
IEEE RELIABILITY SOCIETY SECTION

Received January 16, 2022, accepted February 12, 2022, date of publication April 11, 2022, date of current version April 18, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3164510

TBEM: Testing-Based GPU-Memory Consumption
Estimation for Deep Learning
HAIYI LIU 1, SHAOYING LIU 1, (Fellow, IEEE), CHENGLONG WEN2,
AND W. ERIC WONG 3, (Senior Member, IEEE)
1Department of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8511, Japan
2Microsoft Software Technology Center Asia, Microsoft, Suzhou 215123, China
3Department of Computer Science, The University of Texas at Dallas, Richardson, TX 75080, USA

Corresponding author: Shaoying Liu (sliu@hiroshima-u.ac.jp)

This work was supported by the Research Organization of Information and Systems (ROSI), National Institute of Informatics (NII) Open
Collaborative Research 2021-(21FS02).

ABSTRACT Deep Learning (DL) has been successfully implemented and deployed to various software
service applications. During the training process of DL, a large amount of GPU computing resources is
required, but it is difficult for developers to accurately calculate the GPU resources that the model may
consume before running, which brings great inconvenience to the development of DL systems. Especially in
today’s cloud-based model training. Therefore, it is very important to estimate the GPU memory resources
that the DL model may use in a certain computing framework. Existing work has focused on static analysis
methods to assess GPU memory consumption, highly coupled with the framework, and lack of research
on low-coupled GPU memory consumption of the framework. In this article, we propose TBEM, which
is a test-based method for estimating the memory usage of the DL model. First, TBEM generates enough
DL models using an orthogonal array testing strategy and a classical neural network design pattern. Then,
TBEM generates DL model tested in a real environment to obtain the real-time GPU memory usage values
corresponding to the model. After obtaining the data of different models and corresponding GPU usage
values, the data is analyzed by regression.

INDEX TERMS Deep learning, program static analysis, automated testing, bug detection.

I. INTRODUCTION
In recent years, with the improvement of computer perfor-
mance and the continuous accumulation of data, the research
and engineering implementation of artificial intelligence
algorithms have made rapid progress. Among them, deep
learning module is the most applied and implemented
system in artificial intelligence system. It is widely used in
many scenes, such as image recognition, speech recognition,
recommendation system and so on. Although the accuracy
and breadth of artificial intelligence system are improving
year by year, the hardware cost and time cost of constructing
neural network system are also increasing year by year.
In 2020, the Gpt-3 model [1] published by Open Artificial
Intelligence has 175 billion parameters, and the cost of
network training is as high as 12 million US dollars. The
high cost of model training is a common phenomenon of
the neural network system. Facing such a high cost of model
training, how to estimate the amount of memory that a deep

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhaojun Steven Li .

learning model will occupy and ensure that the model does
not out of memory during the training phase has become
an important issue. This error is caused by the fact that
developers cannot accurately estimate the size of the video
memory occupied by themodel before themodel runs, so they
cannot find the upper and lower limits of the super parameters
suitable for their own development environment. According
to relevant research literature, among all program failures
of deep learning jobs, out of memory(OOM) account for
9.1% (including GPU and CPU) [2], and often occur in
training process [3], which makes all the previous efforts
of ongoing model training wasted. This not only wastes
GPU computing resources, but also affects the development
progress of engineers. Therefore, the memory consumption
of different deep learning models and various deep learning
libraries becomes particularly important. In terms of deep
learning model and memory consumption, many researchers
have made great contributions and provided corresponding
solutions from different angles. The main methods include
memory exchange, memory sharing, recalculation, and
compressed neural network, etc. these methods reduce the

39674
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-7847-8923
https://orcid.org/0000-0002-5944-2714
https://orcid.org/0000-0002-1021-4753
https://orcid.org/0000-0002-2673-9909

H. Liu et al.: TBEM: Testing-Based GPU-Memory Consumption Estimation for Deep Learning

use of memory in the training process of deep learning
model by analyzing the calculation graph model and using
the technologies such as liveness analysis in static analysis or
dynamic memory sharing and memory exchange. But their
technology is usually used to make the built model input a
larger batch size in the current hardware environment. Not to
evaluate that the built model will cause memory overflow in
a certain environment before model training.

