
Received March 9, 2022, accepted March 29, 2022, date of publication April 11, 2022, date of current version April 15, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3166158

Continual Learning With Speculative
Backpropagation and Activation History
SANGWOO PARK AND TAEWEON SUH , (Member, IEEE)
Department of Computer Science and Engineering, Korea University, Seoul 02841, South Korea

Corresponding author: Taeweon Suh (suhtw@korea.ac.kr)

This work was supported in part by the Institute of Information and Communications Technology Planning and Evaluation (IITP) Grant by
the Korean Government through Ministry of Science and ICT (MSIT) (Research on CPU vulnerability detection and validation) under
Grant 2019-0-00533; in part by the National Research Foundation of Korea (NRF) Grant by the Korean Government through MSIT under
Grant NRF-2022R1A2C1011469; and in part by Samsung Electronics Company Ltd., under Grant IO210204-08384-01.

ABSTRACT Continual learning is gaining traction these days with the explosive emergence of deep learning
applications. Continual learning suffers from a severe problem called catastrophic forgetting. It means that
the trained model loses the previously learned information when training with new data. This paper proposes
two novel ideas for mitigating catastrophic forgetting: Speculative Backpropagation (SB) and Activation
History (AH). The SB enables performing backpropagation based on past knowledge. The AH enables
isolating important weights for the previous task. We evaluated the performance of our scheme in terms
of accuracy and training time. The experiment results show a 4.4% improvement in knowledge preservation
and a 31% reduction in training time, compared to the state-of-the-arts (EWC and SI).

INDEX TERMS Continual learning, lifelong learning, catastrophic forgetting, parallel training, speculative
backpropagation, activation history, training accelerator, FPGA.

I. INTRODUCTION
In tandem with the explosive emergence of deep learning
applications such as streaming services, E-commerce, and
self-driving cars [1]–[4], continual learning is gaining more
traction these days. Continual learning, also known as
lifelong learning or online learning, means that the neural
network is continuously trained for newly generated tasks
and/or tasks from other domains without forgetting the
knowledge obtained from the preceding tasks. It has already
been applied in commercial applications. For example,
Netflix and Amazon gather new data as people interact with
their services and adjust the neural networks accordingly [1].
The self-driving system in Tesla continuously updates its
Deep Neural Network (DNN) based on the data aggregated
from its fleet of approximately 500,000 vehicles [2], [4].

Continual learning suffers from a severe problem called
catastrophic forgetting [5]–[17], which means that the trained
model loses its knowledge after being retrained with a new
task. It is because a neural network is usually trained based on
Stochastic Gradient Descent (SGD), which optimizesweights
in the model only for the current task without considering

The associate editor coordinating the review of this manuscript and

approving it for publication was Marco Cococcioni .

the previous one. If all tasks are available beforehand, the
weights in DNN can be jointly optimized for all tasks
with training [16]. However, it is not feasible in real-world
applications because data is continuously and dynamically
generated as mentioned before. Revamping and completely
retraining the model every time new data arrives, to cope
with catastrophic forgetting, requires a lot of computational
and storage costs. Accordingly, there are research efforts for
addressing catastrophic forgetting in efficient and feasible
ways [8]–[17]. Some studies [8], [9] regularly use the
samples from previous tasks when training a new one. Some
works [16], [17] take the selective approaches, which avoid
drastic changes in the model parameters influencing a lot for
the past tasks and allow the other parameters to change for
accommodating the new tasks.

The DNN training requires a huge amount of processing
time due to its complexity. For example, it takes 8.5 days
for the Inception-BN model to train ImageNet by using four
GeForce GTX 980 cards [48]. There are several products
and studies [24]–[30] for speeding up the training with
special hardware architectures. Google’s Tensor Processing
Unit (TPU) 3 contains two cores containing matrix multiply
and vector processing unit, and 32 GiB memory with
high bandwidth for the training acceleration [24]. Habana

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 38555

https://orcid.org/0000-0002-5831-2176
https://orcid.org/0000-0002-6377-5482
https://orcid.org/0000-0002-7020-1524


S. Park, T. Suh: Continual Learning With Speculative Backpropagation and Activation History

Labs, a startup called from Israeli, released a processor for
training called Gaudi with eight AI-customized cores and a
centralized matrix multiplication engine [25], [26]. Baidu has
announced a low-power AI accelerator chip called Kunlun,
operating in the data center for training [27], [28]. There are
also hardware accelerators for continuous learning. Nanyang
Technological University designed an FPGA accelerator for
the streaming image classifier [34], [35]. The accelerator is
capable of performing incremental class learning for object
classification.

This paper proposes two novel ideas of enhancing the
performance in terms of accuracy and training time in
continual learning: speculative backpropagation (SB) and
activation history (AH). The SB proposed in our prior
work [36] enables the simultaneous operation of forward and
backward propagations in training. The speculation is applied
to the backpropagation based on past knowledge. We found
that the SB helps preserve the previously learned information
to alleviate catastrophic forgetting. The AH enables finding
important weights based on the activation history from the
previous tasks and discourages changes in those weights. The
experiment shows that our approach provides a 4.4% better
accuracy for the past tasks, compared to the state-of-the arts.
The training accelerator implemented in hardware shortens
the training time by up to 31%.

