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ABSTRACT Objective: A neurodegenerative disease (NDD) detection algorithm using a convolutional
neural network (CNN) and wavelet coherence spectrogram of gait synchronization was developed to
classify NDD based on gait force signals. The main purpose of this research was to help physicians with
screening for NDD for early diagnosis, efficient treatment planning, and monitoring of disease progression.
Methods: The NDD detection algorithm was evaluated using the existing online database from Physionet by
Hausdorff et al., called gait in neurodegenerative disease database, comprised of windowing, feature transfor-
mation, and classification processes. Force pattern variations among healthy control (HC) and patients with
ALS, HD, and PD were distinctly observed from feature-extracted wavelet coherence spectrogram images.
Results: HC was balanced because their left and right feet supported each other when walking. In patients
with ALS, the left-right foot correlation was weaker than that in HC. In patients with HD, walking velocity
varied, which indicated that only one foot (right or left) was dominant and sustained the entire body’s balance
during movement. The left and right feet of patients with PD were correlated and coordinated in terms of
supporting lower-body movements. The right foot was always on the ground to support the entire body
when walking. Conclusion: The proposed NDD detection algorithm effectively differentiates gait patterns
on the basis of a time-frequency spectrogram of gait force signals between HC and NDD patients with an
overall sensitivity of 94.34%, specificity of 96.98%, accuracy of 96.37%, and AUC value of 0.97 using 5-fold
cross-validation.

INDEX TERMS Gait analysis, neuro-degenerative diseases, time-frequency spectrogram, wavelet
coherence, convolutional neural network.

I. INTRODUCTION
Neurodegenerative diseases (NDD), such as amyotrophic lat-
eral sclerosis (ALS), Huntington’s disease (HD), and Parkin-
son’s disease (PD), are defined as the progressive death of
neurons through the loss of neuron structure and function in
different regions of the nervous system [1]; for example, PD is
the second-most common NDD, with a prevalence of∼0.3%
in the general population,∼1% in the elderly (>60 years old),
and ∼3% in people aged >80 years [2]. Its incidence rate

The associate editor coordinating the review of this manuscript and

approving it for publication was Filbert Juwono .

is 8–18 persons per 100,000 person-years, the median age at
onset is 60 years, and the mean disease duration from diag-
nosis to death is∼15 years [2]. There is a 1.5–2 times greater
prevalence of PD and incidence in men than in women [2].
Medication for PD treatment costs $2500 each year, and
therapeutic surgery costs up to $100,000/patient [3]. ALS,
as the third-most common NDD and the most common motor
neuron disease, has an estimated incidence of 1.9 people per
100,000 per year [4], [5]. In the United States, 30,000 people
have ALS, 30,000 have HD, and 1 million have PD [6]. NDD
develops primarily in mid-to-late life, and the incidence is
expected to risewith the increasing aging population. In 2030,
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as many as 1 of 5 Americans will be >65 years old, and
by 2050, more than 12 million Americans might suffer from
NDD [7]. Early detection as well as the development of NDD
treatments are the ultimate goal of increasing exigency. NDD
can influence many of the body’s activities, such as heartbeat
regulation, respiration, speech, mental functioning, balance,
andmovement. Since general motions (flexion and extension)
of the two lower limbs are regulated by the central nervous
system (CNS), especially basal ganglia, the gait of a patient
with NDD would become abnormal (different gait pattern
compared with a healthy person) because of the decadence
of motor neuron function [8].

ALS causes the death of neurons controlling voluntary
muscles and is characterized by stiff muscles, muscle twitch-
ing, and gradually worsening weakness because muscles
decrease in size [9]–[11]. HD is a hereditary disorder that
results in the death of brain cells followed by a lack of
coordination and an unsteady gait, and in the advanced stage,
uncoordinated and jerky body movements become more
apparent [12]–[14]. PD is a long-term degenerative disorder
of the CNS that mainly affects the motor system. The most
obvious symptoms in the early stage are shaking, rigidity,
slowness of movement, and difficulty in walking [15]–[17].
Therefore, NDD affects the foot force, and gait information
developed for movement analysis in healthy controls (HC)
and other subjects with different kinds of diseases is use-
ful for understanding movement disorder in NDD and has
potential in performing noninvasive automatic classification
of NDD.

Gait analysis research has been developed in several
decades based on temporal/spatial features and pressure mea-
surements, such as the time series of stride, stance, or swing
intervals; ground reaction force (GRF); and foot force. Gait
analysis can also be used to assess and treat individuals with
diseases that affect their ability to walk. Gait synchronization
between left and right foot during natural walking, as one of
the gait analysis assessments, is a repeatable phenomenon
that is quantifiable and is apparently related to available
sensory feedback modalities of the nervous system. One
significant and important parameter to be considered for the
discrimination of different NDD is a synchronization of the
left and right gait force signal.

The wavelet coherence spectrogram is possible to dis-
tinguish the NDD gait abnormal phenomenon, specifically,
whether ALS, HD, and PD interfere with the patient’s ability
to manage the propulsion of the two feet and whether a
significant difference in gait force is related to the stage of the
disease. A spectrogram is used as a visual representation of a
signal over time at various presence frequencies and has been
applied for many physiological signals’ visual representation
and analysis [18]–[21] to be fed as the input of machine
and deep learning algorithms. This study was focused on the
development of the algorithm and evaluated using the existing
online database from Physionet.