In terms of deep learning framework and memory con-
sumption, Gao et al. [4] proposed the method of using
static analysis and calculation diagram and resident buffer to
predict the memory utilization before model training.

Although the above methods have made effective solu-
tions, there are still the following problems in the memory
consumption evaluation of deep learning model:

• Deep learning library (e.g., TensorFlow, Pytoch) [5]
generally contains two main functions, automatic differ-
entiation, and GPU acceleration. Automatic differenti-
ation is usually implemented by deep learning library,
while GPU accelerated process is usually implemented
by calling multiple NVIDIA components(e.g., CUDA,
cudnn), it is difficult to achieve static analysis for the
cooperative calls of multiple non-open-source compo-
nents. Because the components called by the framework
are in the closed source state, users cannot carry out
common memory analysis methods such as context
analysis. It also makes the deep learning library a black
box for users.

• Each framework of deep learning is iterating rapidly
in months, and new deep learning frameworks emerge
one after another. The method of static analysis requires
experts to analyze the framework. Therefore, the static
analysis method undoubtedly increases the labor cost
and time cost of evaluating the memory consumption of
the deep learning model [6].

To solve the above problems, this paper proposes a
method based on the combination of static analysis and
dynamic test modeling analysis [7], [8]. Firstly, using the
method of static analysis, the calculation graph of neural
network is statically analyzed to pre-estimate the memory
that may be consumed by the model. Then the pre-estimated
model is run in the deep learning framework to obtain
the real value of the model under the framework. Finally,
Polynomial regression [9] is used to analyze the gap between
the memory consumption estimated by static analysis and
that of the real model, to deduce the possible memory
consumption of the deep learning framework under different
models.

II. PRELIMINARIES
In this section, we introduce three preliminaries used in
TBEM, which are orthogonal array testing strategy, regres-
sion algorithm, and formal specification. The relationship
between the above concepts and TBEM will be discussed in
the overview section.

A. ORTHOGONAL ARRAY GENERATION METHOD
Orthogonal array generation method(OAGM), also known
as Taguchi method, is a technology to generate orthogonal
array(OA). The shape of the test case table depends on the
number of factors and levels in the test [7].
Definition 1: An Orthogonal array can be defined as

OA(n, f , l, s), where:
• n is the number of rows of an orthogonal array. In an
orthogonal array, n is known as runs.

• f indicates how many parameters (factors) need to be
tested. In an orthogonal array, f is known as factors.

• l represents the value range of each parameter. In an
orthogonal array, l is known as levels.

• s represents the strength of the orthogonal array. Let the
orthogonal array be an n× f matrix A. In any n× s sub-
matrix in A, There are w = l · d possible d-tuple rows,
each of which appears the same number of times.

In Definition 1, factors correspond to hyperparameters in
the deep learning framework that we need to test. Levels
represent the range within which hyperparameters can be set.
The number of runs is usually determined by strength. The
relationship between specific parameters is as follows
• Orthogonal arrays are usually written as the following
pattern: Lruns(levelsfactors)

• The value of runs is equal to levelsstrength when the levels
of each factor are equal.

• When the number of levels in each factor of the
orthogonal array is different, runs is equal to the product
of the number of levels in the last strength column of the
orthogonal array.

B. POLYNOMIAL REGRESSION
Definition 2: we have a polynomial equation of degree n

represented as:

Y = δ0 + δ1xi + δ2x2i + · · · + δnx
n
i + ε(i = 1, 2, . . . ,m)

can be expressed in matrix form in terms of a design matrix
X , a response vector Ey,a parameter vector Eδ and a vectorEε of
random errors. The i-th row of X and Ey will contain the x and
y value for the i-th data sample,Then the model can be written
as a system of linear equations:

Ey = X Eδ + Eε

The vector of estimated polynomial regression coefficients
is:

Eδ = (XTX)−1XT Ey

assuming m < n which is required for the matrix to
be invertible, then since X is a Vandermonde matrix, the
invertibility condition is guaranteed to hold if all the xi values
are distinct. This is the unique least-squares solution.