The rest of the paper is organized as follows: Section II
introduces the related works for continual learning and
for AI accelerators. Section III briefs the neural network
training process. Section IV presents the proposed methods
mitigating catastrophic forgetting: Speculative Backpropaga-
tion (SB) and Activation History (AH). Section V evaluates
and reports the performance of the proposedmethods in terms
of accuracy and execution time. Section VI summarizes and
concludes our work with the future direction.

II. RELATED WORK
There are many studies for overcoming catastrophic forget-
ting [5]–[17] in continual learning. Those can largely be
classified into three categories. The first category of theworks
keeps and uses the previous data to mitigate catastrophic
forgetting [8]–[10]. Robins [8] proposed a pseudo-rehearsal
method, which uses random samples of the previous tasks
when training for a new task. Rebuffi et al. [9] used a
representative image, which is the mean feature vector
of the past image data, when training for a new class.
Lopez-Pa et al. [10] suggested the Gradient Episodic
Memory (GEM), which modifies the gradient of the current
task based on episodic memory storing the gradient of the
previous tasks.

The second category of the works optimizes the model
without storing the previous data [11]–[15]. Wu et al. [11]
use Generative Adversarial Networks (GANs) to create the
images containing the previous classes, and the created
images are used when training for new tasks. Li et al. [13]
proposed a method called the Learning Without Forget-
ting (LWF). The LWF trains a convolution layer commonly

used for all the tasks and adds a fully connected layer
separately for each new task. The LWF defines a new loss
function limiting changes in the output of the fully connected
layer for each previous task. Farajtabar et al. [15] presented
an Orthogonal Gradient Descent (OGD) that projects the
gradient of a new task in the orthogonal direction of the
previous task’s gradient. Its projected gradient is used for the
model to get a low error for both new and previous tasks.

The last category of the works adds a regularization term
to the loss function in order to discourage changes to weights
that are important for the previous tasks [16], [17]. Elastic
Weight Consolidation (EWC) [16] adjusts learning rates for
certain weights to minimize changes in parameters important
to the previous tasks. The EWC uses the Fisher information
matrix to approximate the parameter importance and uses it as
a guideline for the weight update. Zenke et al. [17] introduced
Synaptic Intelligence (SI). The SI is similar to the EWC in
that it finds the important parameters for the previous task
and minimizes their change. But, it is different from EWC
in that it considers the entire gradients of the previous tasks
to find parameters rather than using the Fisher information
matrix. The EWC and SI show outstanding performance in
mitigating catastrophic forgetting. These two maintain a 90%
or more in accuracy for the previous domains after training
ten domains [45] and are considered as the state-of-the-arts.

There are studies for the AI accelerator to speed up
the training. The Pezy SC2 [29] is a 2,048-core chip
where each core is able to run eight threads. It performs
linear algebra in parallel for the AI training. The Tokyo
University designed the PFN-MN-3 [30] chip with a 32 GiB
memory. The chip is composed of four dies, each of which
has 2048 processing elements and 512 matrix arithmetic
units for training. There are prior works on the FPGA-
based AI accelerators. Cornami, an AI startup, has been
developing an FPGA-based AI chip [32] for automobile
and electronics markets. Their AI hardware can process
105,000 images per second with FP16 precision. The Flex
Logix InferX X1 FPGA accelerator [33] targets both signal
processing and machine learning. Its 64 processors are
closely coupled with reconfigurable SRAM, which uses a
proprietary interconnection for data movement of the model
weights. There are also FPGA-based accelerator studies for
continual learning. Piyasena et al [34], [35] proposed an
accelerator for the streaming linear discriminant analysis
(SLDA). They designed the SLDA accelerator with CNN
implemented on Xilinx DPU, which is a programmable
engine dedicated to convolutional neural networks. The
accelerator is capable of object classification for life-long
learning.

Table 1 summarizes the comparison between our approach
and prior works. Joint training requires data of all previous
tasks to optimize the model weights for all tasks. On the other
hand, our approach does not require old tasks. Our proposed
method is orthogonal to state-of-the-arts (EWC and SI) in
methods finding important weights for the previous task. The
EWC computes the Fisher information matrix at the end of

38556 VOLUME 10, 2022



S. Park, T. Suh: Continual Learning With Speculative Backpropagation and Activation History

TABLE 1. Comparision of our proposed method with prior works in continual learning.

each task, and the SI computes the parameter regularization
term at the training step of each task. Thus, the EWC and
SI take more time than normal training because of additional
calculations. In contrast, our approach just uses the activation
information to find the important weight. When combined
with the state-of-the-arts, it shows superior performance in
terms of accuracy and training speed.