II. LITERATURE REVIEW ON THE TECHNIQUES OF GAIT
ASSESSMENT IN NDD GAIT ANALYSIS
A. GAIT DATA ACQUISITION SYSTEM
In recent decade studies, measuring gait have generally
involved the use of force plates, accelerometers, and camera-
based systems, as well as measuring abnormality in the gait
of patients with NDD.

1) FORCE PLATES OR SENSORS
Hausdorff et al. [10] implemented force-sensitive insoles
in the shoes of ALS patients and assessed their gait
dynamics. The patients were ordered to walk at their nor-
mal walking pace along a 77 m hallway for 5 minutes.
Grimbergen et al. [22] observed the falls and gait distur-
bances in patients with HD using a pressure-sensitive walk-
way (GaitRite).

2) ACCELEROMETERS
Salarian et al. [23] measured the angular rate of the rota-
tions from the PD patients using gyroscopes. Four miniature
uni-axial piezoelectric gyroscopes (Murata, ENC-03J) were
placed on the lower limbs of the patients. Hsu et al. [24]
proposed a complete analysis for the placement of multiple
wearable sensors with the aim of observation and classifica-
tion of the gait of patients with neurological disorders. Seven
wireless IMU sensors from Delsys TrignoTM were utilized,
and each consisted of a triaxial accelerometer, a gyroscope,
and a magnetometer.

3) OPTICAL MOTION CAPTURE
Koh et al. [25] investigated gait dynamics and kinematics
in PD subjects with an Oxford Metrix Vicon 512 motion
analysis system and correlated these features with the major
clinical features and the existence of the freezing of gait.
Karakostas et al. [26] established a 3D motion analysis for
detecting patients with PD using rodent models. The position
and movement of each rodent with a marker in 3D space
were observed by a 6-camera VICON optical capture system
using MX13 cameras with a 1.3 MP resolution, a maximum
absolute error less than 0.5 mm, and filming at 240 Hz.

4) COMBINATIONS
Sofuwa et al. [27] did gait analysis of PD patients conducted
using an 8 M-camera Vicon 612 data capturing system set
at 120 Hz with 3 AMTI force plates placed midway on an
8-meter walkway. Pham et al. [28] built a step detection
algorithm during straight walking and turning for PD sub-
jects and elderly people using an inertial measurement unit
(IMU) mounted at the lower back of the subjects. A single
6-degrees of freedom IMU (3DOF accelerometer and 3DOF
gyroscope) was used on the lower back and validated using
an optoelectronic system (VICON).
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TABLE 1. Summary of the NDD gait classification method literature.

B. NDD GAIT CLASSIFICATION ALGORITHM USING
MACHINE LEARNING AND DEEP LEARNING
Machine learning (ML) and deep learning (DL) offer an algo-
rithm to understand the best clinical-related spatiotemporal
gait features to address problems around disease classifica-
tion. Recently, in order to facilitate automatic NDD identi-
fication, some earlier works have been proposed using ML
and DL algorithms based on spatiotemporal gait extracted
features (as shown in Table 1). Zeng et al. presented the gait
dynamics method to classify (diagnose) NDD using deter-
ministic learning theory [29]. Xia et al. proposed a method
of classifying gait rhythm signals for patients with NDD
and HC [30]. They conducted experiments with statistical

features and different classification models. Ertuğrul et al.
developed shifted 1D local binary patterns to detect PD on
the basis of vertical GRF [31]. Wu et al. measured signal
fluctuations in the gait rhythm time series of patients with PD
using entropy parameters [32]. They computed the approx-
imate entropy (ApEn), normalized symbolic entropy, and
signal turn count parameters for stride fluctuation measure-
ment in PD and used generalized linear regression analysis
and support vector machine (SVM) to classify nonlinear
gait patterns. Bilgin studied the impact of feature extraction
on the classification of ALS among NDD and HC [33].
A compound force signal, as the input signal, was deci-
phered for feature extraction using a six-level discrete wavelet

VOLUME 10, 2022 38139



F. Setiawan et al.: Development of NDD Gait Classification Algorithm Using CNN

FIGURE 1. Flowchart of the proposed NDD classification algorithm using wavelet coherence as the feature transformation.

transform with several kinds of wavelet techniques using lin-
ear discriminant analysis (LDA) and the naive Bayesian (NB)
classifier. With the utilization of a random forest classifier,
Yan et al. carried out a topological motion analysis (TMA)
framework to investigate multiple gait fluctuations in the
NDD classification [34]. Fraiwan et al. executed a credible
computer-aided framework to recognize gait fluctuations of
NDD and performed statistical analysis and classification
using decision tree (DT)-based ensemble methods [35].

Zhao et al. implemented a DL algorithm dual-channel long
short-term memory (LSTM)-based multi-feature extraction
on gait to diagnose NDD [36]. Their dual-channel LSTM
model merged time series and force series recorded from
patients with NDD for whole-gait understanding. Using a
convolutional neural network (CNN), Lin et al. classified
multi-class NDD based on recurrence plot extracted feature
of vertical GRF [37]. To offer a contribution to the walking
patterns analysis, Paragliola et al. generated a synthetic gait
time series dataset in order to address the over-fit issue caused
by a small sample dataset and presented the combination of
CNN and LSTM deep learning approach [38]. Setiawan et al.
applied several DL models in order to predict the severity
level of the patient with PD based on the time-frequency spec-
trogram of the vertical GRF [39]. Berke Erdas et al. proposed
a deep learning-based approach using gait data represented
by a quick response code to develop an effective and reliable
disease severity grading system for NDD [40].