C. FORMAL SPECIFICATION
In order to select test cases generated by TBEM, ensure
that the final test cases generated can be recognized by

VOLUME 10, 2022 39675

H. Liu et al.: TBEM: Testing-Based GPU-Memory Consumption Estimation for Deep Learning

the neural network framework. We need to investigate and
summarize some neural network formal specifications. SOFL
(Structured Object-Oriented Formal Language) as one of
the Formal Engineering Methods for industrial software
development [10]. In this paper, we use SOFL to write the
formal specification of neural network. The reason is that the
formal specification written by SOFL is easier for developers
to understand and implement than the written by formal
methods.

In SOFL, the operation of filtering test cases that do not
conform to the specification can be represented by process,
where process and end_process is a pair of keywords used to
mark the beginning and end of the process. pre is a keyword
indicating the start of the precondition of the process, and
the keyword post indicates the start of the postcondition.
Record a process as S, and then record pre-condition and post-
condition as Spre and Spost respectively. If the input variable
of a process S meets Spre, according to the specification, the
output variable defined based on the input variable must meet
Spost after S. Then we can have the following definitions:
Definition 3: Let Spost ≡ (C1 ∧ D1) ∨ (C2 ∧ D2) · · · ∨

(Cn ∧ Dn) where each Ci(i ∈ {1, . . . , n}) is a predicate
called a guard condition that contains no output variable and
each Di(i ∈ {1, . . . , n}) is another predicate called defining
condition that defines the output variables.

Listing. 1. A formal specification of neural networks using SOFL.

Listing 1 shows a formal specification for convolutional
neural network code using SOFL. ShapeVerify is a process
that used to verify the dimensional relationship between
tensors in neural network. It has pre-condition Spre := true
and post-condition Spost := ((W2 = (W1 − F + 2P)/S +
1) ∧ (H2 = (H1 − F + 2P)/S + 1) ∧ D2 = K ∧ y =
true) ∨ ((W2 <> (W1 − F + 2P)/S + 1) ∨ (H2 <>

(H1 − F + 2P)/S + 1) ∨ (D2 <> K) ∧ y = false). Then,
we can write the post-condition in the form of Definition 3:
G1 := ((W2 = (W1 − F + 2P)/S + 1) ∧ (H2 = (H1 −

F + 2P)/S + 1) ∧ D2 = K
D1 := y = true
G2 := ((W2 <> (W1 − F + 2P)/S + 1) ∨ (H2 <>

(H1− F + 2P)/S + 1) ∨ (D2 <> K))
D1 := y = false.
According to the above definition, we will collect the

specifications of different neural network models and express
them using SOFL. Finally, the specification described in

SOFL is accurately transformed into Python code to remove
the test cases that do not meet the specification. The details
about the syntax of SOFL can be found in the publication by
Liu et al. [10].

III. PROBLEM FORMULATION AND OVERVIEW
In this chapter, we first formulate the problem [11] and the
proposed method. Then, an overview of TBEM is given.

A. FORMALIZATION OF PROBLEM
In order to more clearly describe the problem that we solve
and the methods to be proposed. We formalize the deep
learning framework and the operation process of graph model
in the framework.
• Formalization of model operation process in deep
learning framework [12]. Let’s define set API as

I = {Ai}ni=1 = {A1,A2, . . . ,An}

where Ai is the existing API in the neural network
framework, and n is the number of I. At the same time,
The set of hyper-parameters to be set for each I is defined
as

HPAi = {p
j
Ai}

n
j=1 = {p

1
Ai , p

2
Ai , . . . , p

n
Ai}

where pjAi is the specific hyper-parameter to be set in
each I. Ai is the element in set API and j is the number
of all Hyper-parameters of the I. For example,

n∑
i=1

|HPAi |

can represent the types of all settable hyper-parameters
in the framework.

• Formal specification for deep learning model in frame-
work [13]. Next, we describe the form of themodel in the
framework based on the definition of the deep learning
framework. Given a set of I, We do a finite Cartesian
product

K︷ ︸︸ ︷
I × I × · · · × I

denoted as IK and

IK = {< A1,A2, . . . ,An > |Ai ∈ I , 1 ≤ i ≤ K }

Then, the model in the deep learning framework can be
defined as

model ∈ I∗ =
∞⋃
K=1

IK

B. FORMALIZATION OF METHOD
Because in the DL framework, the model usually runs in the
form of calculation graph, so we mark the calculation graph
[14] set as G. Let CG : model → G represents the mapping
between themodel and the calculation graph, for a given input
m ∈ model, there will be a corresponding calculation garaph
g ∈ G.