III. THE NEURAL NETWORK TRAINING
The neural network training requires three sequential oper-
ations: forward propagation, backpropagation, and weight
update. In the forward propagation, data is propagated from
the input layer to the output layer; Each neuron computes
a weighted sum of the inputs from the connected neurons
in its prior layer, and then adds it with a bias, as shown in
Eq. (1). Its output goes through an activation function that
determines data to pass to the next layer. The widely used
activation functions are Rectified Linear Unit (ReLU), Tanh,
and Sigmoid. The ReLU in Eq. (2) is especially used in many
DNNs. It propagates zero to the next layer when the input
is negative, and otherwise bypasses the input value to the
next layer. In the output layer, the Softmax function in Eq. (3)
is widely used in deep learning. It computes the probability
distribution of outcomes (yoz ).

ulj =
N∑
i=1

wlijx
l
i + Bias

l (1)

ylj = max(0, ulj) (2)

yoz =
eu

o
z

n∑
i=1

eu
o
i

(3)

where 1 ≤ i ≤ N , 1 ≤ l ≤ O(i, j, z, k = neuron index, l =
layer index)

The backpropagation is used to adjust the weights (wlij)
by calculating derivatives. This phase begins from the output
layer, which is based on Softmax in our work. The derivative
in the output layer is expressed in Eq. (4). It calculates the
difference between the forward propagation outcome (yoz ) and
target output (tz). The derivative of the error with respect to
the weight is calculated with Eq. (5). The derivative of the
ReLU activation function is calculated with Eq. (6), which is

a 0 when the outcome of Eq. (2) is zero, and a 1 otherwise.

dE
dyoz
= yoz − tz (4)

dE

dylk
=

∑
z

wl+1kz
dE

dyl+1z
(5)

δlk =
dE

dulk
=

dE

dylk

dylk
dulk

(6)

In the DNN training, the weights are adjusted based on
the errors computed in the backpropagation. First, 1wlij is
calculated by multiplying the result of the backpropagation
δli with the result of the forward propagation yl−1j , as shown
in Eq. (7). Weights (wlij) are then updated according to Eq. (8)
where the learning rate η determines the degree of learning.
This process is repeated for all the weights.

1wlij = δ
l
i y
l−1
j (7)

wlij = wlij −1w
l
ijη (8)

IV. MITIGATING CATASTROPHIC FORGETTING
This section details our proposed methods for mitigating
catastrophic forgetting: Speculative Backpropagation and
Activation History. Each method is implemented in a
multi-layer perceptron with two hidden layers (400 neurons
in each layer) [14]–[17], [45], and its performance is
demonstrated with Permuted and Split MNIST benchmarks
detailed in Section V.

A. SOFTMAX HISTORY AND BIASED LERU WITH
SPECULATIVE BACKPROPAGATION (SB)
In the ANN training, the backpropagation is performed based
on the forward propagation outcomes. It means that the
backpropagation can be carried out only after the forward
propagation is finished. Speculative Backpropagation (SB),
our prior work [36], enables the simultaneous operation of
the forward and the backward propagations. The SB is based
on the observation that the Softmax and ReLU outcomes for
the same labels are similar in the temporally near-forward
propagations. Figure 1 shows an example of how the SB is
carried out. At the current time t(i), the backpropagation is
performed based on the Softmax history and previous ReLU
outcomes depicted as red and blue neurons, respectively.
It breaks the inherently sequential nature of SGD in the
backward computation, enabling the simultaneous operation

VOLUME 10, 2022 38557



S. Park, T. Suh: Continual Learning With Speculative Backpropagation and Activation History

TABLE 2. Task 1’s accuracies with SB for different pairs of α and β After training tasks 1 ∼ 4 sequentially. (Task 1’s accuracies with normal training are
82% and 41.1% for handwritten and fashion, respectively).

FIGURE 1. Simultaneous execution of forward and backward
computations with speculative backpropagation, which uses the
accumulated previous forward outcomes. The red neurons have Softmax
history accumulated until time t(i-1), and the blue neurons have previous
ReLU outcomes. These are used for speculative backpropagation at time
t(i ), instead of using current forward outcomes (in yellow and green
neurons). Note that the weights in time t(i ) are used to perform the
speculative backpropagation.

of forward and backward propagations. The SB checks
the speculation correctness based on the threshold. If the
difference between the current Softmax output and the
speculated one is larger than the threshold, the speculated
execution is nullified, and the backpropagation is performed
again with the current Softmax output. According to our
experiments, the reciprocal of the number of classes in the
dataset can be a good candidate for the threshold. In this
paper, the threshold is set to 0.1 for experiments with
Permuted and Split MNISTs.

