
Received January 13, 2022, accepted April 2, 2022, date of publication April 11, 2022, date of current version April 14, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3166154

Implementation of a Cluster-Based
Heterogeneous Edge Computing System
for Resource Monitoring and
Performance Evaluation
YU-WEI CHAN 1, HALIM FATHONI2,3, HAO-YI YEN4, AND CHAO-TUNG YANG 4,5
1Department of Information Management, Providence University, Taichung 43301, Taiwan
2Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung 407224, Taiwan
3Departement of Ekonomi dan Bisnis, Politeknik Negeri Lampung, Bandar Lampung 35141, Indonesia
4Department of Computer Science, Tunghai University, Taichung 407224, Taiwan
5Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407224, Taiwan

Corresponding author: Chao-Tung Yang (ctyang@thu.edu.tw)

This work was supported in part by the Ministry of Science and Technology (MOST), Taiwan, under Grant 110-2621-M-029-003, Grant
110-2221-E-029-002-MY3, Grant 110-2221-E-126-004, and Grant 110-2622-E-029-003; and in part by the National Applied Research
Laboratories (NARLabs), Taiwan, under Grant 03108F1106 and Grant 03109F1106.

ABSTRACT In the past decade, Internet of Things (IoT) technology has been widely used in various
applications in daily life. Currently, IoT applications primarily depend on powerful cloud data centers as
computing and storage centers. However, with such cloud-centric frameworks, numerous data are transferred
between end devices and remote cloud data centers via a long wide-area network, which will result in
intolerable latency and a lot of energy consumption. The edge computing paradigm is exploited to sink the
cloud computing capability from the network core to network edges in proximity to end devices to enable
computation-intensive and latency-critical edge intelligence applications to be executed in a real-timemanner
to alleviate this problem. With the increasing number of edge devices, it is essential to obtain the status of
devices in real time to realize the overall resources of heterogeneous edge devices. Thus, constructing a
system that can monitor each device’s status and performance is important. This study implements a cluster-
based heterogeneous edge computing system by integrating the Docker, Kubernetes, Prometheus, Grafana
and Node Exporter technologies for resource monitoring and performance evaluation. In the experiment,
three deep learning models for object detection evaluate the performance of the implemented system.
Through the constructed resource monitoring platform, the resource usage status of various edge devices
can be monitored easily. In addition, the overall system performance can also be evaluated effectively.

INDEX TERMS Edge computing, resource monitoring, Kubernetes, Prometheus, Grafana.

I. INTRODUCTION
In recent years, IoT technology has been widely used in
many fields, such as smart cities, smart industries, smart
medical care, and smart surveillance. Numerous IoT devices
are required to successfully deploy these services. According
to statistics, the number of IoT devices will reach 125 billion
by 2030 [1]. These IoT devices generate massive volumes of
data, and coupled with the rise of artificial intelligence (AI),
the data collected by IoT devices offer countless possibilities
for AI applications.

The associate editor coordinating the review of this manuscript and

approving it for publication was Haris Pervaiz .

In the traditional cloud-centric approaches, centralized
machine learning schemes are centrally executed in cloud-
based servers or data centers [2]. However, a cloud-centric
approach suffers from long propagation delay and can
cause unacceptable latency in real-time applications [3].
In addition, the massive data transmitted to the cloud burdens
the backbone network, consumes vast energy, and causes
privacy issues for users. A new computation paradigm, called
Edge Computing (EC), has been proposed to mitigate these
challenges [4], [5]. Edge computing has been proposed as a
solution, in which the computing and storage capabilities of
edge devices are used to take model training closer to where
data are generated. Due to data processing at the network
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edge, such a new computing paradigm significantly improves
data analysis and response time [6].

Edge devices are commonly suitable for efficiently
accelerating deep learning algorithms with low cost. Some
low-power edge devices with hardware accelerators for
AI are developed to fulfill this requirement. Among these
products, a series of products from Nvidia Jetson are
widely popular edge devices. These products contain a
graphics processing unit (GPU) hardware component, par-
allel computing platform, and application programming
interface (API) model called the compute unified device
architecture (CUDA).With the platform, software developers
can use a CUDA-enabled GPU for complex computations
in AI.

Intel and Google also developed a GPU-based acceler-
ator for edge devices, Google Coral and Intel Movidius
Neural Compute Stick (NCS), which can integrate with
Raspberry Pi or other devices. Thus, more heterogeneous
edge devices are deployed to build an edge computing
environment for deep learning applications [7], [8]. However,
building and maintaining a cluster edge environment with
numerous heterogeneous edge devices is a challenge due
to the heterogeneity of these devices [9]. For instance,
Raspberry Pi 3B+ and Raspberry Pi 4 require ARMv6
and ARMv7 architectures, respectively, whereas Jetson
Nano and TX2 require ARM64 architecture. The pack-
ages and environments in different architectures are also
different.

Furthermore, it is very important to monitor the resource
usage and power consumption of edge devices. In addition,
the performance of the inference model on edge devices
must also be monitored to let users easily realize the overall
system and dynamic changes in resources in the operational
environment. Thus, if we aim tomonitor the status of resource
usage of various edge devices and evaluate the overall system
performance, building an efficient, reliable, and easy-to-use
visualized environment is also a challenge. The data for
resource and performance indicators for monitoring collected
data come from heterogeneous edge devices; thus, integrating
these devices and the collected data by considering the hetero-
geneity of devices to effectively build an easy-to-use resource
monitoring platform is the main goal of this work. In our pre-
vious work [10], we successfully proposed a container-based
resource usagemonitoring system for edge devices. However,
only the basic architecture and functions were considered and
implemented.

