCY TRADING
This section provides a brief literature review of reinforce-
ment learning applied to cryptocurrency trading. Before per-
forming this review, it is helpful to describe how returns
net of transaction costs are generated when trading on an
exchange. For example, assume that a single instrument is
traded, such as Bitcoin versus the US Dollar. This instrument
may be a cash or futures instrument. A gross profit (loss) is
generated when Bitcoin is sold higher (lower) than its initial
purchase price. Similar logic is applied for short positions,
albeit with directions swapped. A net profit is observed by
deducting various costs from the gross profit. These costs
vary depending on the execution-style and are differentiated
between price makers and price takers.

A price maker inserts quotes into an exchange limit order
book and executes when a price taker removes the price
maker’s liquidity. The price maker captures half the bid/ask
spread at the time of execution; the execution price is evalu-
ated against the prevailing transaction mid-price (0.5×[bid+
ask]), where bid <mid < ask . Bid/ask spreads in crypto tend
to be as competitively priced as traditional financial instru-
ments, although the exchange fees, usually a percentage of
the notional traded, tend to bemuch higher. The price maker’s
fills are probabilistic, not inevitable. To compensate the mar-
ket maker for the uncertainty incurred by providing liquidity
and the risk of adverse selection, they capture half the bid/ask
spread. The price taker obtains the certainty of immediate
fill, subject to competing with other price takers for the same
quoted liquidity. This certainty of fill comes at a cost, as the
price taker must pay half the bid/ask spread and usually much
higher exchange fees than price makers when trading crypto.

A final cost that must be considered is funding. If one
buys cash crypto without leverage, then it is plausible to
consider no funding cost, and one can consider the purchase
as self-funded. However, if one wants to sell cash crypto
short, one needs to borrow the inventory; this attracts a fund-
ing cost. Furthermore, transacting in cryptocurrency futures

on an exchange or contracts for difference in the over-the-
counter market attracts a funding cost similar to what brokers
charge for traditional financial instruments. Even if one trades
futures directly on an exchange without a broker, some crypto
derivatives contracts attract funding like traditional foreign
exchange instruments do. For example, trading overnight
foreign exchange exposes one to the interest rate differen-
tial between two currency pairs. Similarly, perpetual crypto
swaps attract an intraday funding profit or loss, which ensures
that the swap tracks the underlying cash instrument within
tolerance. We now proceed with the literature review.

Jiang and Liang [31] supply a convolutional neural network
with historical prices of a set of crypto assets as its input,
outputting portfolio weights of the set of assets. The network
is trained on less than a year of price data from the Poloniex
cryptocurrency exchange. The training is done in a reinforce-
ment learning manner, maximising the accumulated return as
the reward function of the network. Using 30 minutely sam-
pled closing prices, they conduct backtests which achieve ten-
fold returns. In addition, they set exchange trading transaction
fees of 25 basis points (25e-4) times the notional value traded
of the base cryptocurrency. However, since they use closing
prices to execute with a certainty of fill without applying half
the observable bid/ask spread cost at the time of execution,
the empirically observed backtest results do not represent the
actual cost of trading and are thus more sanguine than reality.

Lee et al. [32] present a novel method to predict Bitcoin
price movement using inverse reinforcement learning [33]
and agent-based modelling. Their approach predicts the price
by reproducing synthetic yet realistic behaviours of ratio-
nal agents in a simulated market. Inverse reinforcement
learning provides a systematic way to find the behavioural
rules of each agent from Blockchain data by framing the
trading behaviour estimation as a problem of recovering
motivations from observed behaviour and generating rules
consistent with these motivations. Once the rules are recov-
ered, an agent-based model creates hypothetical interactions
between the recovered behavioural rules, discovering equilib-
rium prices as emergent features throughmatching the supply
and demand of Bitcoin. Their model is used to forecast the
market’s direction, and their results show that their proposed
method can predict short-term market prices while outlining
overall market trends. However, their experiments do not
include the impact of holding risk, transaction or funding
costs.