C. NDD GAIT SYNCHRONIZATION
Gait synchronization is a measurable repetition occurrence
that appears to be related to available sensory feedback
modalities. Nevertheless, the investigation into the mecha-
nisms underlying this phase-locking of gait has only recently
begun. Bartsch et al. studied the effect of PD for long-term
fluctuation and phase synchronization of gait timing as well
as gait force profiles. They found that the fluctuations of gait

timing in PD patients are significantly larger and the long-
term correlations and the phase synchronization of the left
and right leg are significantly reduced in PD patients [41].
Baratin et al. introduced a wavelet-based method to effec-
tively characterize gait associated with certain NDD [42].
They investigated the asymmetry between the foot data and
the irregularity of the stride interval that seems to efficiently
characterize ALS, HD, PD, and HC. Ren et al. applied
phase synchronization and conditional entropy to the five
types of time series pairs of gait rhythms [43]. The results
declared that compared with the ALS, HD, and PD patients,
the gait rhythms of HC had the strongest phase synchro-
nization property and minimum conditional entropy value.
Zivotofsky et al. utilized a dual-tasking paradigm in order
to observe the role of attention presented in gait synchro-
nization [44]. Ye et al. employed a novel method based on
an adaptive neuro-fuzzy inference system (ANFIS) for the
identification of the patient’s gait with NDD and modeling
the nonstationary human gait dynamics between left and right
foot [45].

The main contribution of this study is as follows:
1. The effectiveness and the first application of the syn-

chronization of left foot (LF) and right foot (RF) using
wavelet coherence time-frequency spectrogram based on
gait foot force for NDD classification

2. Excellent state of the art NDD classification results
and the explainable capabilities of the developed NDD
classification algorithm using deep learning based on
Grad-CAM analysis

3. Realistic and applicable multi-class classification on the
NDD diagnostic system

The paper is organized as follows: Section II summarizes
the literature review on the techniques of gait assessment
used in the NDD gait analysis: the data acquisition, gait
classification algorithm, and gait synchronization. Section III
describes the database and methodology used in this study.
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FIGURE 2. Time-frequency spectrogram using wavelet coherence of the LFS and RFS of HC subject in a 10 s time window: (a) LFS, (b) RFS, (c) original
spectrogram, and (d) with phase arrows and cone of influence spectrogram.

FIGURE 3. Time-frequency spectrogram using wavelet coherence of the LFS and RFS of ALS patient in a 10 s time window: (a) LFS, (b) RFS, (c) original
spectrogram, and (d) with phase arrows and cone of influence spectrogram.

Section IV explains the experiment arrangements and NDD
classification results. Section V provides the discussion of
explainable results based on the pattern visualization and the
comparison results with the existing NDD classification algo-
rithm. Finally, the conclusion and future work are presented
in section VI.

III. MATERIALS AND METHODS
In the NDD detection algorithm, raw signal data were
obtained using force-sensitive resistors, the output being
roughly proportional to the force under the foot [46]. The left
foot force (gait) signal (LFS) and the right foot force (gait)
signal (RFS) of patients with NDD and HC were used
as input. Feature transformation using wavelet coherence
was applied to the input to create new features (a time-
frequency spectrogram) using existing features. For classi-
fication improvement, principal component analysis (PCA)
was applied to the time-frequency spectrogram by select-
ing principal components (PCs) of the features. The PCs
of HC and NDD subjects were divided into a training and
a testing set. Estimators were built by training the training
sets. By comparing the estimators with a test set of HC or
NDD to be classified, a few classification parameters were
generated. A CNN was successfully applied to classify HC
and NDD in the classification stage (training and testing
phases). The NDD detection algorithm attempted to extract
pattern features and visualization from gait force signals in
ALS, HD, and patients with PD and HC by transforming

1D signals into 2D pattern objects (images) using feature
transformation from wavelet coherence. The NDD detection
algorithm involved four main steps, as shown in FIGURE 1:
(1) signal preprocessing of NDD and HC gait force signals,
(2) feature extraction by generating a spectrogram of the gait
force signal using wavelet coherence and PCA, (3) construc-
tion of a classifiermodel by feature training using a pretrained
AlexNet CNN, and (4) cross-validation to test and analyze the
effectiveness of the NDD detection algorithm.

A. NDD GAIT DATABASE
Gait in Neuro-Degenerative Disease database, which is pro-
vided online in the Physionet by Hausdorff et al. (2019),
was used for validation and evaluation of this study [47].
The database contained 64 recordings from 13 ALS, 20 HD,
15 patients with PD, and 16 HC. Two types of data were
recorded: raw data of the force series and the derived time
series from the raw data. The force series consisted of LFS
and RFS. The contents of the time series data were left
stride interval (s), right stride interval (s), left swing inter-
val (s), right swing interval (s), left swing interval (% of
stride), right swing interval (% of stride), left stance inter-
val (s), right stance interval (s), left stance interval (% of
stride), right stance interval (% of stride), double-support
interval (s), and double-support interval (% of stride).

The transducer, which was utilized for gait data acquisi-
tion on the database, was a conductive polymer layer sensor
with altered resistance when loaded. The sensor was selected
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FIGURE 4. Time-frequency spectrogram using wavelet coherence of the LFS and RFS of HD patient in a 10 s time window: (a) LFS, (b) RFS, (c) original
spectrogram, and (d) with phase arrows and cone of influence spectrogram.