In addition to the simultaneous operation, we also found
that SB also helps preserve the previously learned infor-
mation for continual learning. In our prior work [36], the
Softmax history is updated with Eq. (9), where α and β
are weights for the current and the accumulated Softmax
outcomes, respectively. Setting α and β to 0.5 empirically
proved to be working well in our prior work for shortening
the training time, while providing comparable or even better
accuracy. For continual learning, we have experimented with
different pairs of α and β. Table 2 shows the experiment
result reporting task 1’s accuracies after sequentially training
Permuted MNISTs (tasks 1 ∼ 4). Giving more weight to β
tends to better mitigate catastrophic forgetting. It is because
the past knowledge is likely to be preserved with more weight
on history. Task 1’s accuracy is the highest when α = 0.2 and
β = 0.8 for MNIST Handwritten and Fashion. However, the

Algorithm 1 Biased ReLU According to Activation History

1: f (ulj): current ReLU output, f (ulj)
′: biased ReLU

2: if f (ulj) == 0 do (when ReLU output is zero)
3: f (ulj)

′
← f (ulj)

′/2; (ReLU is biased towards 0)
4: Else
5: f (ulj)

′
← (f (ulj)

′
+ 1)/2; (ReLU is biased towards 1)

6: Where biased ReLU f (ulj)
′
: (0 <= f (ulj)

′ <= 1)

performance is degraded with the extremely biased case (α =
0.1 and β = 0.9) where the number of miss speculations is
increased. The number of miss speculations is closely related
to the continual learning performance. It is because, when
the speculation is wrong, the backpropagation is performed
with the current Softmax outcome, not the one with the
accumulated history. When α = 0.1 and β = 0.9 for MNIST
Handwritten and Fashion, the miss speculation rates are 11%
and 17%, which are 5% and 3% higher than the ones with
α = 0.2 and β = 0.8, respectively.

yo
′

t(i) = (yot(i)α)+ (yo
′

t(i−1)β) where (α + β = 1)

yot(i) = current Softmax outcome,

yo
′

t(i−1) = accumulated Softmax outcome until time t(i-1)

(9)

The SB performs backpropagation with the most recent
ReLU outcomes. For continual learning, considering both
the most recent and the history of the ReLU outcomes helps
preserve the knowledge. Algorithm 1 shows a method of
reflecting the history of activation outputs, where it defines
f (ulj)

′, referred to as the biased ReLU. The biased ReLU
is adjusted by the current activation outcome whenever
the forward propagation is finished. When the neurons
are deactivated, the biased ReLU becomes closer to 0.
When the neurons are activated, it gets closer to 1.
Algorithm 2 shows a method of speculating the neuron’s
activation based on the biased ReLU. When the biased
ReLU is smaller than 0.5, it predicts the neuron will be
deactivated. Otherwise, it speculates the neuron will be acti-
vated. When SB is performed based on Algorithm 1 and 2,
accuracies of the previous task are higher by 2.3% and
1.9% on average for Permuted Handwritten and Fashion,
respectively.

38558 VOLUME 10, 2022



S. Park, T. Suh: Continual Learning With Speculative Backpropagation and Activation History

Algorithm 2 ReLU Outcome Speculation

1: if f (ulj)
′ < 0.5 do (when biased ReLU is smaller

than 0.5)
2: δlk ← 0; (speculate as the deactivation of the neuron)
3: else
4: δlk ← 1; (speculate as the activation of the neuron)

FIGURE 2. The blue and green ones are activated neurons when
performing forward propagation with task 1 and task 2, respectively. The
blue arrows are the weights of the blue neurons, and they play an
important role in task 1. When training task 2, it is possible to preserve
the knowledge of task 1 with a biased weight update of the blue neurons.
The one with the orange circle is an activated neuron in common for both
task 1 and task 2.

B. BIASED WEIGHT UPDATE WITH ACTIVATION HISTORY
(AH)
For continual learning, it would help preserve the retained
knowledge if important weights for the previous task can
be isolated and affected little when training for other tasks.
We have found two patterns of activated neurons when
training a model for different tasks: (a) While training one
specific task, the neurons activated in the past are more
likely to be activated in the future, and the deactivated
neurons are more likely to be deactivated. (b) The activated
neurons differ from task to task. Only activated neurons
affect the inference result and play an important role in
that task due to the ReLU. The ReLU passes the input
value to the next layer upon activated, or propagates zero to
the next layer otherwise. When experimented with a multi-
layer perceptron for the Permuted MNIST Handwritten and
Fashion, activation probabilities of the same neurons were
87.8% and 84.2% on average, respectively. Figure 2 shows
an example of the activated neurons for task 1 and task 2.
The blue and green ones are activated neurons for task 1 and
task 2, respectively. The neuron with the orange circle is
activated both for tasks 1 and 2. The activation probabilities
of blue neurons for task 1 are 81% and 77.2% on average
for Handwritten and Fashion, respectively. The activation
probabilities of green neurons for task 2 are 88.6% and
88.1% on average for Handwritten and Fashion, respectively.
Thus, it is reasonable to say that the weights connected to
the blue and green neurons are important for tasks 1 and 2,
respectively.

