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ABSTRACT The branch and bound (BB) algorithm is widely used to obtain the global solution of mixed-
integer linear programming (MILP) problems. On the other hand, when the traditional BB structure is
directly used to solve nonconvex mixed-integer nonlinear programming (MINLP) problems, it becomes
ineffective, mainly due to the nonlinearity and nonconvexity of the feasible region of the problem. This
article presents the difficulties and ineffectiveness of the direct use of the traditional BB algorithm for
solving nonconvex MINLP problems and proposes the formulation of an efficient BB algorithm for solving
this category of problems. The algorithm is formulated taking into account particular aspects of nonconvex
MINLP problems, including (i) how to deal with the nonlinear programming (NLP) subproblems, (ii) how
to detect the infeasibility of an NLP subproblem, (iii) how to treat the nonconvexity of the problem, and (iv)
how to define the fathoming rules. The proposed BB algorithm is used to solve the transmission network
expansion planning (TNEP) problem, a classical problem in power systems optimization, and its performance
is compared with the performances of off-the-shelf optimization solvers for MINLP problems. The results
obtained for four test systems, with different degrees of complexity, indicate that the proposed BB algorithm
is effective for solving the TNEP problem with and without considering losses, showing equal or better
performance than off-the-shelf optimization solvers.

INDEX TERMS Branch and bound algorithm, mixed-integer nonlinear programming, optimization, trans-
mission network expansion planning.

NOMENCLATURE C. SETS
A. FUNCTIONS Qp  Set of buses

v Objective function of the problem §2c  Set of corridors

B.. lNDlCES D. PARAMETERS
i,j  Indices for buses C;j  Construction cost of a line on corridor ij

ij,ji  Indices for corridors ;  Active power demand at bus i
ref  Index for the reference bus i Maximum power flow of a line on corridor ij
Gij  Conductance of a line on corridor ij
G; Minimum active power generation at bus i
G;  Maximum active power generation at bus i
The associate editor coordinating the review of this manuscript and N ij Number of lines that can be constructed on
approving it for publication was Zhiyi Li . corridor ij
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N?  Number of existing lines on corridor ij
R;;  Resistance of a line on corridor ij

X;;  Reactance of a line on corridor ij

A Load shedding cost

E. CONTINUOUS VARIABLES
fij  Total power flow on corridor ij

gi  Active power generation at bus i
£;;  Losses on corridor ij

qi Artificial generation at bus i

0;  Voltage phase angle at bus i

F. INTEGER VARIABLE
n;j  Number of lines constructed on corridor ij

I. INTRODUCTION

The branch and bound (BB) algorithm, developed by Land
and Doig [1] in the 1960s, is a classic method for solv-
ing mixed-integer linear programming (MILP) problems.
Its famous divide-and-conquer logic when solving an MILP
problem first relaxes the integrality requirement of the integer
variables of the original problem so that a linear program-
ming (LP) problem can be solved. Then, a search procedure
is carried out until the solution to the MILP problem is found.

The expression branch is related to the technique used by
the algorithm to choose an integer variable with a current
noninteger value. From this choice, two new LP subprob-
lems are created that immediately divide the search region.
This process is repeated until the algorithm finds the integer
solution to the original problem. This strategy divides the
search space into subregions, in addition to allowing regions
to be rejected where the problem has no integer solution.
The expression bound defines rules for fathoming subprob-
lems not yet analyzed. Fathoming occurs when the algorithm
detects that those subproblems, if solved, would not present
an improvement in relation to the best integer solution found
thus far in the process (incumbent solution). The algorithm
ends the process when there is no remaining subproblem to
be analyzed.

The great advantage of the BB algorithm is the guaranteed
convergence toward the global solution of the problem if
it exists. However, it should be noted that this guarantee is
due to the type of problem that is being solved and not due
to an attribute of the algorithm. Convergence to the global
optimal solution occurs as a consequence of the convexity of
the problem.

Because the BB algorithm is effective for MILP prob-
lems, some works have already presented extensions to apply
it to solve nonconvex mixed-integer nonlinear program-
ming (MINLP) problems [2]. This type of approach requires
a support solver to solve the nonlinear programming (NLP)
subproblems. These works have shown that the traditional
BB algorithm for MILP problems is ineffective for solving
nonconvex MINLP problems.

This work deals with the difficulties that inhibit the effec-
tiveness of the direct use, in nonconvex MINLP problems,
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of a traditional BB algorithm for MILP problems. The trans-
mission network expansion planning (TNEP) problem is used
to test the proposed BB algorithm. This is a well-known
optimization problem in the field of power systems, widely
analyzed in the specialized literature and commonly studied
by engineers and researchers in electrical energy companies
due to its importance from an economic and computational
point of view [3]-[5].

The mathematical model most frequently used to formulate
the TNEP problem is a nonconvex MINLP problem, which
considers the dc representation of the operation of the trans-
mission system. This problem presents a very high number
of locally optimal solutions due to its combinatorial nature.
Several works have presented relaxed models to enable the
development of solution methods compatible with the avail-
able computational tools [3].

The solution to the TNEP problem defines an optimal
expansion plan of a power transmission system, adequate
to maintain the continuous supply of power and to ensure
that an expected increase in demand is met. In other words,
it determines where, how many, and when new transmission
lines should be built in a stipulated planning horizon in order
to meet the demand growth at a minimum cost, while ensuring
that there is no load shedding.

The dc model is considered by many researchers the ideal
model to represent the operation of transmission systems
for planning purposes since it presents a balance between
complexity and precision. However, it disregards transmis-
sion losses that may not be negligible, leading to expansion
plans with insufficient capacities [6]. Therefore, when solv-
ing the TNEP problem, it is very important that electrical
losses of the transmission system be accounted for in the
formulation.

One way of solving the TNEP problem when the dc model
is used is to convert it into an MILP problem using a disjunc-
tive formulation [7], [6]. Reference [7] proposes a disjunctive
model for the TNEP problem without considering transmis-
sion losses, while [6] presents a model for the TNEP problem
with a piecewise linearization for the losses. The advantage
of such an approach is that the original nonconvex MINLP
problem becomes an MILP problem that has the same solu-
tion as the original problem (when transmission losses are
not considered). The disadvantage of such an approach is
that the resulting model has a significantly larger number of
constraints and continuous and discrete variables, besides a
larger search space, which makes it difficult to solve large
systems.