Lucarelli and Borrotti [34] apply deep reinforcement
learning to trading Bitcoin. More precisely, double deep
q-learning [35] and duelling double deep q-learning [36] net-
works are trained in batch mode using 80% of the four years
of data that they have available. The remaining 20% of the
data is used for out of sample testing. Two reward functions
are also tested: Sharpe ratio and profit reward functions. They
find that the double deep q-learning trading system based
on the Sharpe ratio reward function is the most profitable
approach for trading Bitcoin. We note that the authors collect
their data from Kaggle rather than from an actual crypto

VOLUME 10, 2022 38593

G. Borrageiro et al.: Recurrent Reinforcement Learning Crypto Agent

exchange and that they use minutely sampled open-high-
low-close prices rather than actual order book bids and asks.
As such, accurate transaction costs cannot be used in their
experiment. Furthermore, no indication is made in their paper
that they use any form of funding or exchange trading fees in
their returns calculations.

Zhang et al. [37] note that portfolio selection is difficult
as the nonstationarity of financial time series and their com-
plex correlations make the learning of feature representation
challenging. They propose a cost-sensitive portfolio selec-
tion method with deep reinforcement learning. Specifically,
a novel two-stream portfolio policy network is devised to
extract price time series patterns and asset correlations, while
a new cost-sensitive reward function is developed to max-
imise the accumulated return and constrain costs via rein-
forcement learning. They empirically evaluate their proposed
method on real-world datasets from the Poloniex crypto
exchange. Promising results demonstrate the effectiveness
and superiority of the proposed method in terms of profitabil-
ity, cost-sensitivity and representation abilities. Once more,
however, transaction costs are not fully accounted for in their
experiment. For example, they assume a fixed transaction cost
of 25 basis points times the notional value traded of the base
cryptocurrency; however, they also use open-high-low-close
prices, sampled every 30 minutes. The closing prices they
use assume that execution is immediate. In reality, however,
immediate execution may only be achieved by crossing the
spread; this additional cost must be modelled, which usually
turns a theoretically profitable strategy that executes at the
closing price or mid-price into a loss-making one.

III. THE RESEARCH EXPERIMENT
We begin with a discussion of the research data we use in
our experiment, followed by an elucidation of the research
methods and a description of the experiment results. As a
high-level summary, our experiment aims to explore transfer
learning using a source model, an echo state network and
a target model, a direct, recurrent, reinforcement learning
agent. The objective of this meta-model is to learn to trade
digital asset futures, specifically perpetual contracts on the
BitMEX crypto exchange. Finally, the dynamical reservoir of
the echo state network acts as a powerful nonlinear feature
space; this is fed into the upstream recurrent reinforcement
learner, who is aware of the various sources of impact on
profit or loss and learns to target the desired position.

A. THE BitMEX XBTUSD PERPETUAL SWAP
The data that we experiment with is from the BitMEX cryp-
tocurrency derivatives exchange. In 2016 they launched the
XBTUSD perpetual swap, where clients trade Bitcoin against
the US Dollar. The perpetual swap is similar to a traditional
futures contract, except there is no expiry or settlement.
It mimics a margin-based spot market and trades close to
the underlying reference index price. A funding mechanism
is used to tether the contract to its underlying spot price.
In contrast, a futures contract may trade at a significantly

different price due to the basis

basist = futurest − indext .

The basis means different things in different markets. For
example, in the oil market, the demand for spot oil can
outpace the demand for futures oil, especially if OPEC with-
holds supply, leading to a higher spot price; this results in a
futures curve in a state of backwardation. The crypto futures
normally trade in a state of contango, where the futures prices
trade at a higher rate than the spot prices. Backwardation or
contango in crypto markets does not represent supply and
demand shortages in an economic sense but rather reflects
risk appetite for crypto. Similar effects happen in the equity
markets. As with the equity markets, crypto market partici-
pants can take risks in the futures market more easily. The
spot markets typically do not offer leverage, and the trader
must have inventory in the exchange to trade. In contrast,
futures allow traders to sell assets short with leverage and
without borrowing the underlying asset. However, what is
required is a margin or deposit to fund the position. Figure 2
shows the basis in relative terms for the XBTUSD perpetual
swap during the bear market of 2018. The mid-price of the
perpetual swap is compared against the underlying index it
tracks, .BXBT. The relative basis is computed as

rbasist =
futurest − indext

indext
. (3)

Before this bear market, Bitcoin hit a then all-time high of
$20,000, and the 100-day exponentially weighted moving
average of relative basis was very positive in late 2017.
For most of 2018 and 2019, the basis was largely negative,
reflecting the cash market sell-off from all-time highs to circa
USD 3,000.

1) FUNDING
The funding rate for the perpetual swap comprises two parts:
an interest rate differential component and the premium or
discount of the basis. We denote this funding rate as κt .
The interest differential reflects the borrowing cost of each
currency involved in the pair

et =
equotet − ebaset

T
.

