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ABSTRACT In the field of intelligent manufacturing, fault identification is an effective way to improve prod-
uct service by identifying the cause of failures. For addressing it, the Generalized Bayesian Network (GBN)
model is extended based on the traditional Bayesian Network in this paper, which redefines the directed
edges and probability parameters among nodes. Compared with Bayesian Network, the GBN model has the
ability to simultaneously define causality and correlation of variables. In addition, the structure of network is
not only based on statistical data but also driven by expert knowledge. In order to achieve the collaboration
of data and knowledge while maintaining the consistency, a hierarchical collaborative framework is designed
including the data layer and knowledge layer. Furthermore, a hierarchical multi-objective optimization
algorithm, namely Hierarchical Non-dominated Sorting Genetic Algorithm II (HNSGA-II), is advanced to
solve the proposed model. Finally, an industrial case study for fault cause identification targeting the product
service helps illustrate all details.

INDEX TERMS Fault identification, generalized bayesian network (GBN), data and knowledge, hierarchical
collaborative framework, hierarchical non-dominated sorting genetic algorithm II (HNSGA-II).

I. INTRODUCTION
Themanufacturing industry is one of themost important com-
ponents for national economic development. Many countries
have successively carried out manufacturing revolutions to
innovate technology and increase productivity [1]. With the
development of information science and internet technology,
lots of advanced theoretical research has been proposed, such
as Artificial Intelligence, Big Data, Internet of Things and
so on, which extends the development space in the manu-
facturing [2]–[4]. In addition, in order to meet the demands
of market and improve competitiveness, enterprises have to
introduce new technologies to improve production efficiency
and reduce production costs while ensuring production qual-
ity [5]. In this context, intelligent manufacturing has been
proposed and has received extensive attention. Fault identi-
fication is one of the main research topics.

Fault identification refers to identifying observed vari-
ables most relevant to faults according to the phenomenon
of failures during product service, and detecting the cause
of faults [6]. Fault identification focuses more on exploring
the cause of faults. The ability to timely find the cause and
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troubleshoot faults can enormously reduce the loss in pro-
duction process and ensure the production efficiency, which
greatly improves the competitiveness of enterprises in the
market [7].

In the manufacturing field, expert knowledge generated by
employees and data recorded by machines contain a mass of
valuable information for tapping the production potential [8].
Prior to the development of computer technology, production
models can be constructed by expert knowledge solely. In that
case, expert system and knowledge engineering had been
extensively studied. However, knowledge of enterprises may
not only be explicit, that is, formalized in the documentation,
but also be tacit in the environment and available in the
minds of employees [9], [10]. Moreover, the manufacturing
system is too complicated to construct the internal models
fully, therefore many problems cannot be solved based on
knowledge engineering or expert system solely. Fortunately,
with the mature of information technology, data-driven sta-
tistical science has broken through these problems. Big data
technology based on statistical analysis has the ability to
use the data-driven simulation to construct models without
clearing the internal mechanism. While the data-driven theo-
retical research is applied in production process, other prob-
lems have arisen. In actual production, lots of data cannot
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be available or analyzed in production process. Hence, the
practical applications cannot satisfy the basic assumption of
theoretical research, that is, the production data is available
and sufficient. In other words, the data source may be sparse
or incomplete.

With the development of Artificial Intelligent technology,
the human-machine collaboration has attracted more and
more attention inmany fields [11]. In that case, the integration
between expert knowledge and statistical data is developed,
which can effectively solve the problems caused by insuf-
ficient data and incomplete expert knowledge. Furthermore,
Bayesian Network (BN) is known as a probabilistic graphical
model, which can describe the causal relationship through
conditional probability of uncertain variables [12]. And it
is a well-established network framework for reasoning the
causality of uncertain variables. Compared with rule-based
reasoning methods, BN has the ability to deal with complex,
fuzzy and uncertain models based on the graph theory and
probability theory [13]. Therefore, BN can be an excellent
tool to incorporate statistical data and expert knowledge in
the manufacturing field. However, BN also has some serious
limitations [14]. In BN structure, edges of nodes are unidi-
rectional, which can express that one node causes the other
one, but cannot reflect the interaction between them [15].
In other words, although BN can describe the causality of
some variables, it cannot express the correlation of other
variables. Moreover, the acyclic structure of BN results that
it fails to define the circular dependency of variables.

Now solutions to these problems are discussed widely.
In this paper, the Generalized Bayesian Network(GBN) based
on traditional BN is designed, which redefines the directed
edges and probability parameters of nodes. It can simultane-
ously take into account of the causality and correlation of
variables. And a novel hierarchical collaborative optimiza-
tion framework driven by statistical data and expert knowl-
edge is extended to construct the GBN. The basic idea of
this framework comes from the previous work [16], where
it integrated various modular standards and traded off the
contradiction of different standards so as to optimize the
modularization of product platform with multiple hierarchi-
cal objectives. In this study, this framework is extended to
integrate statistical data and expert knowledge while main-
taining the consistency of information and complementing
the inadequacy of each other. For solutions to the frame-
work, a hierarchical multi-objective optimization algorithm
in previous works, the Hierarchical Non-dominated Sorting
Genetic Algorithm II(HNSGA-II), is updated. Further, the
problem and model are formulated to solve the networks.
For illustrating the model and method proposed, an applica-
tion about fault identification in products service system is
reported as an example, where the results of experiments are
compared and discussed.