In this work, we implement a cluster-based edge com-
puting system by integrating Docker [11], Kubernetes [12],
Prometheus [13], Grafana [14], and Node Exporter [15]
software to monitor the overall resource usage and energy
consumption with visualization techniques and evaluate the
performance of deploying the proposed system on three
object detection algorithms of AI: the single-shot multibox
detector (SSD) [16], YOLO, and Faster region-based convo-
lutional neural network (Faster R-CNN) [17], respectively.
With Kubernetes, the cluster system can be easily established

and deployed. With Node Exporter, the relevant performance
indicators in various edge devices are efficiently collected.
In addition, Prometheus integrates device backhaul perfor-
mance indicators stored in the database as source information.
Then, Grafana is deployed as a visualized platform to show
the operational status of each device in real time and run
the deep learning module on the edge devices by observing
changes in performance on the panel to verify the results of
this visualized platform.

The main contribution of this work is that we successfully
implement a cluster-based edge computing environment by
integrating the following technologies, which are the Docker,
Kubernetes, Prometheus, Grafana, and Node Exporter to
build an easy-to-use and friendly resource monitoring
platform to effectively monitor the status of resource usage
of various edge devices and evaluate the overall system
performance.

The rest of this paper is organized as follows.
Section II introduces the literature review and related
works. In Section III, the system architecture and imple-
mentations are presented. Experimental results are shown
in Section IV. Finally, concluding remarks are given
in Section V.

II. BACKGROUND REVIEW AND RELATED WORKS
In this section, background knowledge and related works are
introduced, including Docker, Prometheous, Node Exporter,
Grafana, object detection, and related works.

A. DOCKER
Docker is open-source software for developing, deploying,
and executing applications [11]. Docker allows users to sep-
arate applications in the system environment to form smaller
containers, increasing the speed of software deployment. It is
designed to simplify and standardize deployment methods
in various environments and contributes significantly to
adopting this service design and management style. The
software has the following advantages:

1) Lightweight resource utilization: Containers isolate
and use the host’s kernel at the process level rather than
virtualizing the entire operating system.

2) Portability: All environment parameters of the con-
tainerized application are bundled into a container,
allowing it to run on any Docker host.

3) Predictability: Hosts do not care what is running inside
the container, and the container does not care on
which host it runs. All interfaces are standardized, and
interactions are predictable.

Docker containers are similar to virtual machines, but
containers virtualize operating systems, whereas virtual
machines virtualize hardware. Thus, containers are more
portable and consume fewer system resources than virtual
machines [6]. A core operating system is run independently
inside the container to be deployed in different system
environments regardless of the differences in various system
environments.
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B. PROMETHEOUS
Prometheus is open-source software for environmental mon-
itoring and alerting [13]. It records real-time indicators in
a time-series database (TSDB) built using the HTTP pull
model and has flexible query and instant alerting functions.
The Prometheus ecosystem consists of multiple components,
which are mainly presented as (1) the Prometheus server
which scrapes and stores time series data. (2) the client
libraries are used to detect application codes. (3) an alert
manager is used to handle alerts.

C. NODE EXPORTER
Node Exporter is a small index collection program, which is
mainly used as a data source for Prometheus [15]. It captures
different index data in real time and constructs an http pull
model to provide Prometheus for data collection and storage.

D. GRAFANA
Grafana is an open-source system for multi platform analysis
and interactive visualization [14]. Grafana supports a consid-
erable number of data sources to facilitate data visualization.
When connected to data sources, it provides charts, graphs,
and alarms for the web. It also converts the TSDB data into
exquisite graphics and visual effect tools and can be expanded
through the plugin system. Users can employ the interactive
query builder to create sophisticated monitoring dashboards.

E. OBJECT DETECTION
1) YOLO
YOLO stands for ‘‘You Only Look Once’’ is a real-time
object detection system [18] that applies a single deep
neural network to the full image. The neural network divides
an image into regions and predicts bounding boxes and
probabilities for a region in the image. For object classi-
fication and detection, YOLO provides pretrained models
for implementing the image recognition algorithms. In this
experiment of this study, we use the Microsoft Common
Objects in Context (COCO) dataset which has 80 categories
to evaluate the implementation of our proposed system.

2) FASTER R-CNN
The architecture of Faster R-CNN has several moving parts
that make it become a complex algorithm [17]. For object
detection of an image, the following steps are performed: (1)
A list of bounding boxes are searched and marked. (2) A label
is assigned to each bounding box. (3) The probability values
are obtained with respect to each label and bounding box.
Each image which is represented by height x width x depth is
processed through a pretrained CNN through the intermediate
layers. Finally, a convolutional feature map is obtained.

In addition, to determine a predefined number of regions
(also called bounding boxes) which may contain objects,
Faster R-CNN method uses a feature which was processed
by CNN algorithms, that is commonly called region proposal
network (RPN). Generating a variable-length list of bounding

boxes is one of the issues in Object Detection. In addition,
using anchors in RPN is one of the solutions to solve these
issues.