Algorithm 3 shows a method updating the weights
according to the activation history, and Table 3 describes the

Algorithm 3 Biased Weight Update According to Activation
History
1: while weight not converged do
2: g← ∇wf (w) (get gradients with objective function)
3: if ahlj > 0.5 do (if the neuron is activated with

high probability for the previous task)
4: g← g · r (reduce the gradients of the weights)
5: w← w− η · g (update the weight)
6: end while
7: ahlj ← (ahlj + f (u

l
j)
′)/2; (accumulate biased ReLU

to activation history after training each task)
8: return w

TABLE 3. Notations used in algorithm 3.

notation of Algorithm 3. A variable called activation history
(ahlj) stores the tendency of neuron’s activation while training
for the previous tasks. After training for each task, ahlj is
adjusted with the biased ReLU computed in Algorithm 1.
r specifies the degree of weight update and directly affects the
knowledge preservation performance. In proportion to r , the
weights connected to activated neurons in the past are updated
less (line# 3-4), when training for a new task. Table 4 shows
the experiment result reporting task 1’s accuracies accord-
ing to r , after sequentially training Permuted MNISTs
(tasks 1 ∼ 4). For each distinct selection of r , the accuracy is
higher compared to the normal training (baseline), meaning
that the retained knowledge is better preserved. In general,
it tends to be better as r gets smaller. The accuracies reach
the highest with r = 0.3 for MNIST Handwritten and with
r = 0.4 for Fashion. However, we have found that the
performance for the new task gets degraded when r is too
low. For example, when r is set to 0.1, the task 4’s accuracy
is 98.3% on average, which is 0.7% lower than the baseline
(99%). This is because some neurons (such as the one in the
orange circle in Figure 2) are activated for both previous and
current tasks. In such a case, a tiny r indicates that the weights
connected to the activated neurons in the past are minimally
trained for a new task. According to our experiment, 47.2% of
neurons were commonly activated both for task1 and task2,
and 49.8% of neurons were activated in common both for
task2 and task3. The weights connected to these neurons
affect the inference for both tasks. Therefore, in order to

VOLUME 10, 2022 38559



S. Park, T. Suh: Continual Learning With Speculative Backpropagation and Activation History

TABLE 4. Task 1’s accuracies for AH with different ratios of weight update After training tasks 1 ∼ 4 sequentially. (Task 1’s accuracies with normal training
are 82% and 41.1% for handwritten and fashion, respectively).

balance knowledge retention and new learning, it is crucial
to find the appropriate r . We empirically found that r =
0.3 is the right selection for preserving the knowledge and
for training for a new task. With r = 0.3, the accuracies of
the previous tasks are roughly 15.1% higher on average than
the baseline without the accuracy loss for a new task.

C. MITIGATING CATASTROPHIC FORGETTING USING
BOTH SB AND AH
SB and AH can be applied together for continual learning
because the two methods are orthogonal. The SB is applied
to Eq. (1-3) for the forward propagation and Eq. (4-6) for the
backward propagation. The AH is applied to Eq. (8) for the
weight update with Algorithm 3. We have found that using
both SB and AH shows better performance for continual
learning. Its evaluation is detailed in Section V.

V. EVALUATION
This section reports the performance of the proposedmethods
in terms of accuracy and execution time.

A. EXPERIMENTAL ENVIRONMENT
We implemented a multi-layer perceptron with the SB and
AH using C language and evaluated its accuracy on an
AMD 3970X 32-core machine with 64GiB main memory
and GeForce RTX 3090 GPU. Permuted and Split MNIST
benchmarks are used to evaluate the continuous learning
capability; The MNIST [38] is a benchmark for classifying
10 different digits. Each task in the Permuted MNIST is
created by the randompermutation of the pixels in the images.
Permuted MNIST is widely adopted [14]–[17], [39], [40],
[41], [45] for the evaluation of continual learning methods.
In this paper, we have created 10 different tasks by
permutation. Split MNIST [14], [15], [17], [41], [45] is also
typically used in the evaluation. It is constructed by separating
10-digit classifications into 5 different binary classification
tasks. The proposed SB and AH were experimented in
two continual learning scenarios [45]: Incremental domain
learning and Incremental task learning; The former [14]–[16]
means that the model with a single-headed output layer
is trained for multi-domain problems. The latter [17], [45]
means the model with a multi-headed output layer is trained
for multiple tasks (one head for each task). Permuted and
Split MNISTs are used in the incremental domain and task
learnings, respectively.

We also implemented hardware accelerators for the
evaluation of training time on an off-the-shelf machine. The
ZCU102 FPGA board [46] is used as an equipment. It has
Zynq UltraScale+ MPSoC [47] and a 4GB DDR4. The
Zynq UltraScale+ is composed of the processing system (PS)
and programmable logic (PL) sections: The PS has a quad-
core Cortex-A53 processor operating at 1.5 GHz. The PL
is configured with the hardware accelerator in our work.
SDSoC 2019.1v [44], a CAD tool from Xilinx, is used
for hardware and software implementation. It provides the
capability of automating the system-level integration for
C/C++/OpenCL code, targeting the Zynq programmable
SoCs. The system-level integration includes the software-
to-hardware translation, its device driver generation, and
kernel creation; Users can specify software functions to
be translated to hardware in SDSoC. We designed two
C functions performing the forward propagation and the
speculative backpropagation. Then, the C functions were
translated to hardware by the SDSoC. Two directives are used
to generate the target hardware: #pragma async to generate
two different hardware operating in parallel and #pragma
pipeline to create the pipelining for maximal throughput. The
synthesized accelerator operates at 100MHz, and the S/W
portion in the code is processed on the Cortex-A53 in the PS.