39676 VOLUME 10, 2022

H. Liu et al.: TBEM: Testing-Based GPU-Memory Consumption Estimation for Deep Learning

FIGURE 1. Overview.

Meanwhile, let GU be the set of interger means the size
of the GPU − memory consumed by the model, for each
m ∈ model, a corresponding GPU − memory usage can
be obtained by running the model or static analysis for the
graph [15]. Let GV : model → GU be a function of GU
for the model. Through the investigation of previous studies,
it can be seen that the static analysis of the calculation graph
can roughly estimate the usage of the GPU − memory of
the model at run time. Therefore, let SGV : graph → GU
be a function of GU for the model. There will be a certain
gap between the GU obtained by static analysis of the model
and the GU obtained by running the model. This gap can be
defined as

Gap(model) = GV (model)− SGV (CG(model))

It is critical to define the relationship between Gap(model)
and model. Not only can it be used to get a more accurate
model GPU − memory usage, but it can also be used to
evaluate the execution efficiency of the DL framework [16].

In order to find the specific mathematical form of
Gap(model), we propose a data fitting method based on
OAGM. First, a certain scale of deep learning model is
generated through the orthogonal array test strategy, which
is used as a test case to test the GU value (Test Oracle)
of the DL framework at runtime. Next, use the regression
algorithm to find the relationship between test case and test
oracle, that is, to obtain GV (model). However, if we want to
know Gap(model), we still need to know the specific value
of SGV . This paper adopts the method of static analysis of
the computational graph, and evaluates the specific value of
SGV (CG(model)) [2]through the analysis of the tensor scale.

C. OVERVIEW AND CHALLENGES
Figure 1 shows an overview of how TBEM works. The
process is divided into test phase and data analysis phase.
The test phase includes the generation of test cases and the
collection of test data. In the data analysis phase, polynomial
regression is used to solve the relationship between different
hyperparameters of the neural network and GPU usage.

In the test phase, we need to automatically generate
test cases. We believe that there are two principles for the
generated test cases: (1) The number of generated test cases
can be executed in a limited time. For example, suppose
we select 10 Super parameters of neural network, and each
super parameter has 3 values. The full test of such a neural
network model will produce 59049 (310) test cases. Such a
test scale may not be completed in a limited time. (2) Test
cases need to be evenly distributed in the test space as much
as possible, which can make the conclusion of polynomial
regression more accurate.

Listing. 2. VGG 16 model.

In order to overcome the above difficulties, we propose
a test case generation algorithm based on OAGM. Firstly,
the structure of many classical neural network models is
defined by string formatting. Then, the OAGM strategy is
used to deform the layers of the classical neural network
template to produce a sufficient number of neural network
structures. Finally, using OAGM again, the super parameters
corresponding to the neural network structure are generated,

VOLUME 10, 2022 39677

H. Liu et al.: TBEM: Testing-Based GPU-Memory Consumption Estimation for Deep Learning

FIGURE 2. Relationship between the number of neural network layers
and GPU utilization.

and the initial test cases are obtained.However, the test
cases generated in this way cannot guarantee that they
all meet the requirements of neural network framework.
The main problem is that the shape of tensor may be
inconsistent. Therefore, we implement a filter to remove the
non-conforming test cases, so as to get the final test cases that
can be run.

After the test is complete, we can get the corresponding
GPU usage for different test cases. Then, how to use
the data and solve the mapping relationship between test
cases and GPU usage is an important issue. We propose a
polynomial regression solution, which abstracts test cases
into a hyperparametric vector and establishes a mapping
relationship between the hyperparametric vector and the GPU
usage. This process enables TBEM to infer the GPU usage
of different neural network models. Finally, we make an
empirical study on the reasoning ability of TBEM, which
proves the validity of TBEM.