The anchor is a fixed-sized reference bounding box
placed uniformly throughout the original image. This anchor
determines any relevant object inside the anchor and ‘‘how to
adjust the anchor better to fit the relevant object’’ [17]. Then,
the region of interest applies bounding boxes with relevant
objects and extracts features corresponding to the relevant
object into new tensors.

3) SINGLE SHOOT MULTI-BOX DETECTOR
The feed-forward convolutional network produces a fixed-
size collection of bounding boxes. In addition, scores for the
presence of object class instance in the boxes, followed by a
non-maximum suppression step to produce the final detection
results, become a base of the SSD [16]. The important feature
of the SSD is applied to multi-scale convolutional bounding
box output attached to multiple feature maps at the top of the
network. The SSD creates an efficient space of box shapes
and improves performance.

4) DeepStream
DeepStream SDK provides AI-powered intelligent video
analytics applications and services, which are suitable as
streaming analytics toolkits [19]. The DeepStream SDK used
the GStreamer framework, designed to write an audio and
video application easier to linked and arranged in a pipeline.
Further, this pipeline will then defined as the flow of data.
The core function of GStreamer is to provide a framework
for plugins, data flow, and media type handling. Finally, the
Deepstream SDK can be optimized to build end-to-end AI-
powered applications for analyzing video and sensor data.

F. RELATED WORKS
In the following, some related works are given to let readers
realize recent related studies, which are about the research
of performance evaluation and resource monitoring. In [20],
Marathe et al. analyze Docker and other containers, which
help this study to specifically realize the Docker Swarm
and Kubernetes technology, and show how to access the
cluster node service through the help of Docker swarm and
Kubernetes, and explain the differences between them.

Sukhija et al. [21] proposed an active monitoring and
management data center operation architecture that can
scale to accommodate the heterogeneity and complexity of
the new generation of systems. The proposed architecture
of this work enabled large-scale active monitoring and
management by integrating the latest technologies such as
Kubernetes, Prometheus, Grafana, and other predictive plat-
forms with data. This comprehensive infrastructure helped
centralize services, coordinate deployment, automatically
analyze streaming data, correlate data from multiple sources,
and set alarm thresholds to determine core issues from a
single visualized graph.
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Concerning related work on resource monitoring, Wenyan
Chen et al. [22] proposed two popular monitoring tools,
Perf and Prometheus, to explore features of the micro-
architecture and application level of parallel workloads
running in containers of the same server. Chen et al.
believed that workloads play an essential role in resource
allocation and performance optimization. Their research
focused on quantifying the interference caused by workloads
by analyzing the characteristics of workloads run separately
at the same location. In [23], the authors formulated a
scheduling problem to optimize the framework and proposed
an efficient heuristics algorithm based on the simulated
annealing strategy. The results indicate that their frameworks
increase the monitoring frame rate up to 10 times and reduce
the detection delay by up to 85% compared to the cloud
monitoring solution.

For edge computing, power consumption is a critical issue.
Most edge devices are often resource-constrained; thus, it is
difficult for edge devices to run deep learning applications,
which often need substantial computations and energy. Some
related works on power consumption on edge devices are
introduced in the following.

In [24], the authors presented a novel time-energy-cost
analysis of wimpy edge computing compared to traditional
brawny cloud computing. The researcher used a brawny
heterogeneous Amazon EC2 and Jetson TK1 and TX1 as
a wimpy heterogeneous system. The results indicate that
Jetson TX1 has worse time-cost performance than Jetson
TK1 systems because Jetson TX1 has a lower operating
core clock frequency and lower instructions per cycle for
the Jetson TX1 GPU on some computationally intensive
applications compared with Jetson TK1. In [25], the authors
also studied the performance analysis considering energy
efficiency. In this study, two matrices were used to measure
energy consumption. A medium-scale HPC system was set
up in the experiment to illustrate total energy use. The
experimental results reveal that the underlying architecture
and programming model are crucial factors for performance
and energy efficiency.

In [26], the authors investigated the power consumption
of deep learning applications on embedded GPU systems.
They proposed using YOLO methods to perform a real-time
object detection algorithm on Jetson TX1 and TX2. They
also implemented low-power image recognition challenges to
evaluate the system. The experimental results demonstrated
that Jetson TX2withMax-Nmode had the highest throughput
and efficiency. The results also indicated a trade-off between
the throughput and power efficiency, which could be adjusted
by observing edge devices in TX2.

In [27], the authors proposed a deep learning-basedmethod
to detect the traffic flow on the edge node. First, the authors
provided a vehicle detection algorithm based on the YOLO
v3 model trained with a significant volume of traffic data.
This model was pruned to ensure that it was effective on
edge devices. Then, a real-time vehicle tracking counter
was proposed combining vehicle detection and tracking

algorithms to detect traffic flow. Finally, the author migrated
and deployed the vehicle detection network and multiple
object tracking network to the Jetson TX2 platform. On edge
devices, the test results indicated that the model could detect
the traffic flow with an average processing speed of 37.9 FPS
and an average accuracy of 92.0%.