The rest of this paper is organized as follows: Section II
introduces the related work about the study. Section III pro-
poses the generalized Bayesian network model and hierarchi-
cal collaborative optimization framework. Furthermore, for

solutions to it, the hierarchical multi-objective optimization
algorithm, HNSGA-II, is also given in Section III. The formu-
lation of problems for fault identification and the formulated
design of models are proposed in Section IV. Section V intro-
duces a case study in the field of industry and gives solutions
and results of experiments to demonstrate the models and
methods. In addition, applications and possible extensions
of proposed models are discussed in Section V. Finally, the
conclusion of this study is reported in Section VI.

II. RELATED WORK
With the maturity of information technology, data-statistics
science has been applied in the field of manufacturing,
and problems related to faults are widely studied [17].
Ricardo et al. proposed tomeasure the reliability of the recon-
struction procedure and determine the principal components
analysis (PCA) model for best reconstruction. Based on the
fault subspace, fault magnitude, and the squared prediction
error, necessary and sufficient conditions were provided to
determine if the faults are detectable, reconstructable, and
isolatable [18]. A reconstruction-based fault identification
approach using a combined index for multidimensional fault
reconstruction and identification was proposed to reconstruct
the fault along a given fault direction [6]. The functional-
failure identification and propagation framework was intro-
duced as a novel approach for evaluating and assessing
functional-failure risk of physical systems during conceptual
design, which was based on combining hierarchical sys-
tem models of functionality and configuration, with behav-
ioral simulation and qualitative reasoning [19]. Santos et al.
present a transient-based algorithm for high-impedance fault
identification on distribution networks, which used the dis-
crete wavelet transform to monitor high-frequency and low-
frequency voltage components at several points of the power
system, being able to indicate the most likely area within
which the disturbance has occurred, without requiring data
synchronization nor the knowledge of feeder or load param-
eters [20]. Brian S et al. investigated a fault diagnosis frame-
work based on detection with feature extraction methods
and identification based on data-driven process topology
methods [21]. Hojjat A et al. developed a new data-driven
fault tolerant model predictive control, which does not need
the post-fault model. The model identification and control
(re)calculation were combined together and were performed
simultaneously to efficiently use the critical post-fault/failure
time [22]. In addition, the researchers at Centre for Risk,
Integrity and Safety Engineering (C-RISE) in Memorial
University of Newfoundland have made outstanding con-
tributions on the research of fault detection. For example,
Alauddin et al. present a new data-driven fault detection
model using an artificial neural network (ANN) and variable
mosquito flying optimization (V-MFO) technique, and the
model parameters had been tuned using theV-MFO algorithm
for maximizing the fault detection rate (FDR) while minimiz-
ing the FAR [23]. Amin et al. present a novel methodology for
dynamic risk analysis, integrating the multivariate data-based
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process monitoring and logical dynamic failure prediction
model and it also generated a multivariate probability for a
fault class in each time-step, which was used for dynamic
failure prognosis by different paths a fault can lead a process
to failure [24]. The current research on fault identification is
mainly driven by data information. The technology research
driven by knowledge and data is a new development direction
for fault identification, which has the ability to break through
the limitations of data information and improve the identifi-
cation effect.

Recently, it is argued that collaboration between expert
knowledge and data-driven science can result in significant
model improvements [25]. A learning function was incorpo-
rated to combine the conditional probability distributions in
terms of weighted mean, which were modeled by a Bayesian
Network that was traversed to return a probabilistic solu-
tion according to the symptoms given by the user [26].
Jing Li et al. proposed a causal modeling approach to improve
an existing causal discovery algorithm by integrating manu-
facturing domain knowledge with the algorithm, which was
demonstrated by discovering the causal relationships among
the product quality and process variables in a rolling pro-
cess [27]. Qin Zhang et al. proposed to use i-mode, e-mode,
and h-mode of the dynamic uncertain causality graph to
model such complex cases and then transform them into
either the standard i-mode or the standard e-mode for knowl-
edge representation and reasoning in use of statistical data
and domain knowledge [28]. Constantinou et al. focused
on modeling the impact of some additional expert variable,
where a method was proposed for eliciting expert judgment
that ensured the expected values of a data variable were
preserved under all the known conditions [29]. According
to the review on the collaboration between expert knowl-
edge and data-driven science, the current research driven by
knowledge and data lacks practical application in the field of
industry.

In addition, Bayesian network, as a highly advantageous
probabilistic graph model, is widely applied in the field
of computer science, manufacturing, bioinformatics and so
on [30]. Amit Sata et al. present a Bayesian inference-
based methodology for analysis and reduction of casting
defects, where the values of posterior probability of each
input parameter were computed using Bayesian inference to
identify the most influencing parameters and the avoidable
range of their values [31]. Codetta-Raiteri et al. described a
fault detection, identification, and recovery cycle composed
of the tasks of diagnosis, prognosis and recovery, which was
characterized through a dynamic Bayesian network model
for autonomous spacecrafts [32]. Turkoz et al. developed a
data-driven Bayesian approach for fault identification that
addressed the limitations posed by the normality assumption,
which was computationally efficient for high-dimensional
data compared with existing approaches [33]. The current
research on the application of BN cannot consider the cau-
sation and correlation of variables and keep the consistency
of information from multiple sources. Considering the wide

application of Bayesian network, the structure identification
of it also become a very active research area. Silander et al.
proposed a straightforward method to find the globally opti-
mal Bayesian networks and demonstrated its feasibility [34].
Friedman et al. introduced an algorithm that achieved faster
learning by restricting the search space, which restricted
the parents of each variable to belong to a small subset of
candidates [35]. The current structure learning of Bayesian
networks is mainly based on data, and there are few methods
driven by the collaboration of data and knowledge.