Mathematical decomposition has also been used to solve
the TNEP problem. Reference [8] presents a Benders decom-
position approach to solve the disjunctive model for the
TNEP problem. Reference [9] proposes a decomposition
framework for the TNEP problem considering renewable
generation and contingency scenarios. Finally, [10] presents
a Benders decomposition strategy to solve the TNEP prob-
lem with simultaneous investments in generation expansion
considering contingency and load uncertainty.
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Another approach, considered in this article, is to use
a BB algorithm to solve the TNEP problem directly. Ref-
erence [11] proposed a BB algorithm to solve the TNEP
problem using the transportation model, which is an MILP
problem. Reference [12] also proposed a BB algorithm, but
with an interior-point method to solve the TNEP problem
using the dc model, which is an MINLP problem. In con-
trast to this article, [12] does not allow the flexibility of
choosing different optimization solvers for solving the NLP
subproblems of the BB procedure. This article presents other
improvements in relation to [12], especially regarding how
to treat infeasibility and convergence issues. Reference [13]
presents a BB algorithm to solve the TNEP problem using the
dc model without considering losses.

FIGURE 1. Branch and bound tree.

Metaheuristics [14] have also been widely used to solve the
TNEP problem. Among the several metaheuristics available,
it is possible to find works that use the particle swarm opti-
mization algorithm [15], [16], the harmony search algorithm
[17], [18], the artificial bee colony algorithm [19], the mul-
tistart algorithm with path relinking [20], and evolutionary
optimization [21]. These approaches are robust and adapt-
able, and they provide good-quality results, but they have a
number of drawbacks, including a high computing demand,
parameter tuning, and the establishment of a stop condition.
Furthermore, they are unable to ensure convergence to opti-
mality [14].

More recently, [22] has proposed the use of the ac operation
model in the TNEP problem. This type of problem is mainly
solved using heuristics and metaheuristics [23] and convex or
linearized formulations [24]. It should be noted that it is still
difficult to deal with the ac TNEP problem because meta-
heuristics cannot ensure the optimality of a solution, while
convex or linearized formulations can also lead to infeasible
solutions to the original problem.

The main contributions of this work are (i) to present
strategies to make the BB algorithm effective when dealing
with nonconvex MINLP problems, (ii) to apply the proposed
algorithm to solve the TNEP problem using the dc model
with and without losses, and (iii) to carry out an evaluation
of the performance of several local and global optimizations
for solving nonconvex formulations for the TNEP problem.
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The remainder of this article is organized as follows.
Section II presents the traditional BB algorithm for MILP
problems, and Section III discusses the issues of the tradi-
tional BB algorithm when solving nonconvex MINLP prob-
lems. Section IV presents the proposed strategies to adapt
the BB algorithm for solving nonconvex MINLP problems;
Section V presents the formulation for the TNEP problem
solved in this article. Section VI presents the tests and results,
and lastly, Section VII presents the conclusions of the work.

Il. BB ALGORITHM FOR MIXED-INTEGER LINEAR
PROGRAMMING PROBLEMS

Without loss of generality, a minimization MILP problem will
be considered, as shown in (1) and (2).

(P) minimize v (X) (@))
subject to x € C, 2)

where C is a convex set, X = ()cj)jE 7 is a vector where some
components j € [ are required to be integer values, I is a
set of indices of the variables, and v is a linear function.
The maximization version is analogous to (1). In the BB
algorithm, first, the integrality condition of the MILP problem
(P) is disregarded, and a linear programming problem (Py) is
obtained. The branch procedure is then applied, i.e., problem
(Pp) is divided into two linear programming subproblems,
designated (P1) and (P3). This division occurs by selecting an
integer variable x;, which has a noninteger current value (divi-
sion variable) that generates the subproblems (P;) and (P3).
When considering xj = |x;] + f;, where |x;]| represents
the largest integer less than x;, i.e., the integer part of x;
obtained via truncation, and f; represents the fractional part
of xj, i.e., the truncated part, the subproblems (Py) and (P3)
are represented as shown in (3)—(4) and (5)—(6).

(P1) (Po) 3
x5 < ) )

and
(P2) (Po) %)
x> x|+ 1. (6)

If the optimal solution to the original problem, which is
an MILP, is not found, the process continues with a new
subdivision of both (P1) and (P3), each one generating two
more new subproblems. In this case, the BB tree is shown
in Fig. 1.

The steps of the BB algorithm that searches for a global
solution to MILP problems are as follows.

1. Initialization: Let the value of the incumbent solution
v* <« 00; initialize subproblem counter k <« 0;
initialize the list L of candidate subproblems (Py) with
the solution of the corresponding LP problem Py. If the
solution of Py is integer, then let v* <— vy and remove
Py from L. Go to Step 2.

2. Convergence test: Check the list L; if L = (J, then the

process is over, and the current incumbent solution v*
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is the optimal solution for the original MILP problem.
Otherwise, go to Step 3.

3. Select and remove a candidate subproblem (Py) from
the list L; solve it and store the optimal solution vg.
It follows from the linearity of the problem that this
solution v is a lower bound for all solutions of its
descending subproblems.

4. Bound step: A candidate subproblem (Py) will be fath-
omed in the following cases: (i) if the solution vy
of the problem (Py) is infeasible; (ii) if the solution
Uk is greater than the current incumbent solution v*,
ie., if vy > v*; or (iii) if the solution v, of the
problem (Py) is also a solution to the original MILP
problem, i.e., if the integrality conditions are met.
In Case (iii), if vy < v*, the incumbent solution is
updated, v* < v; the list L must be revised so that
all nodes that present vy > v* are fathomed, and
k must be updated. After this step, if the candidate
subproblem (Pj) has been fathomed, then return to
Step 2; otherwise, go to Step 5.

5. Branch step: From the solution of the subproblem (Py),
select an integer variable x; with a noninteger current
value for separation and add the two new descendant
subproblems generated to the candidate list L. The two
new subproblems are of the form (7)—(8) and (9)—(10):

(Pr) )
5 < |x) ®

and
(Py) ©)
5= 5] +1, (10)

i.e., the new subproblems are generated from the parent
subproblem (Py), one with an additional constraint
x; < |x;] and the other with an additional constraint
x; > | x| + 1, where |x;] is the largest integer less
than x;. After adding these two new subproblems to the
list L, let k < k + 2 and return to Step 3.

IIl. THE INEFFECTIVENESS OF THE BB ALGORITHM FOR
MINLP PROBLEMS WITH NONCONVEX SEARCH REGION
Suppose one wants to solve a nonconvex MINLP problem
with the BB algorithm defined in Section II. For MILP prob-
lems, the traditional method is effective for determining the
global solution; however, the next example points out flaws
in the algorithm when it is used to solve nonconvex MINLP
problems. After the example, a discussion about where the
traditional BB algorithm fails will be carried out.