In [28], heterogeneous edge devices, Jetson Xavier, Jetson
TX2, and Jetson Nano, were used to evaluate the power
consumption and processing frame rates. The experimental
results demonstrated that high performance was required,
whereas the power consumption was low on a mobile robot.
In addition, the results revealed that Jetson TX2 had the best
power efficiency compared to Xavier and Nano. In [29], the
authors proposed a method to reduce energy consumption
without compromising the accuracy and frame rate. AGoogle
Coral USB accelerator and Raspberry Pi 4 devices were
used in this work. The experimental results indicated that the
accuracy could reach 62.3%. In addition, running the CNN in
this work is faster and more efficient than that in a tiny YOLO
network.

In [30], a power-efficient layer mapping technique for
CNNs was deployed on integrated CPUs and GPUs. The
experiments on Nvidia Jetson TX2 demonstrated that layer
mapping YOLO v3-Tiny influences power consumption.
From the experimental results, (1) almost all convolutional
layers were unsuitable for mapping to CPUs. (2) the pooling
layer could be mapped to the CPU to reduce power
consumption, but a larger output tensor could decrease the
inference speed. (3) the detection layer could be mapped to
the CPU as long as its floating-point operations were not
too large. Finally, (4) the channel and upsampling layers
were suitable for mapping to CPUs. This study provided
information that can be used to develop power-efficient layer
mapping strategies to integrate the CPU and GPU platforms.

III. SYSTEM ARCHITECTURE AND IMPLEMENTATION
In this section, we present the system architecture and
its implementation. First, the software architecture and its
components are introduced. Then, the main components, the
master and worker nodes, are also provided. Finally, the
system implementations of the proposed system are presented
specifically.

A. SYSTEM ARCHITECTURE
The overall software architecture of the proposed system is
shown in Fig. 1. The proposed system is divided into two
parts, the first one is the master node, which consists of four
components that will be introduced in detail next. The second
one is the worker node, which consists of three components
that will also be elaborated in the following section.

In this work, a heterogeneous edge computing system is
implemented, in which the hardware equipment of Raspberry
Pi 3B+, Raspberry Pi 4, Nvidia Jetson Nano, and Nvidia
Jetson TX2was deployed. Open-source software is employed
to establish a containerized environment in the system. The
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FIGURE 1. The software architecture of the proposed system.

FIGURE 2. The processing flow of the proposed system.

construction steps of the proposed system, as shown in Fig. 2,
are listed as follows:
• Step1: The Kubernetes and Docker software is used to
establish a containerized system environment and man-
age the running status and updates between containers
to achieve a high-quality service environment.

• Step2: Prometheus and Grafana software is deployed on
the server host to serve as a monitoring tool for system
index collection and visual presentation.

• Step3: Prometheus Node Exporter software deploys the
containerization to edge computing devices to collect the
internal system indicators for each device. It monitors
the resource status for each device through Prometheus
to return the indicator data and store them in a TSDB.

• Step4: The resource usage status of the devices in
the edge computing environment is presented visually
through the Grafana software.

• Stpe5: The models trained on the server host are finally
deployed on edge devices to verify the monitored
performance changes.

B. MASTER AND WORKER NODES
In this section, we first introduce the main construction
components of the system environment. Then, we introduce
the operations and service deployments with respect to the
master and worker nodes, respectively.

1) SYSTEM ENVIRONMENT CONSTRUCTION
AND SERVICE DEPLOYMENT
Concerning the system environment construction, open-
source software establishes a containerized system environ-
ment. First, the Kubernetes software and Docker software
establish a cluster environment, where the server host serves
as the master node in the cluster, whereas the edge devices
serve as the cluster worker nodes to provide a schedule
of service allocation. The master node acts as the primary
control plane for the Kubernetes cluster. It also acts as
the primary contact point for administrators and users.
In addition, it also provides several cluster-wide systems for
relatively simple working nodes. In general, components on
the master server can work together to accept user requests,
determine the best way to schedule workload containers,
authenticate clients and nodes, adjust cluster-wide networks,
and manage scaling and health-check responsibilities. These
components can be installed on a single computer or
distributed across multiple servers. In the following section,
the components and operations of the primary and worker
nodes are elaborated on in detail, respectively.

2) MASTER NODE
The components of themaster node are introduced as follows:

1) API server: The API server component is one of the
most important primary services. This component is
the primary management point for the entire cluster
because it allows users to configure the workload
and organization units for Kubernetes. This server is
also responsible for ensuring that the service details
of the etcd storage and deployed containers are
consistent. In addition, it acts as a bridge between
various components to maintain the health of the
cluster and propagate information and commands. The
API server implements the RESTful API interface,
indicating that many different tools and libraries can
easily communicate with it. As the default method for
local computers to interact with the sets of Kubernetes,
a client called kubectl can be used.

2) Etcd: Etcd is an open-source, distributed, consis-
tent key-value storage used for shared configura-
tion, service discovery, and scheduler coordination
of distributed systems. It is the primary datastore of
Kubernetes. As the primary datastore of Kubernetes,
etcd stores and replicates the state of all Kubernetes
clusters. As it is a key component of a Kuber-
netes cluster, etcd must have reliable configuration and
management methods. Thus, the component of etcd is
used to store configuration data, which is accessible to
each node in the cluster. This component can be used
for service discovery and configuring/re-configuring
components based on the latest information. In addi-
tion, the component is also used to obtain features,
such as leader elections and distributed locking to
maintain the cluster status. Etcd can be configured on
a single primary server or between multiple machines
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in a production scenario. The interface of setting or
retrieving values of the component is also designed to
provide a simple HTTP/JSON API.