B. CATASTROPHIC FORGETTING
The proposed methods were implemented on a multi-layer
perceptron with two hidden layers, and each layer has
400 neurons. As mentioned in Section IV, α, β, and r affect
the accuracy of the previous task. The experiments were
performed with α = 0.2 and β = 0.8 for SB and with
r = 0.3 for AH. Figure 3 shows the accuracies for Permuted
MNISTs. The accuracies of all previous tasks with SB are
higher than SGD. In case of the Handwritten, the task1’s
accuracy with SB is 91.1% as shown in Figure 3(a), after
sequentially training from task 1 to task 4. It is 9.1% higher
than the baseline, which is the SGD’s accuracy (82%). In case
of the Fashion in Figure 3(b), the task 1’s accuracy with SB is
52.2%, which is 11.1% higher than the baseline (41.1% with
SGD).

AH outperforms SB in the accuracies of the previous tasks.
When it comes to the Handwritten, the task 1’s accuracy with
AH is 92% after sequentially training from task 1 to task 4.
It is 0.9% higher than the SB. In case of the Fashion, the
task 1’s accuracy with AH is 9.2% higher compared to the

38560 VOLUME 10, 2022



S. Park, T. Suh: Continual Learning With Speculative Backpropagation and Activation History

FIGURE 3. Accuracies of previous tasks for Permuted MNISTs with SB, AH,
SB+AH, EWC and SI. Baseline is normal training with SGD in red.

SB. The SB’s performance on knowledge retention is not as
powerful as AH. However, it enables the simultaneous oper-
ation of forward and backward propagations, shortening the
training time. The training time is reported in Section V.C.
with an off-the-shelf machine.

Combining SB and AH provides superior performance to
eachmethod alone. For the Handwritten, the task 1’s accuracy
with SB+AH is 95.1%, which is 4% and 3.1% better than SB
and AH, respectively. For the Fashion, the task 1’s accuracy
with SB+AH is 78.7%, which is 26.5% and 17.3% higher
than SB and AH, respectively. When comparing with EWC
and SI, the training with SB+AH results in a slightly lower
performance. On average, the accuracy of previous tasks
for Handwritten is 0.9% and 1% lower than EWC and SI,
respectively. For the Fashion, the accuracy is 2.3% and 2%
lower than the one with EWC and SI, respectively.

We have applied and implemented SB and AH on top of
EWC and SI, respectively. Figure 4 shows the accuracies of
previous tasks with the EWC, SI, EWC+SB+AH (ESA), and
SI+SB+AH (SSA) for the Permuted MNISTs. On average,
the accuracies with ESA and SSA are 3.9% and 2.8% higher
than the ones with EWC and SI, respectively. In case of the

FIGURE 4. Accuracies of previous tasks for Permuted MNISTs with EWC,
SI, ESA, and SSA (ESA = EWC+SB+AH, SSA = SI+SB+AH).

Handwritten in Figure 4(a), the task 1’s accuracy with ESA
is 96.9%, which is 4.4% better than the one with EWC. The
accuracy with SSA is 97.8%, which is 4.3% higher than the
one with SI. In case of the Fashion in Figure 4(b), the task 1’s
accuracy with ESA is 82.8%, which is 1.9% better than the
one with EWC. The accuracy with SSA is 83.7%, which is
2.2% higher than the one with SI.

Figure 5 shows the accuracies with the EWC, SI, ESA, and
SSA for the Split MNISTs. On average, the accuracies of the
previous tasks with ESA and SSA are 1.4% and 1.7% better
than EWC and SI, respectively. In case of the Handwritten in
Figure 5(a), the accuracies of tasks 1, 2, and 3 with ESA are
99.3%, 99.5%, and 99.7%, which are 1.9%, 0.9%, and 1.1%
higher than the ones with EWC, respectively. The accuracies
with SSA are 99.8%, 99.4%, and 99.7%, which are 1.7%,
1.9%, and 0.9% superior to the ones with SI, respectively.
In case of the Fashion in Figure 5(b), the accuracies of tasks 1,
2, and 3 with ESA are 99.5%, 98.4%, and 99.6%, which
are 1.2%, 0.9%, and 1.2% higher than the ones with EWC.
The accuracies with SSA are 99.7%, 98.4%, and 99.6%,
which are 1%, 1.4%, and 0.7% superior to the ones with
SI.

Our experiments reveal that continual learning ability is
improved when applying SB and AH on top of EWC or SI.

VOLUME 10, 2022 38561



S. Park, T. Suh: Continual Learning With Speculative Backpropagation and Activation History

FIGURE 5. Accuracies of previous tasks for Split MNISTs with EWC, SI,
ESA, and SSA. (ESA = EWC+SB+AH, SSA = SI+SB+AH).