D. CASE STUDY
To clarify the role of regression in this algorithm, we give
an example of univariate polynomial regression in this
subsection. From the method of static analysis, the number
of layers of deep learning is directly related to the con-
sumption of computing resources. The function of univariate
polynomial regression is to analyze the tested data and get
the mathematical expression of the relationship between
the number of deep learning layers and the computing
resources.Finally, it is worthwhile to estimate the display
memory consumption of various neural networks by using the
regression results.

Visual Geometry Group(VGG) [17] is a classical neural
network model. Listing 2 shows the implementation of the
VGG16 model in the TensorFlow framework. In order to test
the memory usage of training in the TensorFlow framework
for in-depth learning models of different layers, and to ensure
that the model is true and effective as possible.We mutated
the VGG16 model.Because case study is the reason, the
convolution layer parameters (filters, kernel size, padding,
strides operations, etc.) and pool layer parameters (pool size,
strides, padding, data format, etc.) appearing in the model are
set as uniform parameters when mutating VGG16, excluding

the effect of Hyperparameters other than the number of layers
on explicit memory consumption in the deep learning model
above. Figure 2 shows the relationship between the number
of neural network layers and GPU usage (MB).

Algorithm 1: Automatic Generation of DL Test Model
Input: hp : Hyperparameters in neural networks

hp_list : A set of Hyperparameter
template : Verified valid DL mode
seed : A set of template
specification : Filter nonconfirming models

Output: source_code
1 parameterMatrix = Orthogonal(hp_list)
2 model = mutation(seed)
3 for each p in parameterMatrix do
4 sourceCode_list = toString(model, p);
5 for each sourceCode in sourceCode_list do
6 if specification(sourceCode) is False then
7 sourceCode_list =

sourceCode_list .pop(sourceCode)
8 end
9 end

10 end
11 return sourceCode_list;

IV. APPROACH
In this section, we first introduce what OAGM is and how
to use OAGM to generate test cases that can test the DL
framework, and then analyze the feasibility of test cases
generated based on OAGM and the ability of the generated
test cases and test oracle to be applied to regression analysis
feasibility. Finally, the regression model and static analysis
model used in this method are introduced.

A. TEST CASE GENERATION BASED OAGM
The purpose of testing is to find out how much GPU −
memory is consumed by different models running under a
certain framework. But there are many hyperparameters e.g.,
batch size [18].in the deep learning algorithm, and not all
hyperparameter changes will have a huge impact on the
GPU − memory. The static analysis of the deep learning
calculation graph can filter out the APIs that have a greater
impact on the memory consumption.

Observatios and motivations about API screening: GPU’s
advantage lies in parallel computing. In the process of
training deep learning models, there are a large number of
operators that need to be calculated in parallel. For example,
feature mapping in forward propagation, gradient mapping
in back propagation, etc. Therefore, we have screened
APIs related to convolution operation, pool operation, and
Batch Normalization that will generate a large number
of parallel calculations. In each API, the input scale and
output scale of each layer of neurons can be set, and
different parameters correspond to different memory usage.
In addition, the depth in deep learning is also a major

39678 VOLUME 10, 2022

H. Liu et al.: TBEM: Testing-Based GPU-Memory Consumption Estimation for Deep Learning

TABLE 1. Orthogonal test example of VGG network.

factor in consuming memory. Therefore, in the test, models
with different depths and different structures will be tested
orthogonally [19]. Corresponding to the memory consumed
by different models. Because the memory consumption of the
underlying framework will not decrease with the increase of
the influencing parameters in the model, that is, the direction
of data change is known, and only the rate of change is
unknown. Therefore, the data obtained by the orthogonal test
is sufficient for multivariate polynomia regression analysis.

Let’s take the VGG network as a example. Suppose that
through the static analysis [20] of the neural network model,
three representative hyperparameters are selected, namely
Batch-size, Depth and Number of convolutional layers [21].
These three hyperparameters constitute the factors in the
orthogonal array. As shown in Table 1. In an orthogonal
array, the range of values for each factor is called levels.
Table 1 shows an orthogonal array with a factor of 3 and
levels of 4. If a comprehensive experimental method is used
for testing, up to 34 tests are required. And the number of tests
increases exponentially with the value of levels. However,
using orthogonal experiments to generate orthogonal arrays
requires only 42 tests. In other words, when the levels become
very large, a comprehensive test is impossible. Therefore,
this article uses the OAGM to generate test cases [22].
Testing the deep learning framework and record the test
oracle corresponding to each test case.