For example, with the XBTUSD perpetual swap, the interest
rate of borrowing in US Dollars is denoted by equotet and
the interest rate of borrowing in Bitcoin is represented by
ebaset . As funding occurs every 8 hours, T = 8. The basis pre-
mium/discount component is computed in amanner similar to
equation 3, with some subtleties applied to minimise market
manipulation, such as the use of time and volume weighted
average prices. The funding rate is finally

κt = bt + max(min[ζet − bt],−ζ), (4)

where ζ is a basis cap, typically 5 basis points (0.05%).
When the basis is positive, traders with long positions (buy
XBT, sell USD) will pay those with short positions (sell XBT,

38594 VOLUME 10, 2022

G. Borrageiro et al.: Recurrent Reinforcement Learning Crypto Agent

FIGURE 2. XBTUSD basis during the bear market of 2019.

buy USD). Reciprocally, shorts pay longs when the basis is
negative.

B. THE RECURRENT REINFORCEMENT
LEARNING CRYPTO AGENT
We begin with a description of the dynamic reservoir fea-
ture space, the resultant learning of which is transferred
to the direct, recurrent reinforcement learner, which targets
the desired risk position. It is worth highlighting where our
approach deviates from the traditional use of echo state
networks within a reinforcement learning context. Figure 1
demonstrates visually that the target labels, the so-called
teacher signal, can be fed back into the dynamic reservoir.
Equally, one could apply a regression layer to the echo state
network and feed the resulting forecasts into the dynamic
reservoir. Both approaches make the echo state network
recurrent then. We value this recurrent nature in a trading
context, as we wish to feed information about the current
position back into the model. However, rather than treating
this exercise as a value function estimation task as with Szita
et al. [18], we feed the augmented, dynamic reservoir features
of the echo state network to a direct recurrent reinforcement
learner. By differentiating a quadratic utility function with
respect to the recurrent reinforcement learner’s parameters,
with feedback connections from the agent’s past positions fed
back into the echo state network dynamic reservoir, the agent
learns from the various sources of impact on profit and loss
and targets the appropriate position that maximises the risk-
adjusted reward.

1) THE DYNAMIC RESERVOIR FEATURE SPACE
Denote as ut , a vector of external inputs to the system,
which is observed at time t . In the context of this experi-
ment, such external input would include order book, trans-
action and funding information. These features may come
from the instrument being traded, exogenous instruments,
or both. Initialise the external input weight matrix Winput

∈

Rnhidden×ninput , where the weights are drawn at random; a draw

from a standard normal would suffice. Here, nhidden denotes
the number of hidden processing units in the internal dynam-
ical reservoir and ninput is the number of external inputs,
including a bias term. Next we initialise the hidden processing
units weight matrix,Whidden

∈ Rnhidden×nhidden . The procedure
detailed by Yildiz et al. [38] is
• Initialise a randommatrixWhidden, all with non-negative
entries.

• Scale Whidden such that its spectral radius
ρ(Whidden) < 1.

• Change the signs of a desired number of entries of
Whidden to get negative connection weights as well.

• Sparsify Whidden with probability P(α), 0 � α < 1,
setting those elements to zero.

This procedure is guaranteed to ensure the echo state property
for any input. Intuitively, a recurrent neural network has the
echo state property concerning an input signal ut , if any initial
network state is forgotten or washed out when the network
is driven by ut for long enough [39]. The model supports
recurrent connections from either a teacher signal yt ∈ Rnback

ormodel output ŷt ∈ Rnback . These are connected to themodel
via the weight matrix Wback

∈ Rnhidden×nback , whose weights
are initialised at random from a standard normal. Note that
Winput ,Whidden and Wback , have weights that remain fixed.

Finally, initialise the output weight vector wout
0 ∈

Rninput+nhidden+nback . It is at this point that our procedure
differs from the original echo state network formulation
shown by Jaeger [6]. There, wout is a matrix Wout

∈

Rnback×(ninput+nhidden+nback) and the performancemeasure of the
model is the quadratic loss

min
Wout

1
2T

T∑
t=1

(yt −Woutzt)2.