FIGURE 5. Time-frequency spectrogram using wavelet coherence of the LFS and RFS of PD patient in a 10 s time window: (a) LFS, (b) RFS, (c) original
spectrogram, and (d) with phase arrows and cone of influence spectrogram.

because its thickness is<0.05 in, it is temperature insensitive,
and it has a fast dynamic response, the ability to restrain
overload, and an electronically easy interface. Two 1.5 in
2 force-sensitive resistors were applied and taped to an insole
that was used to place the sensor inside the shoe. The insole
was made from a Manila folder by tracing an outline of the
foot on it and then cutting out the tracing. One sensor was
located in the anterior part of the insole, approximately under
the phalanges (toes) and metatarsals, and the other sensor was
at the opposite end, under the heel. The two footswitches were
connected in parallel and fundamentally served as one large
sensor (the output from the two footswitches was added). The
output voltage of the switch ranged from 0 V with no loading
to 3.5 V with full loading (closed). The analog signal was
digitized and analyzed using software [46].

B. SIGNAL PRE-PROCESSING
A 5min gait force signal was acquired during data collection.
Because of the length of the gait force signal, it was difficult to
interpret the gait force data despite using wavelet coherence
to transform features. To vividly observe the gait force signal,
the window function was used that is zero-valued outside
some selected interval. In this study, 10, 30, and 60 s timewin-
dows were applied. As mentioned before, there were 13 ALS,
20 HD, 15 patients with PD, and 16 HC used and observed,
but the input signal depended on the window size in the time-
windowing process and frequency selection. For the 10 s time
window, there were 480 HC, 390 ALS, 600 HD, and 450 PD
input signal numbers; in the 30 s time window, 160 HC,

130 ALS, 200 HD, and 150 PD input signal numbers; and
in the 60 s time window, 80 HC, 65 ALS, 100 HD, and 75 PD
input signal numbers. The time-windowing process was also
used in order to obtain more data as the input of the deep
learning model and simulate more precise and fast disease
prediction.

C. WAVELET COHERENCE
Wavelet coherence is a well-established and standard tool to
analyze the linear correlation between two signals by speci-
fying the relation between their spectra. It can recognize both
frequency bands and time intervals when the time series are
still related. Wavelet coherence is significant for analyzing
nonstationary signals. Wavelet coherence was denoted as the
square of the cross-spectrum normalized by the individual
power spectra [48]. In Fourier analysis, it is necessary to
smooth the cross-spectrum before calculating coherency [49].
Torrence and Webster (1998) defined the wavelet coherence
of two-time series, X and Y, as the absolute value of the
smoothed cross-wavelet spectrum squared, normalized by the
smoothed wavelet power spectra [50]:

R2
n (s) =

∣∣S (s−1WXY
n (s)

)∣∣2
S
(
s−1

∣∣WX
n (s)

∣∣2) .S (s−1 ∣∣WY
n (s)

∣∣2) , (1)

where S (W ) = Sscale (Stime (Wn(s))) is a smoothing opera-
tor, Sscale indicates smoothing in the wavelet scale axis, Stime
indicates smoothing in the time axis, and WXY

n (s) are the
corresponding cross-wavelet transforms (CWTs) defined as
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FIGURE 6. The convolutional neural network (CNN) architecture that was used in this proposed NDD detection algorithm, consisted of an input layer,
convolution 2D layer, ReLU layer, cross-channel normalization layer, max-pooling 2D layer, fully connected layer, dropout layer, softmax layer, and output
layer.

WXY
n (s) = WX

n (s)W
Y∗
n (s) , where (∗) indicates the com-

plex conjugate and WX
n (s) and W

Y
n (s) indicate the wavelet

transform of X and Y signals, respectively. The cross-wavelet
was calculated from the two CWTs and revealed regions
with high common power and further information about the
phase relationship [51]. If the two series were physically
related, a consistent or slowly varying phase lag that could be
examined when mechanistic models of the physical process
were observed. The phase relationship could be inspected
from the circular mean of the phase angles. Also, wavelet
coherence could be calculated from the two CWTs, which
could be considered the local correlation between the time
series in time-frequency space. The cross-wavelet exposed
high common power, whereas wavelet coherence discov-
ered locally phase-locked behavior. The more desirable fea-
tures of the wavelet coherence were found somewhat less
in time-frequency space. In this wavelet coherence com-
putation, we used the analytic Morlet wavelet. The time-
frequency spectrograms for NDD and HC groups are shown
in FIGURE 2, FIGURE 3, FIGURE 4, and FIGURE 5.

As denoted in FIGURE 2, in the red box, the HC spec-
trogram had the repeated, regular and strong intercorrelation
pattern visualization at a certain frequency range. This did
not appear in the NDD spectrogram (FIGURE 3, FIGURE 4,
and FIGURE 5), which on the contrary formed an irregular
pattern visualization. This phenomenon indicated that, while
HC walks, left and right feet assist each other to maintain the
body balance. The stance and stride activities of both feet are
equally distributed.

D. PRINCIPAL COMPONENT ANALYSIS
The main idea of PCA is to perform dimensionality reduc-
tion of a dataset containing a major number of interrelated
variables while resisting the variation present in the dataset
as much as possible [52]. This is done by transforming the
dataset into a new set of variables, PCs, which contains
ordered de-correlated variables.