EWC and SI focus on important weights for the previous
task based on the past gradients. The SB and AH focus
on the activation history and the Softmax outcomes of the
past task. Considering both the previous task’s gradients and
activation history tends to help find important weights better
for continual learning. The implemented scheme minimizes
changes to important weights for previous tasks and trains the
remaining weights for a new task according to the history of
previous tasks.

C. H/W ACCELERATOR AND PERFORMANCE
We implemented four different hardware accelerators using
SDSoC, to compare the training times on an off-the-shelf
device called ZynqUltrascale+: The first two are the baseline
accelerators implementing EWC and SI, respectively. The
other two are the parallel accelerators implementing ESA and
SSA, respectively. The hardware designed in PL performs
two operations; (a) Forward and backward propagation
(b) weight selections based on EWC and SI. The other
works are carried out in software, such as weight update and
activation history accumulation. Table 5 shows the resource
utilization and power consumption of the accelerators target-
ing the Zynq Ultrascale+. In terms of resource utilization,
there are almost no differences between the baselines and the

TABLE 5. Hardware resource utilization and power consumption of
training accelerators on zynq ultrascale+ [47].

FIGURE 6. Normalized execution time of the parallel accelerator for ESA
over the baseline. Baseline is an accelerator for EWC.

parallel accelerators. This is because the parallel accelerator
is composed of roughly the same components as the baseline;
Both accelerators should perform the two operations (forward
and backward propagations) anyway. In tandem with the
similar resource utilizations, the power consumption is also
similar in both accelerators.

Figure 6 shows normalized execution times of the ESA
accelerator over the baseline. With the Permuted MNIST
Handwritten and Fashion in Figure 6(a), the training times
were reduced by 1.30x and 1.29x, respectively. With the
Split MNIST Handwritten and Fashion in Figure 6(b),
the execution times were shortened by 1.31x and 1.308x
over the baseline, respectively. Figure 7 shows normalized
execution times of the SSA accelerator over the baseline.
With the Permuted MNISTs in Figure 7(a), the training times
were reduced by 1.228x and 1.208x. With the Split MNISTs
in Figure 7(b), the execution times were shortened by 1.227x
and 1.218x over the baseline.

The ESA accelerator provides a relatively higher perfor-
mance improvement than SSA in training speed, as shown in
Figures 6 and 7. In the parallel accelerators, the forward and

38562 VOLUME 10, 2022



S. Park, T. Suh: Continual Learning With Speculative Backpropagation and Activation History

FIGURE 7. Normalized execution time of the parallel accelerator for SSA
over the baseline. Baseline is an accelerator for SI.

backward computations are performed in parallel, and addi-
tional operations for EWC and SI are carried out sequentially
afterward. The amount of the additional computations in ESA
is much less than the one in SSA. To find important weights
for the previous task, EWC computes the Fisher information
metric at the end of training for a task, whereas SI computes
the parameter regularization term at every training step of
a task. The speedup over the baseline is decreased as the
sequential part of the operations increases.

When training for task 2 at the first epoch, ESA and SSA
training times are increased by about 1% and 2%, respec-
tively, as shown in Figures 6(b) and 7(b). This is because
the miss speculation rate in SB is increased. As mentioned in
Section IV.A, the SB performs backpropagation again upon
miss speculation, and it negatively affects the execution time.
In the first epoch of training for task 2, the miss speculation
rates of ESA and SSA are 18.8% and 36.6%, respectively.
This is 14.2% and 29.4% higher than the miss rate in the
last epoch of task 1 with ESA (4.6%) and SSA (7.2%). It is
because the speculation in the first epoch is based only on
the knowledge from the previous task. Thus, the speculation
in the first epoch is not likely to be accurate for the current
task. As the training epoch progresses, the speculation ismore
likely to be influenced by the current task based on Eq. (9) and
is getting more accurate. It is reflected in the execution times
at the last epochs shown in Figures 6 and 7.

VI. CONCLUSION
In this paper, we proposed two novel ideas of mitigating
catastrophic forgetting for continual learning: SB and AH.
The SB enables performing backpropagation based on past
knowledge. The AH enables isolating important weights
for the previous task based on the activation history. Our
evaluation reveals the performance advantage of our scheme
in terms of accuracy and training time. The SB+AH
improves the accuracy of the previous tasks by 30.2%,
compared to the normal training, for Permuted MNIST
Fashion. When combined together with the state-of-the-arts
in continual learning, our approach offers the improved
accuracy. Compared with EWC and SI, the accuracies of

the previous task with ESA and SSA were improved by up
to 4.4% and 4.3%, respectively, for the Permuted MNIST
Handwritten. The experiments with hardware accelerators
report shorter execution time in training on an off-the-shelf
device. The training times with ESA and SSA were reduced
by 30% and 22% compared to EWC and SI, respectively, for
the Split MNIST Fashion. In the future, we plan to extend
our work to other deep learning models such as CNN and
RNN.