The reasons will become apparent shortly when we detail
the model’s direct, recurrent reinforcement learning part. But
first, we must describe how we create the augmented state of
the system, zt ∈ Rninput+nhidden+nback . Firstly, we initialise a
zero-valued internal state vector x0 ∈ Rnhidden . Then at time t ,
we compute the recurrent internal state

xt = fhidden(Winputut +Whiddenxt−1 +Wback
t ŷt),

where fhidden(.) is typically a squashing function such as the
hyperbolic tangent. The augmented, recurrent system state is
then

zt = [ut , xt , ŷt]. (5)

Equation 11 defines what ŷt represents, namely the past
desired positions of the direct, recurrent reinforcement learn-
ing agent.

2) DIRECT RECURRENT REINFORCEMENT LEARNING
The augmented, internal feature state, zt , is now fed into the
upstream model, a direct, recurrent neural network, whose
performance measure is a quadratic utility function of reward
and risk. For the reader’s benefit and the fact that we use the

VOLUME 10, 2022 38595

G. Borrageiro et al.: Recurrent Reinforcement Learning Crypto Agent

same target transfer learning model, we describe the dynam-
ics of the direct, recurrent reinforcement learner in a manner
similar to our earlier work [3]. Sharpe [40] discusses asset
allocation as a function of expected utility maximisation,
where the utility function may be more complex than that
associated with mean-variance analysis. Denote the expected
utility for a single asset portfolio as

υt = µt −
λ

2
σ 2
t , (6)

where the expected return µt and variance of returns σ 2
t may

be estimated in an online fashion with exponential decay

µt = τµt−1 + (1− τ)rt ,

σ 2
t = τσ

2
t−1 + (1− τ)(rt − µt)2. (7)

The risk appetite constant λ > 0, can be set as a function
of an investor’s desired risk-adjusted return, as demonstrated
by Kahn [41]. Define the annualised information ratio as the
risk-adjusted differential reward measure, where the differ-
ence is taken against a benchmark or baseline strategy

irt = 2520.5 ×
µt − bt
σt

.

Substituting the non-annualised information ratio into the
quadratic utility and differentiating it against the risk,
we obtain a suitable value for the risk appetite parameter

λ =
irt
σt
.

The net returns whose expectation and variance we seek to
learn, are decomposed as

rt = 1pt ft−1 − δt |1ft | − κt ft , (8)

where 1pt is the change in reference price, typically a mid
price

1pt = 0.5× (bidt + askt − bidt−1 − askt−1),

δt represents the execution cost for a price taker

δt = 0.5× (askt − bidt), (9)

κt is the funding cost (see subsection III-A) and ft is the
desired position learnt by the recurrent reinforcement learner

ft = tanh
(
[wout

t]T zt
)
. (10)

The model is maximally short when ft = −1 and maximally
long when ft = 1. The past positions of the model are used
as the feedback connections for equation 5

ŷt = [ft−nback , . . . , ft−1]. (11)

The goal of our recurrent reinforcement learner is to max-
imise the utility in equation 6, by targeting a position in
equation 10. To do this, we apply an online optimisation
update of the form

wout
t = wout

t−1 +∇υt ≡ 1wout
t +

dυt
dwout

t
,

where the weight update procedure is an extended Kalman
filter for neural networks [42], [43], albeit modified for rein-
forcement learning in this context; sequential updates are
applied as per algorithm 1.

Algorithm 1: Extended Kalman Filter

Require: β, τ // β ≥ 0 is a Ridge penalty.
// 0� τ ≤ 1 is an exponential decay

factor.
Initialise: d = ninput + nhidden + nback
wout
= 0d , P = Id/β

// 0d is a zero vector in Rd.
// P is the precision matrix in Rd×d.
Input: ∇υt
Output: wout

t
1 q = 1+∇υTt Pt−1∇υt/τ
2 k = Pt−1∇υt/(qτ)
3 wout

t = wout
t−1 + k

4 Pt = Pt−1/τ − kkT q
5 Pt = Ptτ // variance stabilisation

Above,Pt is an approximation to∇2υt , the inverse Hessian
of the utility function υt with respect to the model weights
wout
t . We decompose the gradient of the utility function with

respect to the recurrent reinforcement learner’s parameters as
follows

∇υt =
dυt
drt

{
drt
dft

dft
dwout

t
+

drt
dft−1

dft−1
dwout

t−1

}
=

{
dυt
dµt

dµt
drt
+

dυt
dσ 2

t

dσ 2
t

drt

}
×

{
drt
dft

[
∂ft
∂wout

t
+

∂ft
∂ft−1

∂ft−1
∂wout

t−1

]
+

drt
dft−1

[
∂ft−1
∂wout

t−1
+
∂ft−1
∂ft−2

∂ft−2
∂wout

t−2

]}
. (12)

The constituent derivatives for the left half of equation 12
are:

dυt
drt
= (1− η)[1− λ(rt − µt)],

drt
dft
= −δt × sign(1ft)− κt ,

dft
dwout

t
= zt [1− tanh2 ([wout

t]T zt)]

+wout
t,n [1− tanh2 ([wout

t]T zt)]

×zt−1[1− tanh2 ([wout
t−1]

T zt−1)],

where n = ninput + nhidden+ nback − 1, using 0 as the starting
index.