3) Controller-Manager: The component of controller
manager is responsible for processing and managing
many tasks. It manages different controllers which
regulate the state of the cluster, manage the life cycle
of workloads and perform routine tasks. For instance,
the replication controller ensures that the number of
copies defined for the Pod corresponds to the number
of current deployments on the cluster. Details of these
operations are written to etcd, where the controller
manager monitors changes through the API server.

4) Scheduler: The component of scheduler is responsible
for assigning workloads to specific nodes in the cluster.
It reads the operational requirements of the workloads,
analyzes the current infrastructure environment and
places works on one or more acceptable nodes.
Scheduler is also responsible for tracking the available
capacity of each host to ensure that the workloads are
not larger than the available resources. In addition,
the component of scheduler has to know the total
capacity and the resources that have been allocated to
the existing workloads of each server.

3) WORKER NODE
In the system, the worker node consists of three components:

1) Kubelet: The Kubelet component in the worker node
provides services for the primary contact point for each
node in a cluster group. The component is responsible
for transmitting information forward and backward
with the control plane services. It interacts with the etcd
storage to read configuration values or write new values
in detail. In addition, theKubelet service communicates
with the primary component for authentication in the
cluster and receives commands and work. The received
work acts as a manifest that defines the amount of
work and operational parameters. Then, the Kubelet
component is responsible for maintaining the working
state on the server node. It controls the container
operations of starting or destroying as the container
needs.

2) Proxy: The proxy component must run the proxy
services on each server node to manage the separate
segmentation of the host’s subnet andmake the services
available to other components. The proxy component
forwards requests to the correct container and performs
load balancing. In addition, the component is usually
responsible for ensuring that the network environment
is predictable and accessible but isolated where appro-
priate.

3) Container runtime: The first component each node
must have is the container runtime. Typically, this
requirement can be met by installing and running
Docker, but alternatives, such as rkt and runc, can
also be used. Containers are responsible for starting

FIGURE 3. The Kubernetes cluster architecture.

and managing containers when they run, and these
applications are encapsulated in a relatively isolated but
lightweight operating environment. Each unit of work
in the cluster is implemented at its base level as one or
more containers that must be deployed. The container
runtime on each node is the component that eventually
runs the container defined in the workload submitted to
the cluster.

The main components of the master and worker nodes are
described above. Next, the processes of deploying services
throughout the cluster system are presented. First, when the
cluster aims to schedule services on the worker node, the
user inputs the instructions to establish the pods [31] through
kubectl. The users authenticate the instructions and pass
them to the API server in the master node, which backs
up the instructions to etcd. Second, the controller manager
receives a message from the API server, which must create
a new pod and check that the new pod will be built if the
resources are allowed. Finally, when the scheduler visits the
API server regularly, it asks the controller manager whether a
new pod has been built or found. The scheduler is responsible
for delivering the pod to the most suitable node. Although
the processes in practice seem to be complex, Kubernetes
automatically completes the subsequent deployment actions.
The cluster architecture of Kubernetes is shown in Fig 3.

In the following, the system implementations of the system
are introduced.

C. SYSTEM IMPLEMENTATION
A monitoring system is built on the edge server to collect
all data on resource indicators for edge devices, using
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FIGURE 4. The resource index from the implementations of node
exporter.

FIGURE 5. An example of setting the index mining of entities using
Prometheus.

Prometheus to collect and store them. In addition, Grafana
is used to visualize the data of resource indicators as well as
the power consumption data.

1) ACQUISITION OF RESOURCE INDICATORS
The system uses Node Exporter as a service to collect and
provide a standard format index to Prometheus for storage.
The heterogeneous equipment must deploy Node Exporter
with different environmental architectures, such as Raspberry
Pi 3 and 4, which use the ARMv6 and ARMv7 architectures,
respectively. The Nvidia Jetson Nano and Jetson TX2 use
the ARM64 architecture. Each device node uses the deployed
Node Exporter to collect internal resource indicators, which
exports each resource indicator retrieved according to the
internal settings to the corresponding port (its default value
is 9100). The derived resource indicators are primarily CPU
usage, memory usage, and system load, as presented in
Figure 4.

2) RESOURCE INDICATORS FOR UNIFIED STORAGE
After obtaining the resource indicator data for various
equipment, they are stored in databases for monitoring and
use by other services. This work uses Prometheus as the

FIGURE 6. An example of deploying Prometheus to collect resource
indicators from Node Exporter.

FIGURE 7. Setting interface for data sources with Prometheus.

FIGURE 8. Visualization for multiple indicator types on the same panel.

database for data integration and storage, which is deployed
on the server side. The data stored in Prometheus are time-
series data, which are uniquely identified by the name of the
metric and a series of tags (also called labels). Different tags
represent different time series. The time-series data consist of
the following formats:
• Indicator name: The indicator name should have a
semantic meaning and is generally used to indicate
the function of the indicator. For instance, the indica-
tor http_requests_total represents the total number of
HTTP requests. Generally, the indicator name comprises
ASCII characters, numbers, underscores, and colons.
The definition of the indicator name must meet the rules
of regular expressions [a-z, A-Z:][a-z, A-Z, 0-9:]*.