B. POLYNOMIAL REGRESSION
we got a lot of pairs of test case and test Oracle,
where test case is marked as model and test Oracle
is marked as GU . Because the model is generated by
transforming parameters. therefore, model can be denoted
as model(hyperparameter1, . . . , hyperparametern) and The
hyperparameters are derived from the static analysis calcu-
lation graph.

Next, we use polynomial regression to find the relation-
ship between hyperparameters and GU , which is equiva-
lent to finding a way to solve GV (model). Furthermore,
SGV (model) is known. We have also found a way to solve
Gap(model).

V. RELATED WORK
A. GPU-MEMORY ESTIMATION
So far, most of the research on memory management of DL
accelerator-GPU focuses on how to optimize the use of GPU
memory during model training. For example, Rhu et al. [23]
proposed vDNN to formulate a memory swapping strategy
between main memory and GPU memory by analyzing the
computation graph, to reduce the footprint of GPU memory

in the process of training. Gradient checkpoint [14] uses the
idea of recomputation to implement an algorithm for training
n layer network, which only consumes O(

√
n) memory.

SuperNeurons [15] and Capuchin [16] both combine memory
sharing, memory swapping and recomputation techniques
to varying degrees to further improve the optimization of
GPU memory management in DL model training. However,
unlike our work, these studies usually focus on how to
optimize memory usage during DL model training. Rather
than estimating how much GPU memory may be consumed
by the model itself when the model is not trained.

DNNMem [4] is the most relevant work with TBEM.
TBEM and DNNMem have a common purpose, that is, the
GPU memory that may be consumed by the DL model is
estimated before the DL model is executed. However, the
TBEM method is based on the regression model generated
from test data to evaluate the DL model. It is essentially
different from DNNMem, which evaluates the GPU memory
consumption of the DL model through the static analysis of
the computation graph. Different working principles make
TBEM overcome the following problems of static analysis
methods in the following aspects: 1) the version update speed
of each component of deep learning framework is fast, and
the update cost of tools developed based on static analysis
principle is large; 2) The dependency of deep learning
framework is complex, and some components cannot be
completely statically analyzed.

B. TESTING OF DL FRAMEWORK
In recent years, with the increasing demand for the stability of
DL framework, the research on automatic test DL framework
has gradually attracted the attention of researchers. Cradle [6]
detects the inconsistency between the implementation of the
same neural network model in multiple DL frameworks,
determines that there may be errors in the inconsistent
framework by using the way that the minority obeys the
majority, and puts forward the relevant algorithm to locate
the wrong location. Gao et al. [5] Proposed another DL
framework testing method called Audee, which is different
from cradle’s practice of using existing DNNS as test cases.
Audee tried to generate test cases by using search algorithm,
and improved the bug type detection range and bug location
accuracy.

For algorithms without multiple implementations, that
is, when cross referencing cannot be used for Test Oracle
comparison,Murphy et al. [24], [25] Tried to test the machine
learning framework with the method of geometric relations,
but the framework here is not a neural network framework.

The above methods mainly focus on how to detect the bugs
in the framework. Although TBEM also needs to generate
test cases for the framework to run, on the contrary, TBEM
is correct based on the framework. We record the feedback
given by the framework to prevent GPU memory overflow
due to hyperparameter setting errors in neural network code
implementation.

VOLUME 10, 2022 39679

H. Liu et al.: TBEM: Testing-Based GPU-Memory Consumption Estimation for Deep Learning

VI. CONCLUSION AND FUTURE WORK
In this article, we propose a test-based method to evaluate the
memory usage of the DL framework. This method is different
from the previous static analysis method. The possible errors
of the static analysis method can be corrected through testing,
and the possible GPU-memory usage of the deep learning
model can be better evaluated before the deep learning model
is running.

At present, it is only a theoretical framework. In the future,
this method will be used to automatically generate a large
number of test cases to test the mainstream DL framework,
so as to prove the effectiveness of this method [26].