C. EXPERIMENT DESIGN
We put a recurrent reinforcement learning crypto agent
to work by trading the XBTUSD (Bitcoin vs US Dollar)
perpetual swap on BitMEX. We transfer the output of

38596 VOLUME 10, 2022

G. Borrageiro et al.: Recurrent Reinforcement Learning Crypto Agent

the source model, the dynamic reservoir feature space of
subsection III-B1, to the target model, the direct recurrent
reinforcement learner of subsection III-B2, who learns to
target a risk position directly. Finally, we use five minutely
sampled intraday data. The choice of this sampling rate is
driven by the throttle imposed by the vendor on retrieving
historical data; if we could obtain the raw, asynchronously
delivered tick data promptly, we would do so. Nevertheless,
we are still using 365× 5× 1440/5 = 525600 observations
in our experiment. Our performance evaluation procedure
involves the following:
• Construct input features from the order book and trade
information made available by BitMEX for XBTUSD.

• Feed these input features into an echo state network,
with nhidden = 100, nback = 10 and the percentage
of reservoir units Whidden that are sparsified, set to
α = 0.75.

• Feed the output of the echo state network (equation 5)
into a direct, recurrent reinforcement learner
(subsection III-B2).

• Set the risk appetite constant λ = 0.00001 for quadratic
utility equation 6.

• Set the ridge penalty β = 1 and the exponential decay
factor τ = 0.999 for the extended Kalman filter of
algorithm 1.

• Backtest the entire history as a test set.
• Learn sequentially online to target the desired position.
• Force the agent to trade as a price taker, who incurs an
execution cost equal to equation 9 plus exchange fees,
which are set to 5 basis points (0.05%).

• For non-zero risk positions, apply the appropriate fund-
ing profit or loss as per equation 4.

• Monitor equation 7, the expected net reward of the
strategy. The crypto agent can trade freely if µt ≥ 0.
Otherwise, close the position andwait for an opportunity
to enter the market again.

D. RESULTS
Table 1 and figure 3 show the results of the experiment.
The crypto agent achieves a total return of just under 350%
over a test set that is less than five years. The associated
annualised information ratio is 1.46. Denoting the maximally
short position as −1, no position as 0 and the maximally
long position as 1, we see that the agent averages a position
of 0.41. Thus there is a bias toward the agent maintaining a
long position, which is desirable, as Bitcoin has appreciated
against the USDollar over this period.We see visual evidence
in figure 3 that on occasion, the crypto agent abstains from
trading, or rather is forced to take no position; this will happen
during periods when the predictive performance of the agent
decreases relative to execution and funding costs. Our crypto
agent also captures a 71% cumulative return due to earning
funding, which is expected as the agent learns to target the
appropriate position that maximises its quadratic utility, and
funding is one of the drivers of this utility. The total execution
cost and exchange fees that the agent pays out is −54%.

FIGURE 3. Cumulative returns for the XBTUSD crypto agent.

TABLE 1. Daily pnl statistics for the XBTUSD crypto agent.

IV. DISCUSSION
The echo state network provides a robust and scalable feature
space representation. We transfer this learning representation
to a recurrent reinforcement learning agent that learns to
target a position directly. It is possible to use the echo state
network as a reinforcement learning agent itself, as shown
by Szita Yildiz et al. [18]. However, the approach may lead
to undesired behaviour in a trading context. Specifically,
they use an echo state network to estimate the state-action
value function of a temporal difference learning sarsa model
[5], [44]. This value function takes the form

qπ (s, a) = Eπ {rt |st , at },

where the expected return rt depends on the transition to state
st having taken action at under policy π . Sarsa estimates this
value function sequentially as

q(st , at) = (1− η)q(st , at)+ η[rt+1 + γ q(st+1, at+1)],

(13)

where 0<γ ≤ 1 is a discount factor for multi-step rewards,
and η> 0 is a learning rate. Equation 13 shows that the
state transition reward is passed back to the starting state.
In activities such as maze traversal or board games, being
aware of the reward associated with multiple steps or deci-
sions and passing that reward back to the current position

VOLUME 10, 2022 38597

G. Borrageiro et al.: Recurrent Reinforcement Learning Crypto Agent

FIGURE 4. Monte Carlo simulation, information ratio versus total return.