A. CASE STUDY: ANALYSIS OF A NONCONVEX PURE
INTEGER NONLINEAR PROGRAMMING PROBLEM

Consider the nonconvex pure (with only discrete variables)
integer nonlinear programming (PINLP) problem (11)—(16):

minimize v = x| + 6x, (11
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FIGURE 2. Nonconvex region of the NLP problem (11)-(16).

subject to (x] —2) (x1 —2) (x1 —3)

—554x>0 (12)
X2 —4x14+16>0 (13)
x1 >0 (14)
x>0 (15)
X1, xp € Z. (16)

Let us use the solvers KNITRO v12.4.0 [25] and IPOPT
v3.12.13 [26] to solve the NLP subproblems of the BB algo-
rithm. To start the BB algorithm, note that, by relaxing the
integrality of the problem, we get a local optimal solution
of the NLP (Pg). In this case, both solvers found the same
solution (x1,x2) = (1.92509,5.50603) with an objective
function value v = 34.9613 (see Fig. 2).

From the initial solution, it is possible to apply the tradi-
tional BB algorithm to try to solve the problem (11)-(16).
Using the solver KNITRO or IPOPT to solve NLP sub-
problems, it is possible to obtain either a solution with an
objective function value v* = 29 at point (x1, x2) = (5,4)
or a solution with an objective function value v* = 38 at
point (x1,x2) = (2,6), as shown in Fig. 2, depending on
the choices of the separation variable at each node and the
next subproblem to be analyzed. However, the global optimal
solution with an objective function value v* = 16 at the point
(x1,x2) = (4, 2) cannot be reached. Besides that, the problem
still has other local optimal solutions that are better than the
ones found using the traditional BB algorithm.

B. WHERE THE TRADITIONAL BB ALGORITHM FAILS

Note that, even for a problem with only two variables, the
counterexample (11)-(16) above has shown the deficiency
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of the traditional BB algorithm when dealing with problems
with a nonconvex search space. The algorithm works, but it
is not successful, as the nonlinearity and nonconvexity are
complicating factors that interfere in the functioning of a
search algorithm.

For nonconvex NLP problems, there is no guarantee of
convergence or of finding a globally optimal solution. More-
over, there is a dependence on the starting point, since the
problem may present many locally optimal solutions. Often,
the algorithms reach local optimal solutions that are far away
from the known global optimal solution. This can induce
the elimination of an important node from the search tree
and exclude a possible path that would lead to a better-
quality optimal solution. This wrong elimination can occur
whenever the algorithm finds a low-quality local solution.
The nonconvexity of the feasible region, in turn, hinders the
convergence of NLP problems and contributes to a deficient
performance of the traditional BB algorithm defined to solve
MILP problems.

Now, we must define the modifications that should be
made to the traditional BB algorithm defined for solving
MILP problems so that the algorithm becomes efficient in
solving nonconvex MINLP problems. Therefore, we will
define an improvement strategy for each point where flaws
were observed.

Motivated by the counterexample, the necessity to build
a BB algorithm that is effective for solving nonconvex
MINLP problems is evident. Thus, it is necessary to establish
approaches for dealing with the following:

1. Handling NLP subproblems;

2. Handling the nonconvexity of the problem;

3. Defining the fathoming rules;

4. Detecting the infeasibility of an NLP subproblem.

In addition to these challenges based on the nature of
MINLP problems, it is critical to examine ways to improve
the efficiency and effectiveness of the BB algorithm by:

5. Defining the rule for choosing the variable to separate
the subproblems;

6. Defining the rule for choosing the next subproblem to
be solved.

In the next section, we present strategies to answer each
one of these topics.

IV. HOW TO TREAT NONCONVEX MINLP USING

A BB ALGORITHM

When solving MINLP problems using the BB algorithm, it is
necessary to establish a tool for solving the NLP subproblems
that arise in each node of the BB tree.

A. HOW TO DEAL WITH THE NLP SUBPROBLEMS

In this work, the solvers KNITRO, IPOPT, LOQO [27], and
MINOS [28] were used to solve the NLP subproblems. These
four solvers were chosen after testing some popular solvers
for NLP problems; these four were the most effective. The
possibility of using more than one tool to solve the NLP
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subproblems gives more credibility to the results, besides
allowing for a comparison between the tools. In this context,
it is worthwhile to highlight the characteristics of the solvers
that will be used to solve NLP subproblems in the proposed
BB algorithm for MINLP problems.

The KNITRO solver is an optimization software that seeks
local optimal solutions to large-scale NLP problems. Addi-
tionally, it presents two versions of the BB algorithm, a usual
version for solving MILP problems and a specialized version
for convex MINLP problems. In this work, the KNITRO
solver will be used to solve the NLP subproblems of the
proposed BB algorithm and will also be used to try to solve
the nonconvex MINLP problem directly, allowing the perfor-
mance of the proposed approach to be evaluated. The KNI-
TRO solver offers several configuration options to approach
a problem in different ways, according to the difficulties
presented by each specific problem; if the user does not want
to contend with this aspect, there is a setting whereby the
solver itself chooses the kind of tool to use when searching
for a solution.

The TPOPT solver is an open-source software for solving
NLP problems, capable of solving general large-scale non-
linear programming problems. It uses a primal-dual interior-
point algorithm with a linear search filter method to improve
its convergence. Moreover, it is not capable of dealing with
MINLP problems directly.

The LOQO solver is adequate for solving smooth
constrained optimization problems. It is based on the
interior-point method applied to a sequence of quadratic
approximations. LOQO can handle a variety of problems,
including linear or nonlinear, convex and nonconvex, and
constrained and unconstrained, as long as the defining func-
tions are smooth (at the points evaluated by the algorithm).
LOQO provides a globally optimal solution for convex prob-
lems, while for nonconvex problems, it iterates from the
specified starting point to find a locally optimal solution.

The MINOS solver can solve both linear and nonlin-
ear optimization problems. It uses a linearly constrained
Lagrangian method for large-scale sparse nonlinear prob-
lems. It is especially efficient at solving nonlinear objectives
with linear and near-linear constraints.

B. HOW TO TREAT THE NONCONVEXITY OF THE MODEL
The nonconvexity of the feasible region is one of the com-
plicating factors in MINLP problems, due to the existence
of a large number of locally optimal solutions. It is possible
that the BB algorithm will find a local optimal solution of
poor quality and, through the fathoming rules, eliminate some
promising nodes from the BB tree. This affects the opera-
tion of the traditional BB algorithm for solving nonconvex
MINLP problems.

For the linear case, with a convex feasible region, the func-
tion maintains a linear increase/decrease, which allows for
control over each solution v found when solving each sub-
problem of the BB tree; thus, we will always have vy > vr_
for the minimization case, which guarantees the functionality
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of the fathoming rules and the convergence to the global
optimal solution. On the other hand, for NLP problems with
nonconvex feasible regions, it is impossible to have control
of vy in relation to vg_1: it may occur that vy > wvg_; or
vr < vk_1, and the lack of a predefined control strategy
leads the algorithm to function without the certainty of con-
vergence. Even if the algorithm converges, the quality of the
result cannot be guaranteed. The main problem, in this case,
is that the solver may not converge to the global optimal
solution for the relaxed problem of a node. This situation was
verified for the problem illustrated in Fig. 2.