REFERENCES
[1] L. Floridi and M. Chiriatti, ‘‘GPT-3: Its nature, scope, limits, and

consequences,’’ Minds Mach., vol. 30, no. 4, pp. 681–694, Nov. 2020.
[2] R. Zhang, W. Xiao, H. Zhang, Y. Liu, H. Lin, and M. Yang, ‘‘An empirical

study on program failures of deep learning jobs,’’ in Proc. ACM/IEEE 42nd
Int. Conf. Softw. Eng., Jun. 2020, pp. 1159–1170.

[3] N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco, and
P. Tonella, ‘‘Taxonomy of real faults in deep learning systems,’’ in Proc.
ACM/IEEE 42nd Int. Conf. Softw. Eng., Jun. 2020, pp. 1110–1121.

[4] Y. Gao, Y. Liu, H. Zhang, Z. Li, Y. Zhu, H. Lin, and M. Yang, ‘‘Estimating
GPU memory consumption of deep learning models,’’ in Proc. 28th ACM
Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., Nov. 2020,
pp. 1342–1352.

[5] Q. Guo, X. Xie, Y. Li, X. Zhang, Y. Liu, X. Li, and C. Shen,
‘‘Audee: Automated testing for deep learning frameworks,’’ in Proc.
35th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Sep. 2020,
pp. 486–498.

[6] H. V. Pham, T. Lutellier, W. Qi, and L. Tan, ‘‘CRADLE: Cross-backend
validation to detect and localize bugs in deep learning libraries,’’ in Proc.
IEEE/ACM 41st Int. Conf. Softw. Eng. (ICSE), May 2019, pp. 1027–1038.

[7] L. Lazić, ‘‘Use of orthogonal arrays and design of experiments via Taguchi
methods in software testing,’’ Recent Adv. Appl. Theor. Math., pp. 256–67,
2013.

[8] H. Wu, ‘‘Application of orthogonal experimental design for the automatic
software testing,’’ in Applied Mechanics and Materials, vol. 347. Bäch,
Switzerland: Trans Tech Publications, 2013, pp. 812–818.

[9] M. Vesely, ‘‘Computer curve fitting of polynomials,’’ Illinois Univ. Urbana
Coordinated Science Lab, Urbana, IL, USA, Tech. Rep. AD0758312, 1972.

[10] S. Liu, A. J. Offutt, C. Ho-Stuart, Y. Sun, and M. Ohba, ‘‘SOFL: A formal
engineering methodology for industrial applications,’’ IEEE Trans. Softw.
Eng., vol. 24, no. 1, pp. 24–45, Jan. 1998.

[11] S. Liu and S. Nakajima, ‘‘Automatic test case and test Oracle generation
based on functional scenarios in formal specifications for conformance
testing,’’ IEEE Trans. Softw. Eng., vol. 48, no. 2, pp. 691–712, Feb. 2022.

[12] S. A. Seshia, A. Desai, T. Dreossi, D. J. Fremont, S. Ghosh, E. Kim,
S. Shivakumar, M. Vazquez-Chanlatte, and X. Yue, ‘‘Formal specification
for deep neural networks,’’ in Proc. Int. Symp. Automated Technol.
Verification Anal. Cham, Switzerland, Springer, 2018, pp. 20–34.

[13] T. Dreossi, S. Ghosh, A. Sangiovanni-Vincentelli, and S. A. Seshia,
‘‘A formalization of robustness for deep neural networks,’’ 2019,
arXiv:1903.10033.

[14] T. Chen, B. Xu, C. Zhang, and C. Guestrin, ‘‘Training deep nets with
sublinear memory cost,’’ 2016, arXiv:1604.06174.

[15] L. Wang, J. Ye, Y. Zhao, W. Wu, A. Li, S. L. Song, Z. Xu, and
T. Kraska, ‘‘Superneurons: Dynamic GPU memory management for
training deep neural networks,’’ inProc. 23rd ACMSIGPLAN Symp. Princ.
Pract. Parallel Program., 2018, pp. 41–53.

[16] X. Peng, X. Shi, H. Dai, H. Jin, W. Ma, Q. Xiong, F. Yang, and X. Qian,
‘‘Capuchin: Tensor-based GPU memory management for deep learning,’’
in Proc. 25th Int. Conf. Architectural Support Program. Lang. Operating
Syst., 2020, pp. 891–905.