• Label: The label makes the same time-series samples
have different dimensions of identity. For instance, the
label http_requests_totalmethod=‘‘Get’’ represents the
get transmission method of user’s requests. The other
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FIGURE 9. An Illustrative example of the dashboard with respect to different types of resource indicators of edge devices.

transmission method is the post method. The keys in
the label comprise ASCII characters, numbers, and
underscores. The definition of label must meet the rules
of regular expressions [a-z, A-Z:][a-z, A-Z, 0-9:]*.

• Samples: The samples represent the actual time series,
and each series includes the floating-point values of
float64 and a millisecond timestamp.

Prometheus uses indicator data as the stored time-series
data. According to the user needs, indicator data can be
classified based on the index mining of entities. An example
of setting the index mining of entities using Prometheus is
shown in Fig. 5.

After setting up the index mining of entities, the resource
index is collected via Node Exporter deployed on the
listening device to consolidate and store data. Prometheus
stores the physical returned indicators in the time-series
database. In addition to effectively controlling data storage,
Prometheus can easily control storage time through the
settings. Moreover, Fig. 6 depicts the implementations of
deploying Prometheus on a listening device to collect
resource indicators from Node Exporter.

Prometheus also provides a simple data search interface.
A query gathers information for the required resource
indicators by inputting the corresponding indicator grid.
For instance, by inputting go_info, one can view the entity
name and task classification for each monitoring device, the
version, and other information.

3) DATA VISUALIZATION OF RESOURCE INDICATORS
After collecting and storing data by Prometheus, Grafana
open-source software is deployed on the server to provide
a visualization environment for different resource indicators
of edge devices. In this work, Prometheus is responsible for
collecting data, and Grafana is used to set up a database to
store the resource indicator data. The setting interface for data
sources with Prometheus is presented in Fig. 7.
A panel is needed to perform an indexed-based syntax

query with a simple counter to obtain the number of
CPUs corresponding to the physical devices to visualize the
resource indicator data. In addition, the panel is not limited
to the visualization of one indicator. The data from multiple

indicator types can be visualized on the same panel to display
the changes in these indicators. The visualization for multiple
indicator types on the same panel is shown in Fig. 8.
In this study, Grafana was used to integrate panel types into

a dashboard interface, where resource indicators for physical
devices are visualized with appropriate panels integrated into
an interface to provide monitoring and evaluation concerning
resource usage for edge devices. In addition, Fig. 9 shows
the dashboard of the system implementations for different
resource indicator types.

D. EXPERIMENTAL WORKFLOW
In this paper, Fig. 10 presents the experimental workflow of
this system. The experiment was run by launching various
object detection algorithms on Nvidia Jetson devices and
classifying the images on Raspberry Pi 4 devices with the
NCS. Three object detection algorithms, Faster-RCNN, SSD,
and YOLO v3, use the DeepStream pipeline. In addition,
the Raspberry Pi 4 device also uses the NCS to run the
Inception-V3, VGG16, and MobileNet algorithms. In the
following experiment, we will show the experimental results
for integrating Kubernetes, Prometheus, Grafana, and Node
Exporter software.

IV. EXPERIMENTAL RESULTS
In this section, the experimental results are presented to
illustrate the analysis results of the implemented system.

A. SETTINGS FOR THE EXPERIMENTAL ENVIRONMENT
In this work, one server host and four edge devices are
integrated, and the server host acts as the master node in the
Kubernetes cluster architecture that deploys Prometheus and
Grafana software tomanage the container services of the edge
devices. The experimental environment of the Kubernetes
cluster architecture is illustrated in is shown in Fig. 11. The
hardware specifications of the primary and worker nodes are
presented in Table 1, and the deployed software specifications
are listed in Table 2.

The Kubernetes master node is built to create a Kubernetes
cluster, which is added as a working node by initializing the
cluster token to the edge devices generated by initializing the
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TABLE 1. Hardware specification of the proposed system.

FIGURE 10. Workflow for the experiment.

basic Kubernetes suite. Then, four edge devices, Raspberry
Pi 3 and 4 and Jetson Nano and TX2, were installed in the
Kubernetes suite as working nodes but were not initialized.
Then, the individual token generated by the master node was
added to join the cluster to complete the initial setup of the
entire system cluster.

FIGURE 11. Kubernetes cluster architecture in the experimental
environment.

TABLE 2. Software specifications of the proposed system.

B. DATA COLLECTION AND VISUALIZATION
In this study, the data collected from four heterogeneous
edge devices (Nvidia Jetson Nano, Nvidia Jetson TX2,
Raspberry Pi 3, and Raspberry Pi 4) are visualized through
Prometheus. In addition, the resource usage of these devices
is also monitored using Prometheus. Among the devices,
the Raspberry Pi 4 device was used as a verification object
to observe resource usage status after executing the deep
learning methods. The resources include CPU, memory,
and the average system load. In the implemented system,
the device resource usage was monitored with the three
proposed dashboards: (1) the resource monitoring panel,
(2) device health status panel, and (3) parallel monitoring
panel. An illustrative example is that we use the Jetson Nano
device to run the Single ShotMultiBoxDetector (SSD) object
detection methods. The status of resource usage is shown
in Fig. 12.
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FIGURE 12. Status monitoring of resource usage by Jetson Nano while running the SSD object detection methods.