Overall, there has been growing interest in research driven
by data and knowledge. However, little research on the inte-
gration of knowledge and data is applied in the field of manu-
facturing.Moreover, it should be noted that current research is
mainly limited in that expert knowledge is only incorporated
with the data-driven studies in the form of constraints. In other
words, there is no real integration of expert knowledge and
statistical data. In addition, the main difficulty of incorpo-
rating knowledge and data is that expert knowledge must
be consistently integrated with data, that means, expert con-
straints should be coherent with the conditional independency
found in data [36]. On the other hand, although Bayesian
Network has an advantage in describing the causality of
variables, it cannot define the circular dependency and cannot
completely reflect the interaction of variables.

III. MODEL AND METHOD
A. GENERALIZED BAYESIAN NETWORK
In essence, Bayesian Network is a Directed Acyclic Graph
(DAG) model, which consists of nodes representing random
variables and directed edges describing the relationships of
variables. Based on BN, this study proposes the Generalized
Bayesian Network(GBN) model, which can simultaneously
define the causality and correlation of each variable.

Likewise, the GBN is a combination of nodes and directed
edges, shown in Fig1. Different from BN, in the GBN, each
variable node is constructed by two sub-nodes, the condition
node and output node, which are the red one and the blue one
in Fig1-a. When the variable acts as a parent node to repre-
sent conditions, the condition node is used for constructing
networks. In contrast, when the variable describes outputs as
a child node, the output node is used. Actually, in terms of the
causality, the condition node expresses reasons and the output
node defines results, whichmeans that, condition nodes cause
output nodes. In other words, a directed edge always points
from the condition node of one variable to the output node
of another one. As stressed, there may be three forms for
edges between two nodes, including no edge (Fig1-b), one-
way edge (Fig1-c) and two-way edge (Fig1-d). There is no
edge between two nodes indicating that the two variables
are independent for each other. The one-way edge describes
causality of two nodes, that is one node causes another one
with a certain probability. And the two-way edge expresses
correlation of nodes that means the two nodes can influence
each other with different probabilities.
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FIGURE 1. GBN: (a) node model (b) no edge model (c) one-way edge
model (d) two-way edge model.

TABLE 1. The conditional probability table.

Different from BN, parameters of GBN are defined in the
form of conditional probability based on edges instead of
joint probability based on nodes. In detail, the parameter for
a directed edge from A to B refers to the probability of B
in condition of A. The parameters are defined based on edges
between A and B, which have nothing to do with other nodes.
In mathematics, GBN is also considered as a pair {G, θ} on a
variable set X, where

1) G = (I ,E) indicates the structure graph of networks,
in which E means the directed edges set of nodes set I ;

2) θ defines the set of conditional probability parame-
ters between random variables, which quantitatively
describe the influence of parent nodes on child nodes.

θ (X) = P
(
xi|xj

)
(1)

In (1), there is a directed edge from the node xj to xi, and
the parameter is defined based on the directed edge.

In order to better explain the definition of parameters,
the conditional probability table is shown in Table1. The
table describes the parameters P

(
xi|xj

)
when the model has

a directed edge from the node xj to xi. The parameters are
defined based on the edges, and they only describe the effect
on other variables when one variable occurs. When one point
does not occur, the impact on other nodes is not considered.

It is worth noting that the variables may be discrete or
continuous. In this paper, discrete variables are discussed as
examples. In detail, the schematic diagram of GBN is shown
in Fig2 as an example. In the model, the nodes set I includes
variates A, B, C, D and E. It is the two-way edge model
among nodes A, B and C, which describes the correlation of
variates based on conditional probabilities. And it is the one-
way model between A and D, in which there is a directed
edge from A to D with the conditional probability parameter
P(D|A). It defines the causality of A and D, that is the variate
A causes the variate D with conditional probability P(D|A).
There is no edge between A and E, which indicates that the
variate A and E are independent for each other.

FIGURE 2. Generalized Bayesian network model.

Compared to BN, GBN redefines edges and parameters of
networks. It may be a multidirectional ringed graph struc-
ture with conditional probabilities instead of directed acyclic
graph. Essentially, GBN can be considered as a multi-layer
network nested by multiple Bayesian networks with the same
variables set. As shown, the nodes A, B and C construct the
GBN, which can be considered as three Bayesian networks
shown by the different colors. Therefore, the developed GBN
model has the ability to express the independence, the causal-
ity and the correlation of variables on the same networks.

B. HIERARCHICAL COLLABORATIVE
OPTIMIZATION FRAMEWORK
As stressed, data-driven collaborative engineeringwith expert
knowledge can make up for the problems of insufficient data
on data-driven engineering and the limitations of tacit knowl-
edge for production process. Realizing the advantages of
collaboration between expert knowledge and statistical data,
this study develops a hierarchical collaborative optimiza-
tion framework proposed in previous works to construct the
GBN based on the collaboration of knowledge and data [16].
However, the key challenge is how to maintain the con-
sistency of knowledge and data. Moreover, there is no
accurate method to quantitatively measure the influence of
expert knowledge for production process in the field of
manufacturing.