The PCA method was mathematically defined as follows:
(1) A matrix X = [P1;P2;P3; . . . ;Pi]T was constructed by
spectrogram images of all NDD and HC, where P is a row

vector comprising the pixels of a spectrogram image of NDD
or HC and i is the number of spectrogram images of all NDD
and HC. (2) The PC was built using the equation XTX (also
called a covariance matrix of the matrix X) to subsequently
find its eigenvalues and eigenvectors. (3) The W matrix,
anm×mmatrix of weights whose columns are the eigenvec-
tors of XTX was obtained. (4) Finally, the matrix of extracted
feature F was described as the full PCs’ decomposition of X
and was, therefore, shown in the equation F = XW .
The purpose of using PCA as feature enhancement was

to increase the between-class separability and minimize the
within-class separability of datasets, thereby improving the
machine learning and artificial intelligence performance in
classifying data points into the correct group.

E. CONVOLUTIONAL NEURAL NETWORK
A CNN comprises one or more convolutional layers (often
with subsampling and pooling layers), followed by one or
more fully connected layers, as in a basic multilayer neural
network (deep learning) [53]. The CNN architecture is built
to take benefit of the 2D structure of the input (image), which
is accomplished with local connections and involves weights,
followed by any pooling function that results in translation-
invariant features. A CNN is also simpler to train and has
significantly fewer parameters compared with other fully
connected networks with the same number of hidden layers.

The main reason for using a CNN was to distinguish the
time-frequency spectrogram pattern representation, which
is in a two-dimensional structure, of gait force between
HC and patients with NDD. A pretrained AlexNet CNN
was employed from the MATLAB R2018a Deep Learn-
ing ToolboxTM. The architecture (see FIGURE 6) contains
25 layers, including 1 input layer, 5 convolution 2D layers,
7 rectified linear unit layers (ReLU) as the activation function,
2 cross-channel normalization layers, 3 max-pooling 2D lay-
ers, 3 fully connected layers, 2 dropout layers (for regulariza-
tion), 1 softmax layer (normalized exponential function), and
1 output layer. A pretrained AlexNet CNNwas applied in this
study since balance performance between classification accu-
racy and computation time can be achieved. The utilization
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of the ReLU activation function on the pretrained AlexNet
does not limit the output so that there is low feature loss. The
data enhancement, dropout, and normalization layers are also
given the benefits to prevent the network from overfitting and
improve the model generalization. The pretrained AlexNet
CNN also had been justified by some studies to be engaged
with the gait force data analysis and classification.

The pretrained AlexNet CNN input was the pattern visual-
ization of the gait force signal yielded by the time-frequency
spectrogram wavelet coherence. In the proposed algorithm,
the pretrained AlexNet CNN was utilized as the feature
extractor. This is simple to apply in less time, as it is faster and
fewer attempts for training than training the full network. full
network. By using this simple and time-efficient methodol-
ogy, the integration of the wearable device with the algorithm
becomes more possible and promising. This method only
applies two earlier fully connected layers and uses a support
vector machine (SVM) for classification.

F. CROSS-VALIDATION
Cross-validation is a statistical method of assessing and com-
paring learning algorithms by dividing data into two groups:
one is used to learn or train amodel (training set) and the other
is used to validate the model (testing or validation set) [54].

1) LEAVE-ONE-OUT CROSS-VALIDATION (LOOCV)
LOOCV is a specific case of k-fold cross-validation, where
k is the number of data points. In each iteration, almost all
the data points except for one are used for learning, and the
model is validated on that one data point. Accuracy estimation
obtained using LOOCV is almost unbiased, but it has high
variance, inferring unreliable estimates. It is still often applied
when available data are rare, especially in bioinformatics
datasets, where only a few data samples are available.

2) K-FOLD CROSS-VALIDATION (K-FOLDCV)
In k-foldCV, k equally (or almost equally) sized groups or
folds are established by first partitioning data points. Conse-
quently, k iterations of training and validation are performed
such that within each iteration, a different fold of data points
is applied for validation, whereas the remaining k − 1 folds
are used for learning. Data are usually stratified before being
divided into k-folds. Stratification is the process of reor-
ganizing data in order to confirm that each fold is a good
representative of the entire sample. In this study, 5-foldCV
and 10-foldCV (for classification comparison purpose) were
employed.

IV. EXPERIMENT AND RESULTS
The experiments were carried out using MATLAB R2018a
software on an NVIDIA GeForce GTX 1060 6 GB com-
puter with 24 GB RAM and conducted using the existing
online database from Physionet. The computation time is
affected by the number of input time-frequency spectrogram
images (related to the time windowing process where smaller

time windowing will result in more images and computation
time becomes longer) and the number of the neurons in the
CNN. The multi-class classification for the HC and NDD
subjects was also evaluated. This approach is representative
of real-life applications because doctors and neurologists do
not have preliminary information about whether a patient
is healthy or suffers from PD and, if the latter, what is the
severity.

The sensitivity, specificity, accuracy, and AUC value of
the proposed method were included as parameters for eval-
uation. The detailed definition of each evaluation parameter
is provided in [55]. When selecting between diagnostic tests,
Youden’s index is often applied to evaluate the effective-
ness of a diagnostic test [56]. Youden’s index is a function
of sensitivity and specificity, and its value ranges between
0 and 1. A value close to 1 indicates that the diagnostic test’s
effectiveness is relatively high and the test is close to perfect,
and a value close to 0 indicates poor effectiveness, where the
test is useless. Youden’s index (J ) is the sum of the two frac-
tions indicating the measurements correctly diagnosed for the
diseased group (sensitivity) and healthy controls (specificity)
overall cut-points c,−∞ < c <∞:

J = maxc{sensitivity (c)+ specificity (c)− 1} (2)

A. NDD AND HC GROUP
Detailed results of the three kinds of classification tasks
performed (patients with ALS compared with HC, patients
with HD compared with HC, and patients with PD compared
with HC) are given in Table 2 and FIGURE 7.