FIGURE 13. Status monitoring of the power consumption of Jetson Nano while running the SSD object detection methods.

FIGURE 14. Comparison of power consumption using Jetson Nano for different object detection methods: (a) SSD, (b) YOLO, and (c) Faster
R-CNN.

In addition, the power consumption of Jetson Nano while
running the SSD object detection methods is illustrated in
Fig. 13. We realize the power fluctuation by integrating
with the INA219 wattmeter and Grafana. The fluctuation
is defined as the high dynamic range of electricity [32],
captured by the INA219 wattmeter and visualized in Grafana.
When the Jetson Nano runs the object detection algorithm,

the power consumption and processing load are high (as
shown in Fig. 13). In addition to the SSD object detection
algorithm, we also employed the YOLO and Faster R-CNN
object detection algorithms. The comparison results of the
power consumption using Jetson Nano concerning these
different object detection methods are obtained, as depicted
in Fig. 14.

VOLUME 10, 2022 38467



Y.-W. Chan et al.: Implementation of Cluster-Based Heterogeneous EC System for Resource Monitoring

In this work, the performance metrics we use are mainly
referred to the study [25] which uses two metrics to measure
the energy consumption, they are the idle power, denoted
as Pidle, and the processing power, denoted as, Pprocessing,
respectively. The idle power indicates the consumed power
when the edge device runs all the system functions in the
background. Thus, it does not run any object detection
applications. The processing power Pprocessing indicates that
the consumed power when the edge device runs the object
detection applications. The total power, denoted as Ptotal ,
is defined as the sum of the idle power and the processing
power. All the processes will be recorded in the database and
also will be visualized using Grafana, as shown in Fig. 14.
In addition, to calculate the energy consumed run in the
object detection applications, which is denoted as Eprocessing
is calculated by Eq. (1).

Eprocessing =
∫ tend

tstart
Pprocessing(t) dt, (1)

where tstart and tend represent the time when the application
starts and finishes.

The energy consumed for system idle, denoted as Eidle,
is calculated as presented in Eq. (2).

Eidle =
∫ tend

tstart
Pidle(t) dt. (2)

The total energy consumed, denoted as Etotal , is calculated
as Etotal = Eidle + Eprocessing. The energy-performance
efficiency is calculated and evaluated by using the product
of the total consumed energy and the time amount of delay,
which represents the performance. In this work, we use
the energy-performance efficiency metric to prevent from
choosing configurations that achieve faster execution time
while much more energy is consumed.

C. MODEL DEPLOYMENT AND VALIDATION
In this study, we deploy three deep learning models, the
Inception-v3, VGG16, and MobileNet on Raspberry Pi 4,
to validate the performance of the implemented system.
The three models are first performed for vehicle type
identification. The data set in this study is based on the
most commonly stolen wheels of cars in the United States
in 2017 [33]. Thus, we only selected the first 10 classes to
shorten the training time.

1) Honda Civic (1998): 45,062
2) Honda Accord (1997): 43,764
3) Ford F 150 (2006): 35,105
4) Chevrolet Silverado (2004): 30.056
5) Toyota Camry (2017): 17,276
6) Nissan Altima (2016): 13,358
7) Toyota Corolla (2016): 12,337
8) Dodge/Ram Pickup (2001): 12,004
9) GMC Sierra (2017): 10,865

10) Chevrolet Impala (2008): 9,487
The data represent the number of stolen cars per model

in 2017. Automotive images are extracted from the Vehicle

FIGURE 15. Resource changes of CPU when running the three
unoptimized models with FP16 and FP32.

Manufacturing andModel Recognition Data Set (VMMRdb).
Multiyear vehicles were mapped to the stolen car category
to provide more samples. These images consist of 6877 files
that contain 10 classes based on the selected category.
For training purposes, the data set is divided into three
types for training, validation, and testing with 70%, 10%
and 20% percentages. The training dataset consists of
5098 images from 10 classes. The validation data set consists
of 586 images from 10 classes. The testing data set consists
of 1193 images that belong to 10 classes. Then, the models
were performed with FP16 and FP32 to observe the changes
in resources before and after running the optimization
models.

Finally, the method of data set optimization is presented.
Concerning the optimization of the data set, the work
uses open AI software to accelerate the performance of
training and inference. The OpenVINO toolkit developed
by Intel facilitates the deployment of inference processing
models by converting and optimizing training models for any
downstream hardware target. The toolkit supports the CPU
trained TensorFlow, Caffe and MXNet, integrated GPUs,
VPUs (Movidius Meriad 2/Nerve Computing Stick), and
FPGA -trained models. The system optimizes the deep
learning library using the TensorFlow framework. The data
analytics acceleration library and Intel Python distribution
are the basic building blocks of machine learning. The
deep neural network open-source library contains CPU
optimization capabilities.