For addressing these difficulties, in this study, the hierar-
chical collaborative optimization framework based on multi-
objective optimization is developed, shown in Fig3. The
framework divides expert knowledge and statistical data into
different layers so as to optimize the structure of GBN sep-
arately. Meanwhile, the collaboration parameters generated
by one layer will be used for optimization of another layer
to collaborate different layers. Actually, each optimized layer
is considered as a multi-objective optimization problem, and
it collaborates with other optimized layers to optimize the
results.

As shown, the framework developed is divided into two
layers, including Knowledge Layer (KL) and Data Layer
(DL), which respectively correspond to two multi-objective
optimization problems. The KL optimizes the causality
objective and correlation objective of variables based on
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FIGURE 3. Hierarchical collaborative optimization framework.

expert knowledge. Similarly, the DL is based on statistical
data to optimize the prior probability objective and joint
probability objective. For realizing the collaboration between
layers, the KL generates the optimized parameters during
optimizing KL objectives, KL parameters. It becomes one
of the parameters for calculating the fitness functions of
DL-layer optimization. So the KL parameters can be con-
sidered as the collaborative parameters for optimization of
DL. Likewise, the DL parameters generated by optimizing
DL objectives are considered as collaborative parameters to
participate the optimization of KL. Further, DL and KL are
circularly iterated to output results. The optimized result is
the structure of GBN considering fault points as variables.
In other words, all uncertain variables, including potential
fault points and fault phenomena, are constructed to GBN
through the collaborative circulation optimization of KL and
DL. Finally, under interventions of experts, the GBN is
applied for fault identification in practical production pro-
cess to reason the possible fault causes and give the best
troubleshooting order for potential fault points when certain
factors have failed.

To sum up, this framework optimizes the GBN structure
based on expert knowledge and statistical data. It is worth
mentioning that the hierarchical collaborative idea, as the key
point, integrates knowledge in the field of expert systems
and data of statistic science to optimize the same objectives.
That means the collaborative optimization method combines
the advantages and balances the disadvantages of knowledge
and data. The method has the ability to hold the consis-
tency of knowledge and data and solve problems on the
collaboration of knowledge and data. In detail, it can avoid
the potential contradiction of information through collabora-
tion between layers and it also can change the collaborative
weight to keep the unification on magnitude of information.

Furthermore, the method not only considers the causality and
correlation between variables, but also considers the inde-
pendence of variables in terms of joint probability and prior
probability.

C. HIERARCHICAL MULTI-OBJECTIVE
OPTIMIZATION ALGORITHM
Essentially, the hierarchical collaborative optimization
framework proposed needs to solve a hierarchical multi-
objective optimization problem in the field of manufactur-
ing [37], [38]. For multi-objective optimal problems, many
scholars are committed to relevant research and build many
superior algorithms, of which NSGA-II is the most com-
mon one [39]. As well known, the Non-dominated Sorting
Genetic Algorithm-II (NSGA-II) is one of the most popular
optimization algorithms, which has not only the ability of
optimizing multiple goals with several decision variables and
constraint conditions simultaneously but also the ability of
finding global optimum solutions [40]. However, it cannot
deal with the multi-objective collaborative optimization for
multidiscipline intersection well, such as the expert sys-
tem and probability statistics proposed in this study. For
overcoming this difficulty, in previous works [16], a novel
hierarchical optimization algorithm based on NSGA for
matching the method designed, Hierarchical Non-dominated
Sorting Genetic Algorithm (H-NSGA), was considered to
solve the problem. In the past work, considering that the
number of Pareto population is not vast for components of
product platform, the proposed algorithm is advanced based
on NSGA, instead of NSGA-II. Whereas, in this paper, the
hierarchical collaborative multi-objective optimization algo-
rithm, Hierarchical Non-dominated Sorting Genetic Algo-
rithm II (HNSGA-II), is developed based on NSGA-II for
fault identification in product service.
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FIGURE 4. HNSGA-II.

The main part of this algorithm is the hierarchical cycle
optimization based on the hierarchical collaborative opti-
mization framework proposed. Through the multi-objective
optimization of each layer based on NSGA-II, the HNSGA-II
can achieve optimal results balancing objectives of different
layers. The specific flow is shown in Fig4.

In HNSGA-II, NSGA-II is designed as the basic algo-
rithm unit for hierarchical cycle optimization [41]. Firstly,
initialized population is optimized by Knowledge Layer (KL)
objectives with initialized DL parameters based on the model
mentioned above to obtain the KL optimal population and KL
parameters for collaboration. Next the KL optimal population
is optimized by Data Layer (DL) objectives in the model with
KL parameters, which can achieve the DL optimal population
and DL parameters as the new parent population of KL and
collaborative parameters for KL optimization. That means
that the one layer gives the optimized population and collab-
orative parameter as new initialized population and optimal
constraint parameters. Like this, KL and DL objectives are
cyclically optimized with collaborative parameters until end
of iteration. It is worth mentioning that the collaborative
parameters are the important parts of the algorithm, which
control the improvement of objectives on non-optimized

layer so as to realize the collaboration between layers.
Following the two layers’ cycle optimization, the collabora-
tive optimized solutions can be achieved. The specific steps
of HNSGA-II are as follows:
• Step 1 (Initialize population): Do initial settings for this
algorithm, including the initialized population with N
individuals, collaborative parameters and so on;