To circumvent this type of problem, it is necessary to add
a safety factor ¢ > O to the algorithm. The security factor,
& > 0, increases the number of nodes to be analyzed in the BB
tree, but also provides a security margin so that, after a node is
analyzed and present vy > v*, the BB algorithm continues to
preserve the descendant nodes that have a solution vy greater
than v*, up to a limit v* + ¢, as this can prevent the loss of a
promising node in the search for a better solution. In this case,
it is necessary to redefine this fathoming rule, rewriting it as
follows: the subproblem k that has a solution vy > v* + ¢
will be discarded.

Note that when ¢ = 0, the fathoming rule number 2 (see
Section IV-C) becomes the same one used in the traditional
BB algorithm. If ¢ is a large number, then the fathoming rule
number 2 will be ignored, and the BB algorithm will have a
higher chance of finding the global optimal solution of the
problem, at the expense of a larger BB tree and a higher
computational effort. Therefore, there must be a balance
when choosing the value of ¢, so that the BB tree does not
increase too much without a significant effect on the obtained
result.

C. FATHOMING RULES

The fathoming rules that eliminate the necessity of analyzing
the descendants’ nodes of a parent node are:

1. When the algorithm finds a feasible solution to the
original nonconvex MINLP problem, the subproblem
in question is fathomed;

2. For minimization problems, the subproblem is fath-
omed if it has a solution v; > v* + &, because there
is no guarantee that v is the best possible solution at
this node for nonconvex MINLP problems, i.e., due to
the nonconvexity, the guarantee that vy > vr_ always
occurs is lost;

1) When a subproblem is infeasible, it should be
fathomed.

D. HOW TO TREAT INFEASIBILITY AND

CONVERGENCE ISSUES

When solving NLP problems, it is not always an easy task
to detect infeasible problems, as well as it is not possible to
guarantee convergence. This contributes to the deficient func-
tioning of the traditional BB algorithm for MILP problems
when applied directly to nonconvex MINLP problems.
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It should be noted that many nodes of the BB tree will
present infeasible subproblems. Optimization solvers usually
demand high computational effort to verify that NLP prob-
lems are infeasible. The idea is, therefore, to obtain more
efficiency, robustness, and effectiveness in the procedure by
solving NLP problems with higher dimensions and that are
always feasible, which allows for smooth transitions in the
search space of the problem.

To identify the cases of the infeasibility of NLP subprob-
lems in a simple manner, a set of nonnegative artificial vari-
ables combined with a positive penalization parameter will be
included in the constraints and in the objective function (for
minimization problems) to identify infeasibility and make the
algorithm reject the infeasible problems by minimizing the
artificial variables.

By incorporating a penalization term into the objective
function, to force the algorithm to try to zero out the artificial
variables associated with it, it is likely to reach a feasible
solution. However, for this to occur, it will be necessary to
establish a penalization parameter with a high value. There is
no criterion for determining the ideal value of this parameter:
it was observed in the tests that a fixed parameter can be good
for a given system and bad for another. Furthermore, a small
parameter may not produce the goal because the algorithm
may choose to assign positive values to the artificial variables;
on the other hand, a large parameter may not allow conver-
gence because the algorithm will try to zero out the artificial
variables associated with the penalization parameter at all
costs, affecting the convergence to a good-quality solution.

As we want a BB algorithm for solving nonconvex MINLP
problems, it is more adequate to define a penalization param-
eter for each problem. Thus, for each problem, a penalization
parameter A will be defined as a function of the objec-
tive function coefficients. Specifically, when the objective

function is linear, e.g., v (X) = Z/e] cjxj, we can define

A = 2]|c|l, where |c| = Zje, cj2 is the norm of the
objective function coefficients for a set of indices /. Thus,
the penalization parameter A will have the value associated
with the problem in question, related to the objective function,
which allows greater flexibility in solving different systems
by guaranteeing generality without the rigidity of a fixed
value for all problems.

As for the convergence of each NLP subproblem, the
BB algorithm will be programmed to try to solve the NLP
subproblem that has not converged again by starting exactly
where it left off. Up to three attempts are considered at each
node. After these three attempts, the NLP subproblem will
be considered to have not converged, and the respective node
will be discarded. This strategy avoids dropping a node when
the solver did not converge on the first try.

E. CHOOSING THE SEPARATION VARIABLE AND THE
NEXT SUBPROBLEM TO ANALYZE

To improve the performance of the BB algorithm, a variety
of approaches can be used, such as pseudocosts [29], [30].
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When a variable is required to take on an integer value,
the pseudocosts quantify the estimated degradation of the
objective function. This information is utilized to reduce the
size of the BB tree, allowing for the solution of a lower
number of NLP subproblems.

The values of the pseudocosts, P; and PF are defined
in (17) and (18) for each integer variable of the TNEP
problem, x;:

v — Uy = Pl_f]k an
S (1—@’?), (18)

where vy is the value of the optimal solution of the objective
function of subproblem k, v, is the value of the optimal solu-
tion of the objective function of the descendant subproblem
of subproblem k with the additional constraint x; < |xj],
u,j is the value of the optimal solution of the objective
function of the descendant subproblem of subproblem k with
the additional constraint x; > |x; |+ 1, and f]].‘ is the fractional
part of the variable x; in the solution of subproblem k.

To choose the separation variable, (19) will be used to
estimate the variable j that provides the greatest deterioration
in the value of the objective function:

mjax {min [Pj*’f'-‘,P;r (1 —ff)” (19)

Note that negative pseudocosts might occur as a result of
the nonlinearity and nonconvexity of the problem, suggesting
that the solution obtained for the NLP subproblem & is only
a local optimal solution. Moreover, to obtain the pseudo-
costs, it is necessary to solve two NLP subproblems, which
increases the computational effort of the BB algorithm.

To avoid these drawbacks related to the calculation of the
pseudocosts, in the proposed BB algorithm, these values are
defined at the beginning of the algorithm with the correspond-
ing values of the coefficients of the objective function, and
they do not change.

The proposed algorithm performs a breadth-first search to
determine the next subproblem to be analyzed.