B. AMONG THE THREE NDD
The ALS group was readily distinguishable from HD and
PD groups; however, HD and PD groups were not easy to
separate. The HD versus PD classification results were less
compared with ALS versus HD and PD versus ALS classifi-
cation results because HD and PD are caused by degeneration
of basal ganglia and gait patterns of HD and patients with
PD are almost identical [57], see Table 2, FIGURE 7, and
FIGURE 8.

C. ALL NDD IN ONE GROUP AND THE HC GROUP
In the NDD versus HC classification, the gait force datasets
of patients with ALS, HD, and PD were merged into one
group, depending on the time-windowing size, see Table 2
and Fig. 5 (left).

D. MULTI-CLASS CLASSIFICATION
Multi-class classification is more realistic, practical, and nov-
elty of this study in the field of NDD classification. The
entire gait force dataset was divided into four classes on the
basis of the patients with the disease (ALS, HD, or PD) and
HC. LOOCV and 5-foldCV were also applied for evaluation
and validation. Detailed classification results of multi-class
classification are given in Table 3 and FIGURE 8.
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TABLE 2. Summary results of two-class classification states.

V. DISCUSSION
A. VISUALIZATION OF CONVOLUTIONAL NEURAL
NETWORK FEATURE MAP USING GRADIENT-WEIGHTED
CLASS ACTIVATION MAPPING
Deep neural networks and especially complex architectures
like CNNs were long considered as pure black-box models.
Gradient-weighted Class Activation Mapping (Grad-CAM)
is possible to produce visual explanations and make CNNS
more transparent and explainable [58]. Grad-CAM requires
a set of weight coefficients from the CNN trained model to
merge feature maps. This is accomplished by first computing
the gradient of the decision of interest with respect to each
feature map and then conducting global average pooling on
the gradients to obtain scalar weights. Consequently, Grad-
CAM avoids adding unnecessary layers, allowing for the res-
olution of both model-retraining and performance-decrease
issues. Thus, the feature map from the final convolution
layer and the corresponding weight is important for feature
visualization.

Grad-CAM uses the backpropagation method to calculate
the gradient of each pixel on the feature map of unit k for
class c. The weight αck of feature map f k is obtained by
weighted average the weight from each pixel as:

αck =
1
Z

∑
i

∑
j

∂yc

∂f kij
(3)

∂yc

∂f kij
is the value of gradient calculated by class c

(yc which the score before softmax layer) and the feature
map f k ; Z presents the number of pixels on the feature
map. LcGrad−CAM is generated by using ReLU to compute
the linear combination of the value that different weights
multiply by different feature maps expressed by the following
equation:

LcGrad−CAM = ReLU

(∑
i

αck f
k

)
(4)
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TABLE 3. Summary results of multi-class classification states.

The function of ReLU make the value of LcGrad−CAM
greater than one. Grad-CAM can be obtained by up-sampling
the LcGrad−CAM .

In order to obtain a set of weight coefficients from the
CNN trained model, the Grad-CAMwas applied to the trans-
fer learning pretrained ResNet-50 CNN since it has shown
state-of-the-art performance in several challenging tasks. The
transfer learning pretrained ResNet-50 NDD classification
and Grad-CAM feature map visualization performances are
given in Table 4, Table 5, and FIGURE 9.

B. PATTERN VISUALIZATION OF NDD SPECTROGRAM
It is difficult to observe some key features of a signal with
the naked eye, but time-frequency spectrogram analysis can
help us discover some important information about time
and frequency characteristics. The gait phenomenon of NDD
and HC can be easily observed from pattern visualization and
recognition of the time-frequency spectrogram.

In gait analysis, wavelet coherence analysis makes it
possible for us to observe the LF–RF gait signal correla-
tion in the time-frequency plane. The wavelet coherence
time-frequency spectrogram can be interpreted as follows
(see FIGURE 9):

• The horizontal axis represents the period of time,
whereas the vertical axis displays the frequency.

• The colored bar represents the relation between the
series signals.Warmer colors (yellow) indicate a domain
with a stronger interrelation between the left and right
feet, whereas cooler colors indicate less subordination
between the series.

• An arrow in the time-frequency spectrogram signifies
lead/lag phase correlations between the observed sig-
nals. Arrows point to the right when the LFS and RFS
are in the same phase (they move in the same direction).
When the LF and RF forces are in the antiphase, the
arrows point to the left (they move in the opposite direc-
tion). The right-down or left-up arrows signify that the
LFS is leading the RF, whereas arrows directed upward
right or left in the downward directionmean that the RFS
magnitude is leading the LF.

1) HEALTHY CONTROL
As shown in FIGURE 9(d), in a normal gait, there was a
solid strongest region in the 0-1.9 Hz frequency range, which
is the frequency of a normal person walking. This indicated
that when HC walks, their left and right feet support each
other, and they are balanced. The spectrogram also showed no
correlation between the left and right feet of HC at the 2-4 Hz
frequency band. In the 0-1.9 Hz prominent frequency region,
all phase arrows pointed to the left, indicating that the left and
right footsteps for a normal gait are always in the antiphase
(different 180◦ in phase). At the 4-16 Hz frequency band,
there was a regular pattern that had a significant magnitude
(yellow-blue) to be investigated. It had specific phase arrows,
right-up or left-up followed by right-down or left-down phase
arrows, that alternated, which confirmed that a normal person
typically will start walking with the RF (the RF is on the
ground while the LF is swinging) as the dominant foot and
alternate with the LF (the LF is on the ground while the RF is
swinging). At a higher frequency, there were still correlation
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FIGURE 7. The confusion matrix of two-class classification, NDD and HC groups: (top-left) ALS vs. HC, (top-right) HD vs. HC, (bottom-left) PD vs. HC;
among three NDD: (bottom-right) ALS vs. HD using LOOCV.

components but only a few phase arrows, indicating that high-
frequency components do not occur because of an imbalance
in the body or unsteady walking.