• Step 2 (KL optimization): Get the parent population and
collaborative parameters as the initial data. Carry out
the optimization of parent population with DL param-
eters by NSGA-II for the multiple objectives of KL.
The optimization generates KL optimized population
and KL parameters as the new parent population and
collaborative parameters for next step;

• Step 3 (DL optimization): Like the Step 2, make the
DL optimization of DL objectives with KL parameters
by NSGA-II and achieve the DL optimized population
and DL parameters as the new parent population and
collaborative parameters;

• Step 4 (Hierarchical circulation optimization): Repeat
the optimization from step 2 to step 3. Considering
the integration of multiple layers, circulation optimiza-
tion is carried out to optimize population so as to get
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the optimized population with objectives of different
layers;

• Step 5 (Terminate condition): If the circulation genera-
tion is up to the set value, then get the final optimized
population, which is the Pareto front. If not, do the
circulation optimization;

• NSGA-II: After getting parent population and collab-
orative parameters, calculate the objective functions
with collaborative parameters and do the non-dominated
sorting based the value of functions. According to the
sorting, make genetic evolution, including selection,
crossover and mutation, to obtain the new population.
Repeat the above options until the generation is up to the
maximum. Finally, the optimized population is given.

Overall, HNSGA-II is designed as a hierarchical collab-
orative multi-objective optimization algorithm to solve the
optimization problem between layers. It can achieve the opti-
mized population with objectives of different layers as the
solutions of model proposed, and it has the ability of collabo-
rating expert knowledge and statistical data to construct GBN.

IV. FORMULATION OF METHODS
A. PROBLEM FORMULATION
The proposed methods and models are applied in the research
of fault identification on the product service system. How-
ever, the data collected may be sparse, incomplete, or even
with errors. And the knowledge may be one-sided and cannot
describe the internal mechanism of models fully. Hence, the
data and knowledge may contain overlapping or different
information, which may be contradictory. The key point is
how to solve problems driven by production data and expert
knowledge collaboratively, meanwhile keeping the consis-
tence of data and knowledge. In consequence, the problems
framework is given in Fig5, which describes how to solve
fault identification based on data and knowledge in this paper.

The possible fault points as variables are achieved from
the work flows. First of all, the hierarchical collaborative
optimization is run based on fault points. The expert knowl-
edge and statistical data are recorded as basic information
in practical production. The GBN is constructed driven by
knowledge and data to achieve the basic Pareto Networks.
In the case of expert intervention, the optimal set of GBN
is given. When a fault occurs, the corresponding network is
selected based on prior information to find the cause of fault
and achieve the maintenance order so as to resume work.
Meanwhile, the latest case will update database, knowledge
base and fault points. And the optimized GBN will also be
advanced based on the updated information.

B. FORMULATED DESIGN OF MODEL
For solutions to problems, possible fault points are considered
as random variables, that are the nodes of GBN. While the
relationships of nodes are defined by conditional probability,
the types of directed edges in GBN are decided. The GBN
are constructed to describe the causality and correlation of

TABLE 2. The definition of notations.

potential fault points in product service platform. For opti-
mizing the structure of GBN, this paper designs the opti-
mized objectives and collaborative parameters based on the
proposed hierarchical collaborative framework, including KL
and DL. Mathematical notations used in formulas are listed
in Table2.

The hierarchical collaborative framework aims to opti-
mize the conditional probability of variables to build GBN.
In particular, the GBN is optimized based on two layers,
including expert knowledge and statistical data, where the
different optimized objectives are compared based on dif-
ferent information source. Hence, the basic principles of
different objectives for optimization are all defined as min-
imizing differences between optimized results and informa-
tion source. Detailedly, in KL, the structure is optimized
based on expert knowledge, and optimal objectives consist of
causality and correlation of variables. Firstly, the difference
based on causality is defined by (2), in which ωnm is defined
to describe the weight of relationship of point n andm in prod-
uct service platform. In addition, DiffCP is the collaborative
difference based on collaborative parameters, and it will be
introduced later. Considering the information source may be
incomplete, xKL1nm is defined as a decision variable. When
the expert knowledge P0(n|m) is available, xKL1nm is set as 1,
otherwise 0.

DiffKL1 = DiffCP

+

∑F
n=1

∑F
m=1 ωnm · |P(n|m)− P0(n|m)| · xKL1nm∑F

n=1
∑F

m=1 xKL1nm
(2)

Before defining the difference of correlation between vari-
ables, the correlation needs to be designed to meet the prob-
lem of fault identification for product service. According
to the practical engineering, the correlation is concerned
with functions, locations and influence of factors. Thus,
the correlation is defined in (3) based on function proba-
bility coefficient, location probability coefficient and influ-
ence probability coefficient, in which ωnm is designed as the
weight of coefficients.

C = ωf · f + ωl · l + ωi · i (3)
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FIGURE 5. The problem framework.

Actually, the correlation defined is equivalent to probabil-
ity which describes the influence between variables. In the
same fashion, the difference based on correlation between
variables is defined by (4).

DiffKL2 = DiffCP

+

∑F
n=1

∑F
m=1 ωnm · |P(n|m)− C(n|m)| · xKL2nm∑F

n=1
∑F

m=1 xKL2nm
(4)

In contrast, the DL optimizes the structure of GBN based
on statistical data, of which optimal objectives are the differ-
ence of prior probability and joint probability. The difference
between results and prior probability is designed by (5) based
on Bayesian formula, P(A|B) = P(B|A)·P(A)

P(B) .