V. THE MINLP MODEL FOR THE TNEP PROBLEM
CONSIDERING LOSSES

The nonconvex MINLP model for the TNEP problem con-
sidering the dc operation of the transmission network with
transmission losses is presented in (20)—(29):

minimize v = Z Ciynij + A Z qi (20)
jEQe ieQy
subject to Z <f~,~ - &> - Z (ﬁ. + Zl) +gi
jm o2 g N2
=D;—q; VieQ 2D
fi = (Ng +ny) (6: =) /Xy Vije 0
(22)
ty =0y (N +ny) (6= 6)" Vije @
(23)
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FIGURE 3. lllustration of the power balance constraint (21).
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0<nj <Nj Viie Qo (27)
Orer = 0 (28)
nj €Z Vije Q.. (29)

The objective function v, presented in (20) includes the
total investment cost of expanding the transmission system
and the load shedding cost, which avoids the occurrence of
infeasible NLP subproblems. Constraint (21) is the power
balance equation, which corresponds to the application of
Kirchhoff’s current law to the system. Note that this con-
straint includes the artificial generation ¢;, which allows the
constraint to be fulfilled in any situation. Constraint (22) cor-
responds to the systematic application of Kirchhoff’s voltage
law to the system. Constraint (23) provides an estimate of
the losses on corridor ij as a function of the conductance of
aline, G = R,-j/ gfi + X;), the number of lines installed
on corridor ij, and the voltage angle phase difference across
corridor ij. Constraint (24) is the power flow transmission
capacity of a branch. Constraint (25) is the generation capac-
ity of the generation buses, and constraint (26) is the artificial
generation capacity of the buses. Constraint (27) limits the
maximum number of new lines that can be constructed on
corridor ij. Constraint (28) defines an angular reference for
the system. Finally, constraint (29) represents the integer
nature of the investment variable n;;. Fig. 3 illustrates the
power balance constraint at buses i and j. Note that the total
losses for a corridor, £;;, are concentrated at the terminal buses
of the corridor.

In the presented model, the objective function (20) is
linear, as well as constraints (21) and (24)—(29). However,
constraints (22) and (23) are nonlinear and nonconvex, since
they present the product of variables and squared variables.
Moreover, note that (22) is a quadratic equality, and when
losses are not considered in the problem, the model becomes
a nonconvex mixed-integer quadratically-constrained pro-
gramming (MIQCP) problem.

Fig. 4 shows f;; as a function of n;; and 6; — 6; for X;; = 1,
while Fig. 5 shows ¢£;; as a function of the same variables
for G;; = 1. The possible values of f;; and £;; when n; is
an integer are represented by the red curves in Fig. 4 and
Fig. 5, respectively, while the entire surfaces of both figures
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FIGURE 4. Illustration of constraint (22) for Xjj=1.
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FIGURE 5. Illustration of constraint (23) for gj=1.

represent the values for f;; and ¢;; when the integrality of n;;
is relaxed. It can be seen that both constraints are nonlinear
and nonconvex, even when the integrality of n;; is relaxed.

VI. TESTS AND RESULTS

The proposed BB algorithm to solve nonconvex MINLP
problems was implemented in the modeling language
AMPL [31]. The open-source solver IPOPT v3.12.13 and
the commercial solvers KNITRO v12.4.0, LOQO v7.03, and
MINOS v5.51 were used, with default settings, to solve the
NLP subproblems of the BB tree. For the fathoming rules,
it was considered that ¢ = 5%, obtained after several trials.
It should be noted that this value of ¢ was defined based
on experimental tests and demonstrated to be conservative
without increasing too much the size of the BB tree and the
computational times to solve the problem. For other prob-
lems, it may be adequate to perform an analysis to define
more adequate values of €.
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Tests were performed using the 6-bus Garver’s system, the
IEEE 24-bus system, the 46-bus Southern Brazilian system,
and the 93-bus Colombian system with and without gener-
ation rescheduling. Note that losses can only be considered
in the cases with generation rescheduling, since, for the case
without generation rescheduling, the values of the generation
at the generation buses are fixed. Complete data for all the
systems are available in [32]. All tests were carried out on a
computer with a 3.4 GHz AMD Ryzen™9 5950X processor
with 32 GB of RAM.

It should be highlighted that the 93-bus Colombian system
represents a large instance of the TNEP problem. Note that
the complexity of a system for TNEP is not directly related
to the number of buses. In fact, the complexity of the problem
is much more related to the stress level of the network and the
number of transmission lines that must be constructed for an
adequate operation of the network.

For comparison purposes, the MINLP model (20)—(29)
was also solved directly using off-the-shelf optimiza-
tion solvers for nonconvex MINLP problems that can
obtain local solutions, i.e., KNITRO v12.4.0 and BONMIN
v1.8.8 [33], which is an open-source solver, using CBC
v2.10.5 and IPOPT v3.12.13, and the global solvers BARON
v21.1.13 [34], LINDO GLOBAL v13.0.4099.255 [35],
COUENNE v0.5.8 [36], and SCIP v8.0.0 [37]. Among
these global solvers, COUENNE and SCIP are open-source
solvers. Moreover, GUROBI v9.5.0 [38], which is capable of
solving nonconvex MIQCP problems, was used to solve the
problem without considering losses. In all the tests, default
settings were considered in all solvers, and the time limit was
set to one hour.

Table 1 shows the dimensions of the problems. The number
of integer variables is equal to the number of corridors in the
system. The tests were carried out without considering losses
in the system and with losses for the systems with generation
rescheduling. Table 1 shows that the 6-bus Garver’s system is
the smallest problem considered, while the 93-bus Colombian
system is the largest one. Moreover, when losses are con-
sidered, the problems become significantly more complex,
as indicated by the number of nonzeros in the Jacobian and
the Hessian when compared with the respective problems
without losses.

Tables 2-5 present the main results, including the invest-
ment cost and computational time to find the solution in each
test (displayed within brackets). An asterisk indicates that the
solver terminated before the time limit of one hour, finding
a locally (or globally) optimal solution. A boldface value
indicates that the solver found the best-known solution of the
problem. NC indicates that the solver was not able to find
an integer solution for the problem in the maximum allowed
time. Table 2 presents the results for the TNEP problem
without considering losses, using local and global solvers for
nonconvex MINLP problems to solve the problem directly.
The case without losses is obtained by letting the resistance
R;; = 0 at all corridors. Table 3 presents the results obtained
by the local and global solvers for nonconvex MINLP
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TABLE 1. Dimensions of the problems.