TABLE 2. Monte Carlo simulation, information ratio versus total return.

is of great value. However, in the context of trading, where
the value function q(st , at) represents the value of a position
st , with the possibility of switching or remaining in the same
position denoted by action at , we will on occasion find that
a larger utility is assigned to the wrong state. For example,
imagine the current state is st = 0, that is, the model has no
position. Now we observe a large positive price jump leading
to large positive reward rt+1 � 0. Value function estimators
such as equation 13 would pass the state transition reward
rt+1 to the initial state q(st = 0, at = 0). At the next iteration,
with probability Pr(1−ε), st+1 = 0 as q(st+1 = 0, at+1 = 0)
is the highest value function. However, if the position is zero,
the model cannot hope to earn a profit. Even if one excludes
the zero state, then there is still the possibility of observing
this problem for a reversal strategy with possible states s =
{−1, 1}. Direct reinforcement, as we describe it, does not
incur these problems and we have, through transfer learn-
ing, improved upon the earlier work in direct reinforcement
[7], [30] and extended the work of Borrageiro [3].

V. LIMITATIONS OF THE WORK
As previously discussed in subsection III-B1, the various
echo state network parameters are initialised at random.
Figure 4 and table 2 measure the impact of this randomness
on test set performance. We run a Monte Carlo simulation
of 250 trials, where the network parameterisation is fixed to

θ = {nhidden = 100, nback = 10}. The information ratios
in this set of simulations vary from 0.219 to 1.763, with
total returns between 65.4% and 502.1%. Whilst this does
show evidence of a reasonable variability of returns, table 2
also shows that 95% of the mean information ratios vary
between 1.1 and 1.2 and 95% of the mean total returns vary
between 289% and 307%. Thus the overall picture remains
unchanged, that being that the transfer learning crypto agent
has successfully learnt how to trade this instrument during the
test period. Other than this acceptable sensitivity to weight
initialisation, we make no assumptions that would otherwise
cause our results to be violated if these assumptions were
not met.

VI. CONCLUSION
We demonstrate an application of online transfer learning
as a digital assets trading agent. This agent uses a powerful
feature space representation in the form of an echo state
network, the output of which is made available to a direct,
recurrent reinforcement learning agent. The agent learns to
trade the XBTUSD (Bitcoin versus US Dollars) perpetual
swap derivatives contract on BitMEX. It learns to trade intra-
day on five minutely sampled data, avoids excessive over-
trading, captures a funding profit and is also able to predict
the direction of the market. Overall, our crypto agent realises
a total return of 350%, net of transaction costs, over roughly
five years, 71% of which is down to funding profit. The
annualised information ratio that it achieves is 1.46.

REFERENCES
[1] R. H. Shumway, Time Series Analysis and Its Applications: With R Exam-

ples (Springer Texts in Statistics), 3rd ed. Springer, 2011.
[2] C. W. J. Granger and P. Newbold, ‘‘Spurious regressions in econometrics,’’

J. Econometrics, vol. 2, no. 2, pp. 111–120, Jul. 1974.
[3] G. Borrageiro, N. Firoozye, and P. Barucca, ‘‘Reinforcement learning for

systematic FX trading,’’ IEEE Access, vol. 10, pp. 5024–5036, 2022.
[4] Q. Yang, Y. Zhang, W. Dai, and S. J. Pan, Transfer Learning. Cambridge,

U.K.: Cambridge Univ. Press, 2020.
[5] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.

Cambridge, MA, USA: A Bradford Book, 2018.
[6] H. Jaeger, ‘‘Adaptive nonlinear system identification with echo state net-

works,’’ in Proc. NIPS, 2002.
[7] J. Moody, L. Wu, Y. Liao, and M. Saffell, ‘‘Performance functions and

reinforcement learning for trading systems and portfolios,’’ J. Forecasting,
vol. 17, nos. 5–6, pp. 441–470, Sep. 1998.

[8] M. M. Dacorogna, R. Gencay, S. Altunç, O. V. Pictet, and R. Olsen,
An Introduction to High-Frequency Finance. New York, NY, USA: Aca-
demic, 2001.