[17] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556.

[18] M. Papini, M. Pirotta, and M. Restelli, ‘‘Adaptive batch size for safe policy
gradients,’’ inAdvances in Neural Information Processing Systems, vol. 30.
Red Hook, NY, USA: Curran Associates, 2017, pp. 3594–360.

[19] S. Liu and S. Nakajima, ‘‘A ‘vibration’ method for automatically
generating test cases based on formal specifications,’’ in Proc. 18th Asia–
Pacific Softw. Eng. Conf., Dec. 2011, pp. 73–80.

[20] P. M. Radiuk, ‘‘Impact of training set batch size on the performance of
convolutional neural networks for diverse datasets,’’ Inf. Technol. Manage.
Sci., vol. 20, no. 1, pp. 20–24, Jan. 2017.

[21] S. Mittal and S. Vaishay, ‘‘A survey of techniques for optimizing deep
learning on GPUs,’’ J. Syst. Archit., vol. 99, Oct. 2019, Art. no. 101635.

[22] B. Di, J. Sun, D. Li, H. Chen, and Z. Quan, ‘‘GMOD: A dynamic GPU
memory overflow detector,’’ in Proc. 27th Int. Conf. Parallel Archit.
Compilation Techn., 2018, pp. 1–13.

[23] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler,
‘‘VDNN: Virtualized deep neural networks for scalable, memory-efficient
neural network design,’’ in Proc. 49th Annu. IEEE/ACM Int. Symp.
Microarchitecture (MICRO), Oct. 2016, pp. 1–13.

[24] C. Murphy, G. E. Kaiser, and M. Arias, ‘‘An approach to software testing
of machine learning applications,’’ Dept. Comput. Sci., Columbia Univ.,
New York, NY, USA, Tech. Rep. CUCS-014-07, 2007.

[25] C. Murphy, G. E. Kaiser, and L. Hu, ‘‘Properties of machine learning
applications for use in metamorphic testing,’’ Dept. Comput. Sci.,
Columbia Univ., New York, NY, USA, Tech. Rep. CUCS-011-08, 2008.

[26] H. Liu, S. Liu, and A. Liu, ‘‘Testing-based GPU-memory consumption
estimation for deep learning,’’ in Proc. Softw. Eng. Symp., Aug. 2021,
pp. 196–199.

HAIYI LIU received the M.Sc. degree in mathe-
matics from the Guilin University of Electronic
Technology, China. He is currently pursuing the
Ph.D. degree in computer science with Hiroshima
University, Japan. His research interests include
testing and verification of deep learning AI
systems and software stability.

SHAOYING LIU (Fellow, IEEE) received the
B.Sc. and M.Sc. degrees in computer science from
Xi’an Jiaotong University, China, and the Ph.D.
degree in computer science from The University
of Manchester, U.K. He is currently a Professor
in software engineering at Hiroshima University.
He has published one book, 12 edited books, and
more than 250 papers in journals and conferences.
His research interests include formal engineering
methods, software testing, human–machine pair

programming, and intelligent software engineering environments. He is a
BCS Fellow.

CHENGLONG WEN received the B.Sc. degree
in computer science from Nanyang Normal Uni-
versity, China. He currently works as a Software
Development Engineer at the Microsoft Software
Technology Center Asia. His research interests
include software reliability and network security.

W. ERIC WONG (SeniorMember, IEEE) received
the M.S. and Ph.D. degrees in computer science
from Purdue University, West Lafayette, IN, USA.
He is currently a Full Professor, the Director of
International Outreach, and the Founding Director
of the Advanced Research Center for Software
Testing and Quality Assurance in Computer Sci-
ence, The University of Texas at Dallas (UTD).
He also has an appointment as a Guest Researcher
at the National Institute of Standards and Technol-

ogy, an agency of the U.S. Department of Commerce. Prior to joining UTD,
he was with Telcordia Technologies (formerly Bellcore) as a Senior Research
Scientist and the Project Manager in charge of dependable telecom software
development.

39680 VOLUME 10, 2022