Without losses With losses

) o S o @ < & S| g5 = I S & S | z.5 e
sE| | SE 2| EEE EE 225 25 pE £ EEZ) 2%:
£ 3 2 3 S B =B RS I QE 23 2Bl BBl 2 =48
Problem characteristics 82 3 £2 S 258 8 & N £2 h < S 2 _.? 2 228 £z
v 2 ) <+ 2 m «w N 2 ) 2 u 2 <+ 2 «w N 2 s 2
=] 2 8 @l 28 E E 3 © 2 3 Q8| 28 £ 8
o = =} =1 =| & = = o S = o = = & = = o =

e Y- 2/ 2 S esl A | en s

E = ¥ ¥ © HEEE °
Number of variables 38 38 115 115 214 214 451 451 53 156 294 606
Bounded below only 0 0 0 0 0 0 0 0 15 41 79 155
Bounded below and above 18 18 51 51 91 91 204 204 18 51 91 204
Free 20 20 64 64 123 123 247 247 20 64 124 247
Number of integer variables 15 15 41 41 79 79 155 155 15 41 79 155
Number of constraints 51 51 147 147 280 280 558 558 66 188 362 713
Linear equalities 6 6 24 24 45 45 93 93 6 24 46 93
Quadratic equalities 15 15 41 41 79 79 155 155 15 41 79 155
General nonlinear equalities 0 0 0 0 0 0 0 0 15 41 79 155
Linear one-sided inequalities 30 30 82 82 156 156 310 310 30 82 158 310
Number of nonzeros in Jacobian 148 148 414 414 790 790 1593 1593 263 736 1424 2827
Number of nonzeros in Hessian 25 25 76 76 153 153 304 304 40 134 272 545

problems for the systems with generation rescheduling con-
sidering losses. Table 4 presents the results obtained by the
proposed BB algorithm for the problem without considering
losses. Finally, Table 5 presents the results obtained by the
proposed BB algorithm for the problem considering losses.

The following sections will discuss the obtained results for
each system in more detail.

A. 6-BUS GARVER’S SYSTEM

The 6-bus Garver’s system was originally presented in [39].
Up to three new lines are allowed to be constructed in each
corridor.

The global optimal solution for this problem without con-
sidering losses and considering generation rescheduling has
an investment cost of MUS$ 110.000 with n3_s = 1 and
n4_¢ = 3. Note that, in Table 2, the solvers KNITRO and
BONMIN were not capable of finding the global optimal
solution to the problem, whereas the solvers for global opti-
mization were able to find the global solution. The solutions
found by KNITRO and BONMIN are 18.18% and 121.82%
worse than the optimal solution, respectively. The solutions
were found by each solver in less than 1 s. On the other
hand, by analyzing Table 4, it is possible to verify that the
proposed BB algorithm was able to find the global optimal
solution in up to 1 s with every solver used to solve the NLP
subproblems.

For the problem without considering losses and without
considering generation rescheduling, the global optimal solu-
tion has an investment cost of MUS$ 231.000 with np_¢ = 3,
n3_s = 1, ng_g = 2, and ns_g = 1. Table 2 shows that the
solvers BONMIN and LINDO GLOBAL were incapable of
finding the global optimal solution of the problem, whereas
the other solvers were able to find the global solution in less
than 1 s. The solution found by BONMIN is 3.03% worse than
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the optimal solution, and LINDO GLOBAL found a solution
that is, in fact, infeasible. Table 4 shows that the proposed
BB algorithm was able to find the global optimal solution in
approximately 1 s with every solver used to solve the NLP
subproblems.

When considering the electrical losses, the best-known
solution for the problem has an investment cost of MUS$
130.000 with np_3 = 1, n3_5 = 1, and na_¢ = 3. Table 3
shows that the solvers KNITRO and LINDO GLOBAL were
incapable of finding the best-known solution of the problem,
whereas the other solvers were able to find the best-known
solution in no more than 4 s. The solution found by KNITRO
and LINDO GLOBAL is 7.69% worse than the best-known
solution. Table 5 shows that the proposed BB algorithm was
able to find the best-known solution with every NLP solver
in no more than 3 s, except for MINOS, whose solution is
30.77% worse than the best-known solution.

B. IEEE 24-BUS SYSTEM

The topology of the IEEE 24-bus system can be found in [40].
Up to five new lines are allowed to be constructed in each
corridor.

The global optimal solution for this problem without con-
sidering losses and considering generation rescheduling has
an investment cost of MUSS$ 152.000 with ng_j9 = 1,
ni_g = 2, n10—12 = 1, and ni4_16 = 1. Table 2 shows
that the solver LINDO GLOBAL found an infeasible solution
to the problem, whereas the other solvers were able to find
the global solution in no more than 5 s. The results shown
in Table 4 indicate that the proposed BB algorithm was able
to find the global optimal solution with every solver used to
solve the NLP subproblems in no more than 3 s.

The global optimal solution for the problem with-
out considering losses and without considering generation
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TABLE 2. Investment costs for the systems obtained by solving the problem without losses using local/global solvers for MINLP (MUSS$).

Solver
System k1}130 e\;tr-l

KNITRO BONMIN BARON|LINDO GLOBAL COUENNE SCIP GUROBI
6-bus Garver’s with rescheduling 110.000{ 130.000 (<1 s)*| 244.000 (1 s)*| 110.000 (<1 s)*|  110.000 (<1 s)*| 110.000 (<1 s)*| 110.000 (<I s)*| 110.000 (<1 s)*
6-bus Garver’s 231.000{231.000 (<1 s)*| 238.000 (<1 s)*| 231.000 (<1 s)* Infeasible*| 231.000 (<1 s)*| 231.000 (<1 s)*| 231.000 (<1 s)*
IEEE 24-bus with rescheduling 152.000{152.000 (<1 s)*| 152.000 (2 s)*| 152.000 (4 s)* Infeasible*| 152.000 (5s)*|  152.000 (5 s)*| 152.000 (<1 s)*
IEEE 24-bus 370.000{370.000 (<1 s)*| 370.000 (3 s)*| 370.000 (218 s) Infeasible*| 370.000 (51 s)* 383.000 (2s)| 370.000 (<1 s)*
46-bus Southern Brazilian with rescheduling | 72.870(  72.870 (8 s)*| 72.870 (115s)*| 72.870 (62 s)* Infeasible*| 72.870 (41 s)* 72.870 (7 s)* 72.870 (2 s)*
46-bus Southern Brazilian 154.420( 157.304 (11 s)*| 154.420 (311 5)*| 164.880 (1258 s)| 250.143 (3321 s)| 168.314 (40s)| 154.420 (26 s)*| 154.420 (372 s)*
93-bus Colombian with rescheduling 189.650| 189.650 (1 s)*| 189.650 (96 s)*| 189.650 (31 s) Infeasible| 196.373 (11 s)* NC 404.120 (1 s)
93-bus Colombian 562.417|562.417 (31 s)*|562.417 (179 s)*| 735.180 (93 s)| 4,512.213 (22s) NC NC| 651.576 (709 s)

TABLE 3. Investment costs for the systems obtained by solving the problem with losses using local/global solvers for MINLP (MUS$).