[9] P. Zhao, S. C. H. Hoi, J. Wang, and B. Li, ‘‘Online transfer learning,’’ Artif.
Intell., vol. 216, pp. 76–102, Nov. 2014.

[10] B. K. Salvalaio and G. de Oliveira Ramos, ‘‘Self-adaptive appearance-
based eye-tracking with online transfer learning,’’ in Proc. 8th Brazilian
Conf. Intell. Syst. (BRACIS), Oct. 2019, pp. 383–388.

[11] X. Wang, X. Wang, and Z. Zeng, ‘‘A novel weight update rule of online
transfer learning,’’ in Proc. 12th Int. Conf. Adv. Comput. Intell. (ICACI),
Aug. 2020, pp. 349–355.

[12] S. Pan and Q. Yang, ‘‘A survey on transfer learning,’’ IEEE Trans. Knowl.
Data Eng., vol. 22, pp. 1345–1359, Nov. 2010.

[13] M. Lukoševičius, H. Jaeger, and B. Schrauwen, ‘‘Reservoir computing
trends,’’ KI-Künstliche Intell., vol. 26, no. 4, pp. 365–371, Nov. 2012.

[14] M. Lukoševičius andH. Jaeger, ‘‘Reservoir computing approaches to recur-
rent neural network training,’’Comput. Sci. Rev., vol. 3, no. 3, pp. 127–149,
2009.

38598 VOLUME 10, 2022

G. Borrageiro et al.: Recurrent Reinforcement Learning Crypto Agent

[15] J. M. Murray, ‘‘Local online learning in recurrent networks with random
feedback,’’ eLife, vol. 8, p. e43299, May 2019.

[16] W. Maass and H. Markram, ‘‘On the computational power of circuits of
spiking neurons,’’ J. Comput. Syst. Sci., vol. 69, no. 4, pp. 593–616, 2004.

[17] A. Samadi, T. P. Lillicrap, and D. B. Tweed, ‘‘Deep learning with dynamic
spiking neurons and fixed feedback weights,’’ Neural Comput., vol. 29,
no. 3, pp. 578–602, Mar. 2017.

[18] I. Szita, V. Gyenes, and A. Lőrincz, ‘‘Reinforcement learning with
echo state networks,’’ in Artificial Neural Networks—ICANN. Berlin,
Germany: Springer, 2006, pp. 830–839.

[19] G. J. Gordon, ‘‘Reinforcement learning with function approximation con-
verges to a region,’’ in Proc. NIPS, 2000.

[20] G. Shi, D. Liu, and Q. Wei, ‘‘Echo state network-based Q-learning method
for optimal battery control of offices combined with renewable energy,’’
IET Control Theory Appl., vol. 11, no. 7, pp. 915–922, Apr. 2017.

[21] Q. Chen, Y. Jin, and Y. Song, ‘‘Fault-tolerant adaptive tracking control of
Euler–Lagrange systems—An echo state network approach driven by rein-
forcement learning,’’ Neurocomputing, vol. 484, pp. 109–116, May 2022.

[22] M. Lukoševičius, A Practical Guide to Applying Echo State Networks.
Berlin, Germany: Springer, 2012, pp. 659–686.

[23] C.M. Bishop, ‘‘Neural networks and their applications,’’Rev. Sci. Instrum.,
vol. 65, no. 6, pp. 1803–1832, 1994.

[24] R. J. Williams, ‘‘Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning,’’ Mach. Learn., vol. 8, pp. 229–256,
May 1992.

[25] M. Sugiyama, Statistical Reinforcement Learning, 1st ed. Boca Raton, FL,
USA: CRC Press, 2015.

[26] W. F. Sharpe, ‘‘Mutual fund performance,’’ J. Bus., vol. 39, pp. 119–138,
Jan. 1966.

[27] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘‘Learning internal
representations by error propagation,’’ California Univ. San Diego La Jolla
Inst. Cognitive Science, Tech. Rep., 1985.

[28] P. J. Werbos, ‘‘Backpropagation through time: What it does and how to do
it,’’ Proc. IEEE, vol. 78, no. 10, pp. 1550–1560, Oct. 1990.

[29] R. J.Williams andD. Zipser, ‘‘A learning algorithm for continually running
fully recurrent neural networks,’’ Neural Comput., vol. 1, pp. 270–280,
Jun. 1989.