DiffDL1 = DiffCP

+

∑F
n=1

∑F
m=1 ωnm ·

∣∣∣ P0(n)P0(m)
−

P(n|m)
P(m|n)

∣∣∣ · xDL1nm∑F
n=1

∑F
m=1(xDL1nm + yDL1nm )

+

∑F
n=1

∑F
m=1 ωnm · |P0(m)− P(m|n)| · yDL1nm∑F
n=1

∑F
m=1(xDL1nm+yDL1nm )

(5)

In practical application, it is concerned that the data may
be incomplete, that means the variables P0 or P may be 0.
So the decision parameters xDL1nm and yDL1nm are designed

as follows:

xDL1nm =
{
1, P0(m) 6= 0& P(m|n) 6= 0
0, otherwise

(6)

yDL1nm=
{
1, P0(n) 6=0& P0(m)=0& P(n|m)=0
0, otherwise

(7)

Similarly, according to joint probability formula,P(A·B) =
P(A) · P(B|A), the difference of joint probability is given
by (8), in which xDL2nm is considered as the decision variable.
Only when P0(n) 6= 0, x = 1, otherwise, x = 0.

DiffDL2 = DiffCP

+

∑F
n=1

∑F
m=1ωnm ·|P0(n·m)−P0(n)·P(m|n)|·xDL2nm∑F

n=1
∑F

m=1 xDL2nm
(8)

Especially, the difference of collaboration based on collab-
orative parameters,DiffCP, exists in all formulas of optimized
objectives. The DiffCP is a key parameter, which shows the
collaboration of hierarchical optimization between layers,
defined by (9), in which CP is defined as the collaborative
coefficient to adjust the collaborative influence between lay-
ers. The larger CP, the greater influence.

DiffCP

=

∑F
n=1

∑F
m=1 ωnm · |PCP(n|m)− P(n|m)|

F2 · CP (9)
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In particular, PCP is designed as the collaborative standard
value by (10). PCP of KL is calculated based on the optimal
result Pr of DL. Likewise, the optimal result of KL will
be used to compute the collaborative standard value PCP of
DL. Essentially, the probability of collaborative parameters
is defined based on the expected value of all Pareto optimal
individuals. It describes the average distribution of the opti-
mized population.

PCP(n|m) =

∑Nr
i=1 Pri (n|m)

Nr
(10)

V. CASE STUDY
A. BACKGROUND OF PROBLEM
The SAC, Guodian Nanjing Automation Co., Ltd., focuses
on R&D and product services for automation and informa-
tion technology, meanwhile, it hopes to develop a series
of automation businesses, including smart grid automation,
power plant and industrial automation, rail transit automa-
tion, information and security technology, power electronics
and so on. With the centennial opportunity of smart grid as
the leading force of low-carbon economy globally, the SAC
actively pushes forward its transformation of development
mode and structural optimization. As a result, the SAC wants
to develop the product service platform for achieving intelli-
gent maintenance of products, in which fault identification
is one of functions. When a certain factor has failed, the
enterprise needs to quickly identify the cause of failures and
relevant potential fault points, next to find the best mainte-
nance sequence to eliminate failures and recover operation of
equipment as soon as possible. According to this plan, a case
study of fault cause identification in the field of smart grid
for SAC is reported to demonstrate the proposed models and
algorithm.

The HERE platform of SAC is a comprehensive platform
that serves operations of smart grid daily, in which the prob-
lem record and engineering service record of products are two
functions of product service. From 2017 to 2019, the platform
records nearly 35,000 pieces of information, which will be
considered as the basic information for this study. In order to
better explain the information form, the Table3 lists several
pieces of information about the fault description and causes
of faults as the brief examples for information sources.

For the purpose of demonstrating research, the case study
takes some transformer substations as examples to research,
and it only considers the product service processes of which
the first classification is Installation and the second classifi-
cation is Hardware. In detail, the study chooses 10 potential
fault points, simplified named from A to J for protecting the
information of enterprises. It represents the 10 components
of products which may fail. According to the types and the
number of faults, the prior probability and joint probability
data of fault points can be computed, listed in Table4. In the
table, the value of Pr is the prior probability, and other data
is the joint probability. In addition, the causality and corre-
lation coefficient including function probability coefficient,

location probability coefficient and influence probability
coefficient are calculated based on the knowledge expression
from technical staff and experts of SAC. And the coefficients
are expressed based on 0-1 scoring system, in which 0 is
defined as no relationships and 1 means the equal relation-
ship. The coefficients are between 0 and 1. The results of
knowledge expression are shown as causality knowledge and
correlation knowledge in Table5 and Table6. Specially, in the
tables, x expresses that the information is lacking. Because
the expert information for internal models is limited and
inadequate in practical engineering, the causality knowledge
and correlation knowledge are sparse.