Best- Solver
System kn
own KNITRO BONMIN BARON| LINDO GLOBAL COUENNE SCIP
6-bus Garver’s with rescheduling 130.000 140.000 (<I s)* 130.000 (<1 s)* 130.000 (4 s)* 140.000 (<1 s)* 130.000 (1 s)* 130.000 (<1 s)*
IEEE 24-bus with rescheduling 188.000 203.000 (<1 s)* 188.000 (10 s)*|  188.000 (362 s)* 188.000 (12 s)* 188.000 (43 s)*|  188.000 (137 s)*
46-bus Southern Brazilian with rescheduling | 75.895 102.821 (<1 s)* 94.004 (128 s)*|  75.895 (3589 s)* 129.055 (58 s)* 75.895 (255 s)*|  75.895 (1053 s)*
93-bus Colombian with rescheduling 202.920 202.920 (4 s)* 204.528 (47 s)*|  781.747 (2850 s) 370.250 (121°s) 235.610 (45 s) NC
TABLE 4. Investment costs for the systems obtained by solving the problem without losses using the proposed BB algorithm (MUSS$).
Best- Solver
System kn
own IPOPT KNITRO LOQO MINOS
6-bus Garver’s with rescheduling 110.000 110.000 (<1 s)* 110.000 (1 s)* 110.000 (<1 s)* 110.000 (1 s)*
6-bus Garver’s 231.000 231.000 (1 s)* 231.000 (1 s)* 231.000 (1 s)* 231.000 (1 s)*
IEEE 24-bus with rescheduling 152.000 152.000 (3 5)* 152.000 (2 s)* 152.000 (1 s)* 152.000 (1 s)*
IEEE 24-bus 370.000 370.000 (10 s)* 370.000 (5 s)* 370.000 (3 s)* 370.000 (4 s)*
46-bus Southern Brazilian with rescheduling | 72.870 72.870 (43 s)* 72.870 (86 s)* 72.870 (20 s)* 105.317 (3 s)*
46-bus Southern Brazilian 154.420 154.420 (459 s)* 154.420 (241 s)* 154.420 (163 s)* 185.774 (4 s)*
93-bus Colombian with rescheduling 189.650 189.650 (20 s)* 189.650 (5 s)* 189.650 (4 5)* 189.650 (9 s)*
93-bus Colombian 562.417 572.061 (1982 s) 572.061 (663 s) 562.417 (3292 s) 579.411 (1545's)

TABLE 5. Investment costs for the systems obtained by solving the problem with losses using the proposed BB algorithm (MUSS$).

Best- Solver
System Kn
own IPOPT KNITRO LOQO MINOS
6-bus Garver’s with rescheduling 130.000 130.000 (3 s)* 130.000 (2 s)* 130.000 (1 s)* 170.000 (<1 s)
IEEE 24-bus with rescheduling 188.000 188.000 (36 s)* 188.000 (18 s)* 188.000 (4 s)* Infeasible*
46-bus Southern Brazilian with rescheduling | 75.895 75.895 (24 s)* 75.895 (22 s)* 75.895 (2 s)* Infeasible*
93-bus Colombian with rescheduling 202.920 202.920 (78 s)* 202.920 (102 s)* 202.920 (10 s)* Infeasible*

rescheduling has an investment cost of MUS$ 370.000 with
n3_24 = 1l,n6_10=1,n7_¢ = 1, njo—12 = 1, njy4—16 = 1,
nis—24 = 1, nig—17 2, and n17_13 = 2. Table 2 shows
that the solver LINDO GLOBAL, again, converged to an
infeasible solution, SCIP found a solution that is 3.51% worse
than the optimal solution, while the other solvers were able to
find the global solution in no more than 218 s. Table 4 shows
that the proposed BB algorithm was able to find the global
optimal solution in less than 10 s with every solver used to
solve the NLP subproblems.
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When considering losses in the system, the best-known
solution for the problem has an investment cost of MUS$
188.000 with ng_10 = 1, n7_8 = 2, njo—12 = 1, nj4—16 = 1,
and nig_17 1. The results shown in Table 3 indicate
that, except for KNITRO, the solvers were able to find the
best-known solution to the problem in no more than 362 s.
The solution found by KNITRO is 7.98% worse than the
best-known solution. Table 5 shows that the proposed BB
algorithm was able to find the best-known solution with every
NLP solver in less than 36 s, except when using MINOS,
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for which the BB algorithm incorrectly indicated that the
problem was infeasible.

C. 46-BUS SOUTHERN BRAZILIAN SYSTEM

The topology of the 46-bus Southern Brazilian system can
be found in [11]. Up to five new lines are allowed to be
constructed in each corridor.

The global optimal solution for this problem without
considering losses and considering generation rescheduling
has an investment cost of MUS$ 72.870 with ny_5 = 1,
ni3—20 = 1,n20-23 = 1,n20-21 = 2, 4243 = 1, n4e—6 = 1,
and n5_¢ = 2. Table 2 shows that only the solver LINDO
GLOBAL was incapable of finding the global optimal solu-
tion to the problem, converging to an infeasible solution. The
other solvers were capable of finding the optimal solution in
less than 115 s. Table 4 shows that the proposed BB algorithm
was able to find the global optimal solution with every solver
used to solve the NLP subproblems in less than 86 s, except
for MINOS, which found a solution that is 44.53% more
expensive than the optimal solution.

For the problem without considering losses and with-
out considering generation rescheduling, the global optimal
solution has an investment cost of MUSS$ 154.420 with
n20-21 = L, n4p43 = 2,n46-6 = 1,n19-25 = 1, n31-3 = 1,
nag—30 = 1, nag—29 = 3, no4—25 = 2, np9_30 = 2, and
ns_¢ = 2. Table 2 shows that only the solver BONMIN was
capable of finding the global optimal solution of the problem
in 311 s, whereas the other solvers were unable to find the
global solution. The solutions found by KNITRO, BARON,
LINDO GLOBAL, and COUENNE are, respectively, 1.87%,
6.77%, 61.99%, and 9.00% worse than the optimal solution.
Table 4 shows that the proposed BB algorithm was able to
find the global optimal solution with every solver used to
solve the NLP subproblems in less than 459 s, except MINOS,
whose solution is 20.30% more expensive than the optimal
solution.

When considering the electrical losses, the best-known
solution for the problem has an investment cost of MUS$
75.895 with n1g_o0 = 1, nog_23 = 1, npg_21 = 2, ngo_43 =
1, nag—¢ = 1, and n5_¢ = 2. Table 3 shows that only the
solvers BARON and COUENNE were capable of finding
the best-known solution of the problem in less than 3589 s.
The solutions found by KNITRO, BONMIN, and LINDO
GLOBAL are, respectively, 35.48%, 23.86%, and 70.04%
more expensive than the best-known solution. Table 5 shows
that the proposed BB algorithm was able to find the best-
known solution with every NLP solver in less than 24 s,
except when using MINOS, for which the BB algorithm
incorrectly indicated that the problem was infeasible.