[30] C. Gold, ‘‘FX trading via recurrent reinforcement learning,’’ in Proc. IEEE
Int. Conf. Comput. Intell. Financial Eng., Mar. 2003, pp. 363–370.

[31] Z. Jiang and J. Liang, ‘‘Cryptocurrency portfolio management with deep
reinforcement learning,’’ in Proc. Intell. Syst. Conf. (IntelliSys), Sep. 2017,
pp. 905–913.

[32] K. Lee, S. Ulkuatam, P. Beling, and W. Scherer, ‘‘Generating synthetic
bitcoin transactions and predicting market price movement via inverse
reinforcement learning and agent-based modeling,’’ J. Artif. Soc. Social
Simul., vol. 21, no. 3, p. 5, 2018.

[33] S. Russell, ‘‘Learning agents for uncertain environments,’’ in Proc. 11th
Annu. Conf. Comput. Learn. Theory (COLT). New York, NY, USA: Asso-
ciation for Computing Machinery, 1998, pp. 101–103.

[34] G. Lucarelli and M. Borrotti, ‘‘A deep reinforcement learning approach for
automated cryptocurrency trading,’’ in Artificial Intelligence Applications
and Innovations. Cham, Switzerland: Springer, 2019, pp. 247–258.

[35] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, ‘‘Playing atari with deep reinforcement
learning,’’ 2013, arXiv:1312.5602.

[36] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and
N. De Freitas, ‘‘Dueling network architectures for deep reinforcement
learning,’’ in Proc. 33rd Int. Conf. Int. Conf. Mach. Learn. (ICML), vol. 48,
2016, pp. 1995–2003.

[37] Y. Zhang, P. Zhao, Q. Wu, B. Li, J. Huang, and M. Tan, ‘‘Cost-sensitive
portfolio selection via deep reinforcement learning,’’ IEEE Trans. Knowl.
Data Eng., vol. 34, no. 1, pp. 236–248, Jan. 2022.

[38] I. B. Yildiz, H. Jaeger, and S. J. Kiebel, ‘‘Re-visiting the echo state
property,’’ Neural Netw., vol. 35, pp. 1–9, Nov. 2012.

[39] H. Jaeger, ‘‘Using conceptors to manage neural long-term memories
for temporal patterns,’’ J. Mach. Learn. Res., vol. 18, pp. 13:1–13:43,
Jan. 2017.

[40] W. F. Sharpe, ‘‘Expected utility asset allocation,’’ Financial Analysts J.,
vol. 63, no. 5, pp. 18–30, Sep. 2007.

[41] R. C. Grinold and R. N. Kahn, Advances in Active Portfolio Manage-
ment: New Developments in Quantitative Investing. New York, NY, USA:
McGraw-Hill, 2019.

[42] R. J. Williams, ‘‘Training recurrent networks using the extended Kalman
filter,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN), vol. 4, 1992,
pp. 241–246 vol. 4.

[43] S. Haykin, Kalman Filtering and Neural Networks. Hoboken, NJ, USA:
Wiley, 2001.

[44] R. S. Sutton, ‘‘Learning to predict by themethods of temporal differences,’’
Mach. Learn., vol. 3, no. 1, pp. 9–44, 1988.

GABRIEL BORRAGEIRO received the Executive
M.B.A. degree from the Cass Business School,
City, University of London, and the Diploma
degree in computer science from the Damelin Col-
lege, South Africa. He is currently pursuing the
Ph.D. degree with the Computer Science Depart-
ment, University College London, and a part of the
Financial Computing Group. He is currently work-
ing as a Quantitative Researcher at BlueCrest Cap-
ital. His research interests include online learning,
reinforcement learning, and neural networks.

NICK FIROOZYE received the B.S. degree in
mathematics from the Harvey Mudd College and
the Ph.D. and M.S. degrees in mathematics from
New York University. He is currently a Honorary
Reader and a Computational Finance with the
Computer Science Department, University Col-
lege London, and also a part of the Financial Com-
puting Group. He also works for Exos Bank in the
systematic rates trading business.

PAOLO BARUCCA received the Ph.D. degree
in theoretical and mathematical physics from the
Sapienza Universita di Roma. He is currently a
Lecturer with the Computer Science Department,
University College London, and also a part of the
Financial Computing Group. He is also the Editor-
in-Chief of the Science Dissemination Project,
La Scienza Coatta, and a Scientific Officer of the
Blockchain Education Network.

VOLUME 10, 2022 38599