In the implemented system, the resource changes of CPU
and memory when running the Inception-v3, VGG16, and
Mobilenet three unoptimized models with FP 16 and FP32
are shown in Fig. 15 and Fig. 16, respectively. On the
other hand, the resource changes of CPU and memory when
running the three optimized models with FP 16 and FP32
are then shown in Figs. 17 and 18. From these figures,
we see that the status of resources change can be monitored.
In terms of CPU usage, there was no significant difference
between FP16 and FP32 before and after optimization,
with total CPU usage: VGG16 (15%), InceptionV3 (20%),
and Mobilenet (33%). After optimization, the more obvious
difference for the overall resource change curve becomes
more flat. The use of resources in memory is not too
obvious curve, it can be seen that the demand for memory
is small.
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FIGURE 16. Resource changes of memory when running the three
unoptimized models with FP16 and FP32.

FIGURE 17. Resource changes of CPU when running the three optimized
models with FP16 and FP32.

FIGURE 18. Resource changes of memory when running the three
optimized models with FP16 and FP32.

The experimental results show that the internal resource
usage information of heterogeneous devices collected
through Prometheus can be presented in real-time with
Grafana. With the developed monitoring environment, the
time of using CPU and memory when running three training
models in an edge device can be measured. The status
of resources usage can also be monitored and analyzed.
In addition, the differences in resource consumption and
accuracy between models can also be evaluated in this
study. The experimental results verify the availability and
effectiveness of the proposed system.

D. DISCUSSION
To the best of our knowledge, there is no other similar
research works like the work we proposed currently. Thus,
we only compared the proposed work with state-of-the-art
works focusing on the performance monitoring of using
tools to obtain parameters when edge devices run deep
learning algorithms. In [34], the authors proposed Perf4sight,
which allows combinations of various networks, devices,
and frameworks to analyze the memory consumption and

latency for training. In their work, the models were built
to predict memory consumption and the latency of training
for the Jetson TX2 devices and PyTorch frameworks using
decision trees with a mean error of 5.53% and 9.37%,
respectively. These error rates significantly improved those
obtained when modeling the same attributes using the CNN
training technique.

In addition, this study [35] aimed to learn about the
inference workflow and performance of the YOLO network
using the edge devices of Jetson Nano, Jetson Xavier NX,
and Raspberry Pi 4B with NCS. In this benchmark, two
versions of the YOLO network were used to detect different
video content across the three edge devices mentioned above.
The performance of the three edge devices was compared,
and their respective resource characteristics were discussed
and evaluated. Furthermore, practical recommendations were
provided to indicate how to deploy AI applications on
these intelligence edges. In the proposed work, we have
successfully implemented a cluster-based edge computing
environment by integrating open-source software, such
as Docker, Kubernetes, Prometheus, Grafana, and Node
Exporter. We built an easy-to-use resource monitoring
platform, effectively monitored the usage status of memory
and CPU resources in various edge devices, and evaluated the
overall system performance.

V. CONCLUSION
In this paper, we have implemented an integrated per-
formance evaluation and resource monitoring system for
heterogeneous edge devices. In the system, we have success-
fully deployed the Docker software to build a containerized
environment and deployed the Kubernetes software to build a
Edge Computing-based cluster environment. With Docker’s
lightweight and fast-deploying container services, tedious
manual environment construction is no longer required. With
Kubernetes, the system could restart automatically the system
before exception, so as to solve the hassle of having to
reinstall the environment.

In addition, we also successfully deployed Prometheus,
Grafana and Node Exporter software to build a visualized
resource usage monitoring and performance evaluation
system with respect to edge devices. In terms of monitoring
of resource usage, the TSDB of Prometheus could effectively
control the length of the stored data and provide connections.
The resource indicators that Node Exporter could different
types of data. Grafana had a good effect on the visualization
presentation. It was not only a variety of visualization tool
but was also a suitable tool for presenting the various data
sources. The high dynamic range of electricity could be used
to optimize the power consumption of edge devices, and those
fluctuations could also be monitored using Grafana.

In the absence of Docker and Kubernetes, Prometheus,
Node Exporter, and Grafana had to issue multiple installation
instructions and parameter sets that could be used on the
server and device sides. Regardless of the installer’s com-
plexity in management and maintenance, if an environmental
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anomaly or the need for new devices occurred, either the
environment had to be reinstalled or the corresponding
hardware architecture had to be used to determine a matching
software version. With the features of Kubernetes and
Docker, the entire monitoring environment could be managed
and quickly deployed. It was easy to install suitable software
with the implemented system if a new edge device joined the
cluster environment.

In summary, this work provided a high-quality service
deployment and resource monitoring solution. The pre-
models were used in the experiments to verify the effec-
tiveness of the implemented system. The monitoring system
was very important, not just only for deep learning models,
such as big data analysis, distributed systems, and parallel
computing; all were needed to monitor and evaluate various
devices’ internal resources.

Future work will include the following studies. First,
cloud-based architecture will be included in the system
to build a cloud-edge collaboration architecture, where the
cloud-based architecture has powerful computing, storage
and network resources while the edge-based architecture
has the capability of real-time analysis and responses.
Thus, the cloud-edge collaboration architecture would be
more beneficial for edge intelligence applications. Second,
by running simulations on edge devices in this work, deep
learning modules would be performed on only one device.
Thus, deep learning applications would be performed under
the same architecture. In the future, model transformations
will be performed on a cross-device architecture. Finally, with
the Kubeflow platform, a deep learning platform launched
by Kubernetes, we aim to integrate Kubeflow to establish
environmental components compatible with Kubernetes as
the deep learning platform of the proposed system.
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