D. 93-BUS COLOMBIAN SYSTEM

The initial topology for the 93-bus Colombian system is
presented in Fig. 6; the continuous lines indicate existing
transmission lines, and the dotted lines indicate corridors
where new lines can be constructed. Up to four new lines are
allowed to be constructed in each corridor.
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The global optimal solution for this problem without con-
sidering losses and considering generation rescheduling has
an investment cost of MUS$ 189.650 with ny7_99 = 1,
ne2-73 = 1, no—g2 = 1, ngo—gs = 1, and neg—gs = 1.
Table 2 shows that the solvers KNITRO, BONMIN, and
BARON were able to find the global optimal solution in no
more than 96 s, whereas LINDO GLOBAL converged to an
infeasible solution, SCIP was not capable of finding a feasible
solution, and COUENNE and GUROBI, respectively, found
solutions that are 3.54% and 113.18% more expensive than
the optimal solution. The results shown in Table 4 indicate
that the proposed BB algorithm was able to find the global
optimal solution with every solver used to solve the NLP
subproblems in no more than 20 s.

For the problem without considering losses and with-
out considering generation rescheduling, the global optimal
solution has an investment cost of MUS$ 562.417 with

ngz—gg =2, nis—1g = 1, n3o—¢s = 1, nzo-2 = 1,
nss—s7 =1, nss_g4 = 1, nsg_s7 = 1, nss—2 = 1,
ny-64 = 1, my7-29 = 1, nso_s4 = 1, nep-713 = 1,
nsa—s6 = 1,n7273 = 1, nj9_g2 = 2, ngp-g5 = 1, and

nes—ge = 1. Table 2 shows that only the solvers KNITRO
and BONMIN were capable of finding the global optimal
solution to the problem in less than 179 s. The solutions
found by BARON, LINDO GLOBAL, and GUROBI are,
respectively, 30.72%, 702.29%, and 15.85% more expensive
than the optimal solution, while COUENNE and SCIP were
unable to find an integer solution for the problem within the
time limit. By analyzing Table 4, it is possible to verify that
the proposed BB algorithm was only able to find the global
optimal solution to the problem using the solver LOQO to
solve the NLP subproblems in 3292 s. The solution obtained
by the proposed BB algorithm with the solvers IPOPT and
KNITRO is only 1.71% more expensive than the optimal
solution, while the solution obtained with the solver MINOS
is 3.02% more expensive than the optimal solution.

When considering losses in the system, the best-known
solution for the problem has an investment cost of MUS$
202.920 with ny7_29 = 1, ngp_73 = 1, njg_gp = 2,
ngy—g5 = 1, and ngg_g¢ = 1. The results shown in
Table 3 indicate that only KNITRO was able to find the best-
known solution to the problem in 4 s. The solutions found by
BONMIN, BARON, LINDO GLOBAL, and COUENNE are,
respectively, 0.79%, 285.25%, 82.46%, and 16.11% worse
than the best-known solution. SCIP was unable to find an
integer solution for the problem within the time limit. Table 5
shows that the proposed BB algorithm was able to find the
best-known solution with every NLP solver in less than 102 s,
except when using MINOS, for which the BB algorithm
incorrectly indicated that the problem was infeasible.

E. DISCUSSION

Based on the results shown in Table 2 and Table 3, it can
be verified that no solver for MINLP problems was able
to obtain the optimal solution for every instance of the
problem considered. The solvers KNITRO and BONMIN
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FIGURE 6. Initial topology of the 93-bus Colombian system.

were able to find the best-known solution in 7 and 8 out
of 12 instances, respectively. The global solvers BARON,
LINDO GLOBAL, COUENNE, and SCIP found the best-
known solutions for 9, 2, 8, and 8 out of 12 instances, respec-
tively. Moreover, GUROBI found the best-known solutions
for 6 out of 8 instances of the problem without consider-
ing losses. Moreover, note that GUROBI cannot solve the
TNEP problem with losses, since it is not a MIQCP problem.
It should be noted that the global solvers are more efficient at
solving smaller instances of the problem.

The proposed BB algorithm for nonconvex MINLP prob-
lems was capable of finding the best-known solutions of
all instances considered when the solver LOQO was used
to solve the NLP subproblems. Moreover, with the solvers
IPOPT and KNITRO, it was incapable of finding the best-
known solution in only one instance. With the solver MINOS,
the proposed BB was only capable of finding the best-
known solution for five instances. Note that, for the 93-bus
Colombian system without considering losses and genera-
tion rescheduling, the BB algorithm with the solvers IPOPT,
KNITRO, and MINOS was terminated due to the maximum
computational time allowed of 3600 s. Therefore, it may be
possible to achieve the best-known solutions by tuning the
parameters of the algorithm, such as the maximum computa-
tional time.
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An alternative to improve the performance of the proposed
BB algorithm to solve large instances is to use heuristics to try
to find initial high-quality solutions to the problem, as done
by most of the solvers, to improve the solutions at the nodes
of the BB tree and to define the next separation variable and
the next subproblem to be solved.

VIi. CONCLUSION

This work presented and discussed the difficulties and inef-
fectiveness of the direct use of the traditional branch and
bound (BB) algorithm for solving nonconvex mixed-integer
nonlinear programming (MINLP) problems and proposed
a modified version of the BB for solving this category of
problems.

The proposed implementation of the BB algorithm
included strategies to deal with nonlinear programming
(NLP) subproblems, to detect the infeasibility of an NLP
subproblem, and to treat the nonconvexity of the problem,
as well as adequate fathoming rules.

The BB algorithm was tested to solve the transmission
network expansion planning (TNEP) problem, which is a
difficult nonconvex MINLP problem. Four systems were
considered in the tests, with and without losses and gen-
eration rescheduling. Four optimization solvers were used
to solve the NLP subproblems. Moreover, for comparison
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purposes, the problems were also directly solved using two
local and five global optimization solvers for nonconvex
MINLP problems.

The results indicate that the proposed BB algorithm
presents competitive results for the TNEP problem when
compared with commercial and open-source solvers for
nonconvex MINLP problems, especially when the solver
LOQO is used to solve the NLP subproblems since it
was possible to obtain the best-known solutions for all
instances.

Future works will develop improvements for the basic
BB algorithm presented in this work, including heuristic
approaches for obtaining high-quality feasible solutions to
the problem and determining the next subproblem to be
solved and the division variable. Moreover, the TNEP prob-
lem considering the full ac model will be solved.
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