B. SOLUTIONS AND RESULTS
Based on the information sources, other variables including
the collaborative coefficient CP and all weight parameters
are given by experts of SAC based on expert knowledge.
Furthermore, other parameters of HNSGA-II are set based on
the optimal algorithm for experiments. The number of initial
population is 20. The maximal generation and hierarchical
circulation are 50 and 5. And the crossover and mutation rate
are 0.8 and 0.1. The algorithm is run by Matlab 2016a on
the system, macOS High Sierra 10.13.1, 1.6GHz Inter Core
i5, 8GB 1600MHz DDR3. In the current environment, the
algorithm only takes a few seconds to run. Considering DL
optimization as the main optimal process, which means the
hierarchical cycle optimization jumps out from DL to output
results, the optimized results are shown in Fig6 and Fig7.
Fig6 shows the Pareto optimization population considering

the collaborative difference, which takes the DL as the main
process (DL-optimization). That means the prior probability
(DL1) and joint probability (DL2) objectives are the main
optimal objectives, and the causality (KL1) and correlation
(KL2) based on KL are considered as the influence factors.
The picture gives the value of DiffDL1 and DiffDL2 for initial
population and Pareto population. It can be seen that the
model and algorithm are successful to optimize objectives
and achieve Pareto front. However, it is worth noting that
some points are out of Pareto front. That is because the opti-
mized objectives contain the collaborative difference DiffCP,
and the reported results have been added to the difference.
In addition, the optimal results are based on the collaborative
optimization, which means the algorithm has to consider the
objectives of KL while optimizing the objectives of DL.

When calculating objective functions of Pareto population
without the collaborative difference, the results are shown
in the left picture of Fig7. The left one shows DiffDL1 and
DiffDL2 of the optimized population and initial population
without the collaborative difference DiffCP. According to it,
the difference of optimal population is smaller than initial
population for DL objectives. Moreover, the right one shows
that the difference of KL, DiffKL1 and DiffKL2. Compared
to initial population, the difference of optimal population is
smaller than initial population. According to these results, the
objectives of KL are improved in the hierarchical optimized
process with setting the DL as the main optimized objectives.
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TABLE 3. Information source.

TABLE 4. Prior probability and joint probability of statistical data.

TABLE 5. Causality knowledge.

FIGURE 6. The Pareto of DL-optimization with the collaborative
difference.

Compared with initial population, the main optimized objec-
tives (DL1 andDL2) are improved to achieve the Pareto front,
and the other objectives (KL1 and KL2) are also optimized.
This is the effect of the hierarchical collaboration idea in
the algorithm. The overall results indicate the hierarchical

TABLE 6. Correlation knowledge.

collaborative optimization framework can optimize the GBN
based on the collaboration of knowledge and data effectively.

Likewise, Fig8 and Fig9 report the optimization process
whichmakesKL as themain process (KL-optimization). Fig8
shows the optimized results with collaborative difference and
gives the difference of causality (KL1) and correlation (KL2)
for initial population and Pareto population. Furthermore,
in Fig9, the left figure displays the KL1 and KL2 difference
functions of initial population and optimized populationwith-
out the collaborative difference, and the other one indicates
that the DL1 and DL2 difference functions are also opti-
mized based on the hierarchical collaborative optimization.
Similarly, the network is successfully optimized based on the
collaboration of knowledge and data. On the whole, the case
effectively optimizes the initial population and achieves the
Pareto front, whether the DL or KL is considered as the main
process. Moreover, the other objectives are also improved
collaboratively. The current results can illustrate the hierar-
chical collaborative algorithm HNSGA-II is effective for the
proposed model. Besides, it is worth noting that there are lots
of vacancy information and 0 value in the basic information
source, but they have no effects on results due to the decision
parameters x and y. The decision parameters are designed
to eliminate the impact of inadequate information so as to
guarantee robustness of the algorithm. On the other hand,
it makes the algorithm more scalable and has the ability to
accommodate various types of information.

It should be mentioned that the model is designed to solve
problems of fault identification. Hence, this case considers
DL as the main process to explain how it works for fault
identification of SAC. Now, it assumes that the possible
fault point A has been faulty. The proposed model will give
the cause of this fault and maintenance order based on the
results of experiments considering DL as the main objectives.
According to results, we have achieved the Pareto front with
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FIGURE 7. The DL-optimization functions without the collaborative difference.

FIGURE 8. The Pareto of KL-optimization with the collaborative
difference.

16 individuals. Considering the actual characteristics of com-
ponent A, experts select the corresponding individual based
on expert knowledge as the compositions of GBN by (11),
where the weights of objectives for Pareto front are decided
by experts in SAC.

Diff = ωKL1 · DiffKL1 + ωKL2 · DiffKL2
+ωDL1 · DiffDL1 + ωDL2 · DiffDL2 (11)

Under the intervention of experts, the 1st Pareto individual
has the minimized difference, which will be as the GBN
parameters to find the cause of the fault and maintenance
order for component A. The 1st Pareto individual is shown
in Table7, but it is not the final GBN. Experts will adjust
the results based on expert knowledge to give the final GBN,
as shown in Fig10.

As shown, the GBN gives the possible causes and mainte-
nance order for the fault of A. The most possible cause and
the first order to test will beG→ F → B→ C . And the next
order will be decided by the results of last test until the work
can be resumed. If G is failed in test, next order F → H will
be inspected. In general, the GBN gives all possible causes

and probability for the fault of A. So the experiments confirm
that the hierarchical collaborative model can deal with fault
identification problems driven by statistical data and expert
knowledge.

C. COMPARATIVE EXPERIMENT
Compared with the initial population, the above optimal
results display the effectiveness of optimization based on
the optimization of main functions and shows the ability
of collaborative optimization based on the optimization of
assistant functions. In order to demonstrate the effect of hier-
archical collaboration well, the comparative experiments are
designed in the same conditions and parameters, which opti-
mize the populationwith the singlemulti-objective algorithm,
NSGA-II, instead of the hierarchical optimization algorithm.
By comparing the secondary objectives between the sin-
gle optimization and hierarchical collaborative method, the
effects of hierarchical collaboration can be revealed.