In the grad-CAM heatmap results, the strongest power
mostly appeared at the frequency of 2-16 Hz and had con-
sistent power at the whole gait cycle. This phenomenon
also indicated that the left and right feet of HC sub-
jects were highly correlated with the dominant frequency
around 2-16 Hz.

2) AMYOTROPHIC LATERAL SCLEROSIS
As clearly shown in FIGURE 9(a), the LF-RF correlation
of patients with ALS was weak compared with HC. At the
normal walking 0-1.9 Hz frequency band, the magnitude
areas were divided into four correlations: (1) the strongest
correlation magnitude area at 0-0.25 Hz (orange), where
phase arrows pointed to the right; (2) the lower correlation

magnitude area at ∼0.25-0.5 Hz (yellow–blue and blue);
(3) the strongest correlation magnitude area at 0.5-1 Hz,
where some phase arrows pointed to the left and others
pointed to the top left; and (4) the lower correlationmagnitude
area at 1-1.9Hz (yellow–blue and blue). The left and right feet
of patients with ALS could not maintain good coordination
because their walking was unsteady. This was also shown by
some strongest correlation magnitude regions at a particular
time in the 2-16 Hz frequency band since in a normal gait,
there was no left–RF correlation at 2-4 Hz (see, for example,
at 5-6 s and at ∼8 s). At the 5-6 s time point, this area’s
phase arrows pointed to the left (up and down), indicating
that at a specific frequency, the RF is leading, whereas at the
other frequency, it is lagging. Around the 8 s time point, this
region’s phase arrows pointed to the right (up and down),
and at the same time point, the right-down phase arrows
seemed to turn to the left at the lower frequency (4-2 Hz).
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FIGURE 8. The confusion matrix of two-class classification, among three NDD: (top-left) PD vs. ALS, (top-right) HD vs. PD, all NDD in one group and the
HC group (bottom-left), and multi-class classification (bottom-right) using LOOCV.

The ALS wavelet coherence spectrogram also showed that
high-frequency components occur because the patients with
ALS walk unsteadily and improperly since the phase arrows
are arbitrary.

The grad-CAM heatmap showed the strongest power
only appeared at the frequency of 1-16 Hz and at certain
gait cycles. This phenomenon indicated that the correlation
between LF and RF was only occurred at some certain walk-
ing period.

3) HUNTINGTON’S DISEASE
As denoted in FIGURE 9(b), HD patients’ walking velocity
varied, but only one foot (right or left) was the dominant foot
and sustained the balance of the entire body during move-
ment. The dominant correlation magnitude region of patients
was at 0.25-1.5 Hz, where the phase arrows pointed to the left.
Here, the LF-RF correlation was similar to that of HC when

walking. Because of jerky, uncoordinated movements caused
by HD, high-frequency components of the HD spectrogram
were affected. From>2 Hz to a higher frequency, there were
irregular, strong magnitudes, with phase arrows pointing in
various directions. At ∼2-4 Hz, there were some significant
correlation magnitude regions because phase arrows pointed
down and to the right at different frequencies. After ∼1 s of
movement, at 4-20 Hz, there was another phenomenon led
by the symptom; the spectrogram shows that at 8 Hz, the
phase arrows of a strong correlation magnitude (yellow-blue)
were in the right position and changed to a left-downward
direction at a lower frequency (8-4 Hz) and to an upward and
left direction at a higher frequency (8-20 Hz).

Whereas, the grad-CAM heatmap results presented the
strongest power only appeared at a frequency around
0.5-20 Hz and at certain gait cycles. The strongest power’s
dominant frequencies were also inconsistently changed at
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TABLE 4. Summary results of two-class classification states of transfer
learning pretrained ResNet-50.

certain gait cycles: on the original spectrogram, 0.5-8 Hz at
5-8 s gait cycle; on the phase arrows spectrogram, 8-20 Hz at
5-6 s and 0.8-8 Hz at 6-8 s). This phenomenon also empha-
sized the jerky and uncoordinated movements caused by HD.

4) PARKINSON’S DISEASE
The LF and RF of patients with PD still had correlation
and coordination in terms of supporting lower-body move-
ments, as shown in FIGURE 9(c). The RF was always on
the ground to support the entire body when patients with PD
walked (hobbling, imbalanced walking). The wavelet coher-
ence spectrogram of patients with PD was similar to that of
HC, especially in the strongest correlation magnitude region
(yellow, orange, and yellow-blue) and slightly less compared
with HC at 0-1.5 Hz, and phase arrows pointed to the left.
The spectrogram also had a significant correlation magni-
tude (orange) area at 2-4 Hz (in the gait of a normal person,
there was no correlation), with phase arrows pointing to the
right-up (RF force magnitude always leads that of the LF).
In the higher-frequency band, the left and right feet showed
significant correlation, and phase arrows seemed to vary in

TABLE 5. Summary results of multi-class classification states of transfer
learning pretrained ResNet-50.

terms of direction because tremor symptoms of patients with
PD should appear as high-frequency components.