The comparative results are shown in Fig11 and Table8.
Fig11 shows the KL objective functions (DiffKL1 andDiffKL2)
value of optimal population. In detail, the single optimization
takes DL as optimized objectives based on NSGA-II. And the
hierarchical collaborative optimization takes DL as the main
process to optimize objectives based on HNSGA-II. Simi-
larly, Table8 gives the DL functions (DiffDL1 and DiffDL2)
value of optimal population taking KL as the main optimized
objectives for single optimization (S-DL1 and S-DL2) and
hierarchical collaborative optimization (H-DL1 and H-DL2).

According to the results shown, the KL values of hier-
archical method are more optimized than the single model
in Fig11, and the DL value of hierarchical method is bet-
ter improvement than single model in Table8. Compared to
single optimization, the optimal population of hierarchical
collaborative optimization has the better performance on
collaborative objectives. The results illustrate the effect of
hierarchical collaboration. In other words, the hierarchical
collaborative method greatly improves the performance of
collaborative functions while optimizing main objectives.
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FIGURE 9. The KL-optimization functions without the collaborative difference.

TABLE 7. The GBN parameters for the case.

FIGURE 10. GBN for the case.

In particular, for demonstrating the effects of circular opti-
mization, the other experiment is designed, of which results
are shown in Fig12. In this case, the number of circulation
generation is set as 5. The comparative experiment outputs
the total difference of Pareto population by (11) for each cir-
culation, where labels of different colors represent the current
generation number. According to results, with the increase
of cyclic generation, the performance of total difference is
improved. The results of this experiment illustrate that the
circular optimization improves the performance of objectives.

Overall, the model and algorithm proposed not only can
optimize the main objective functions, but also improve
the collaborative objectives. It can effectively solve the

TABLE 8. The comparative results of KL-optimization.

hierarchical collaborative multi-objective optimization prob-
lems for GBN. Moreover, compared to related works, the
novel method has the ability to collaborate knowledge and
data so as to achieve the results of identification in manufac-
turing. The comparative experiment explains that the results
of hierarchical collaborative optimization are better than the
traditional methods. In addition, in the actual production
information, the mistake and lacking of information are very
common. There exists great uncertainty in the basic infor-
mation. The collaborative of two information sources has the
ability to complement each other to find the causes of faults
based on the uncertain information.

D. APPLICATIONS AND POSSIBLE EXTENSIONS
This paper is studied based on practical engineering pro-
grams of SAC for fault identification in product service plat-
form [42]. Finally, the research will be used for building
the product service system of SAC and be applied in fault
identification service. The system serves the product service
process and focuses on maintenance, overhaul, identifica-
tion and test in production workflow [43], which is one of
the indispensable steps for enterprises to achieve intelligent
manufacturing [44]. The intelligent services of products on
fault identification can intelligently troubleshoot the cause of
failures and reduce the loss caused by failures of factors [45].

However, there are still some limitations in this study.
In the model of fault identification, lots of expert knowledge
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FIGURE 11. The comparative results of DL-optimization.

FIGURE 12. The comparative results of circulation.

need to be recorded and many important parameters, such as
weights and collaborative parameters, are decided by tech-
nical staff. They are influenced by human factors and have
great subjectivity. For solutions to it, a feedback mecha-
nism needs to be designed in future works to optimize the
technical parameters based on results of models so as to
ensure objectivity and accuracy of methods. On the other
hand, the proposed GBN has only addressed the questions
of adjacent variables. This paper only introduces the defini-
tion and application of GBN, where the conditional proba-
bility between adjacent variables is used for analysing the
causality and correlation of variables. In the future, more
theoretical research on generalized Bayesian Network will be
studied, for example, how to achieve the probabilistic reason-
ing between variables based on the proposed GBN.

VI. CONCLUSION
This study focuses on fault identification for product service
in the field of industry and proposes a new sight to solve
it, that is, to construct the generalized Bayesian Network
driven by statistical data and expert knowledge. The GBN

has the ability to describe all relationships of variables,
including the independence, the causality and the correla-
tion. Furthermore, the features of GBN enable it to be con-
structed by both information sources, including data and
knowledge. For addressing it, this paper develops a hierar-
chical collaborative framework, which consists of the data
layer and the knowledge layer. Each layer is considered as an
independent multi-objective optimization process, while the
collaborative parameters generated by the optimized results
of one layer will participate in the optimization of another
one. Hence, the framework can realize the collaboration
between data and knowledge while maintaining their con-
sistency. Further, a hierarchical multi-objective optimization
algorithm, HNSGA-II, is developed to solve it.

A case study of fault identification for product service has
been given. The results of experiments show the optimized
Pareto front and give the causes and maintenance order in the
case when one component has failed. In addition, compared
the single multi-objective optimization with hierarchical col-
laborative optimization, the model and algorithm proposed
can not only optimize the main objective functions, but also
improve other assistant functions. And according to the out-
puts of each circulation, it is illustrated that circular opti-
mization improves the performance of objectives. Everything
considered, with statistical analysis and knowledge inference,
the method based on the GBN is a powerful tool for fault
identification in practice.
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