However, the grad-CAM heatmap results described the
strongest power mostly occurred at a frequency of 1-24 Hz
and at the whole gait cycle but with inconsistent power.
The dominant frequencies of the strongest power were also
arbitrarily changed at certain gait cycles. This inconsistence
powers in the high frequency specified the tremor of PD.

C. COMPARISON RESULT WITH EXISTING LITERATURE
The two-class classification results were comparedwith those
of studies conducted by Zeng et al. [29], Zhao et al. [36],
Pham T.D. [59], and Ren et al. [60] using the same existing
online database from Physionet for their method validation.
These comparison results are shown in Table 6.

Zeng et al. implemented the gait dynamics method to
classify NDD via the deterministic learning theory. They used
LOOCV as the evaluation method only for ALS versus HC,
HD versus HC, and PD versus HC classifications. Zhao et al.
presented dual-channel long short-term memory (LSTM)-
based on gait multi-feature extraction for the diagnosis of
NDD. Here, only the accuracy for ALS vs. HC, HD vs.
HC, PD vs. HC, and NDD vs. HC were compared based on
LOOCV evaluation method. Pham T.D. proposed a texture
features extraction method by transforming a time-series data
sequence into images and presented sensitivity, specificity,
area under the curve (AUC), and accuracy of HC vs. HD,
HC vs. PD, and HC vs. ALS classifications using LOOCV
as the evaluation method. Ren et al. used empirical mode
decomposition in gait rhythm fluctuation analysis in NDD
subjects and applied 10-foldCV to overcome overfitting and
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FIGURE 9. The Grad-CAM feature map visualization of the Pretrained ResNet-50 time-frequency spectrogram based on wavelet coherence method:
(a) ALS, (b) HD, (c) PD, and (d) HC.

obtained an AUC of HD versus HC, PD versus HC, and ALS
versus HC classifications.

Nevertheless, since the multi-class of NDD classification
is the novelty in this study field, those classification results
were only possible to be compared with the previous authors’
studies (Lin et al. [37] and Setiawan et al. [61], presented
in Table 7). Lin et al. evaluated the pattern visualization
of NDD’s GRF using a recurrence plot and deep learning
method with LOOCV. Setiawan et al. classified the NDD’s
GRF based on time-frequency spectrogram generated by

continuous wavelet transform, short-time Fourier transform,
and wavelet synchrosqueezed transform. They also applied a
deep learning algorithm with LOOCV and 5-foldCV as the
evaluation.

In conclusion, the proposed method outperformed the
classification performances of Zeng et al., Zhao et al.,
Ren et al., and Setiawan et al. studies. The NDD detection
algorithm proposed by Pham obtained better results com-
pared with the proposed NDD detection algorithm in the
PD vs. HC classification. However, in the ALS vs. HC and
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TABLE 6. Comparison between the proposed method using wavelet coherence + PCA and some existing literature using the same existing online
physionet database for two-class classification.

TABLE 7. Comparison between the proposed method using wavelet coherence + PCA and some existing literature using the same existing online
physionet database for multi-class classification.

HD vs. HC classifications, the results were the same with
regard to performance in terms of all evaluation parameters.
However, Pham also used LDA and LOOCV for PD vs.
HC classification, with poor classification results; the accu-
racy achieved was only 77.42%.

VI. CONCLUSION AND FUTURE WORK
A novel artificial intelligence-based NDD detection algo-
rithm using wavelet coherence time-frequency spectrogram
based on gait force signals was successfully implemented
and evaluated using the existing online Physionet database.
Pattern visualization and recognition of the time-frequency
spectrogram helped us successfully differentiate between the
gait phenomenon of patients with NDD and HC. Feature
transformation methods, using wavelet coherence, visualized
the spectrogram of gait foot force signals by transforming
the signals from the time domain into the time-frequency
domain. The NDD detection algorithm achieved the highest
performance for>96% of the parameters being evaluated and
achieved superior performance compared with state-of-the-
art NDD detection methods found in the literature.

This study had a few areas of improvement, although the
NDD detection algorithm obtained important performance
evidence. First, the existing online database that was used
had a limited number of patients with NDD, so clinical
data should also be obtained for verification. The clinical
data collection can be recorded using our own smart insole
built with an embedded 0.5 in the force-sensing resistor.
The patients with NDD will perform simple daily activ-
ities, such as turning around and sitting, instead of only
walking along a pathway. Second, long-term data collec-
tion for monitoring NDD progression would be meaningful
for NDD treatment since the gait pattern of patients with
NDD should change in long-term disease progression. Third,
to ensure clinical significance, the NDD gait phenomenon
based on a time-frequency spectrogram should be discussed
with physicians. Fourth, other input data (e.g., kinetic data,
temporal data, step length, and cadence) and classifiers
should be applied to confirm and compare the effective-
ness of pattern visualization and recognition based on the
use of a time-frequency spectrogram in NDD detection
applications.
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In this study, the time-frequency spectrogram was is
successfully applied to differentiate the gait phenomenon
between patients with NDD and HC on the basis of pattern
visualization and recognition using a deep-learning classifier.
Pattern visualization and recognition of NDD gait phenom-
ena also can be implemented and observed using a fuzzy
recurrence plot. A deep-learning gait classification algorithm
using fuzzy recurrence plot images is also possible for future
improvement on NDD gait classification.
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