REFERENCES
[1] C. S. Lee and A. Y. Lee, ‘‘Clinical applications of continual learning

machine learning,’’ Lancet Digit. Health, vol. 2, no. 6, pp. e279–e281,
Jun. 2020.

[2] K. N. Vokinger, S. Feuerriegel, and A. S. Kesselheim, ‘‘Continual learning
in medical devices: FDA’s action plan and beyond,’’ Lancet Digit. Health,
vol. 3, no. 6, pp. e337–e338, Jun. 2021.

[3] M. Chatterjee. (2019). Top 20 Applications of Deep Learning in
2021 Across Industries. [Online]. Available: https://www.mygreatlearning.
com/blog/deep-learning-applications/#healthcare

[4] Towards Data Science. (May 7, 2019). Tesla’s Deep Learning at
Scale: Using Billions of Miles to Train Neural Networks. Accessed:
Apr. 16, 2021. [Online]. Available: https://towardsdatascience.com/teslas-
deep-learning-at-scale-7eed85b235d3

[5] M. McCloskey and N. J. Cohen, ‘‘Catastrophic interference in connec-
tionist networks: The sequential learning problem,’’ in Psychology of
Learning and Motivation, vol. 24. New York, NY, USA: Academic, 1989,
pp. 109–165.

[6] R. Ratcliff, ‘‘Connectionist models of recognition memory: Constraints
imposed by learning and forgetting functions,’’Psychol. Rev., vol. 97, no. 2,
p. 285, 1990.

[7] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio,
‘‘An empirical investigation of catastrophic forgetting in gradient-based
neural networks,’’ 2013, arXiv:1312.6211.

[8] A. Robins, ‘‘Catastrophic forgetting, rehearsal and pseudorehearsal,’’
Connection Sci., vol. 7, no. 2, pp. 123–146, 1995.

[9] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, ‘‘ICaRL:
Incremental classifier and representation learning,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2001–2010.

[10] D. Lopez-Paz and M. Ranzato, ‘‘Gradient episodic memory for continual
learning,’’ 2017, arXiv:1706.08840.

[11] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, and Y. Fu, ‘‘Large scale
incremental learning,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 374–382.

[12] J. Serra, ‘‘Overcoming catastrophic forgetting with hard attention to the
task,’’ in Proc. Int. Conf. Mach. Learn., 2018, pp. 4548–4557.

[13] Z. Li and D. Hoiem, ‘‘Learning without forgetting,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 40, no. 12, pp. 2935–2947, Dec. 2018.

[14] C. V. Nguyen, Y. Li, T. D. Bui, and R. E. Turner, ‘‘Variational continual
learning,’’ 2017, arXiv:1710.10628.

[15] M. Farajtabar, ‘‘Orthogonal gradient descent for continual learning,’’ in
Proc. Int. Conf. Artif. Intell. Statist., 2020, pp. 3762–3773.

[16] K. James, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu,
K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis,
C. Clopath, D. Kumaran, and R. Hadsell, ‘‘Overcoming catastrophic
forgetting in neural networks,’’ Proc. Nat. Acad. Sci. USA, vol. 114, no. 13,
pp. 3521–3526, Mar. 2017.

[17] F. Zenke, B. Poole, and S. Ganguli, ‘‘Continual learning through synaptic
intelligence,’’ in Proc. Int. Conf. Mach. Learn., 2017, pp. 3987–3995.

[18] C. Farabet, B.Martini, B. Corda, P. Akselrod, E. Culurciello, andY. LeCun,
‘‘NeuFlow: A runtime reconfigurable dataflow processor for vision,’’ in
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Workshops,
Jun. 2011, pp. 109–116, doi: 10.1109/CVPRW.2011.5981829.

[19] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, ‘‘EIE: Efficient inference engine on compressed deep
neural network,’’ in Proc. ACM/IEEE 43rd Annu. Int. Symp. Com-
put. Architecture (ISCA), Jun. 2016, pp. 243–254. [Online]. Available:
http://ieeexplore.ieee.org/document/7551397/

VOLUME 10, 2022 38563

http://dx.doi.org/10.1109/CVPRW.2011.5981829


S. Park, T. Suh: Continual Learning With Speculative Backpropagation and Activation History

[20] Y.-H. Chen, J. Emer, and V. Sze, ‘‘Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,’’ IEEEMicro,
vol. 44, no. 3, pp. 367–379, Jun. 2016, doi: 10.1145/3007787.3001177.

[21] Y. Chen, T. Chen, Z. Xu, N. Sun, and O. Temam, ‘‘DianNao family:
Energy-efficient hardware accelerators for machine learning,’’ Commun.
ACM, vol. 59, no. 11, pp. 105–112, Oct. 2016. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3013530.2996864

[22] (2019).EdgeTPU. [Online]. Available: https://cloud.google.com/edge-tpu/
[23] (Oct. 2019). Cornami Achieves Unprecedented Performance at Lowest

Power Dissipation for Deep Neural Networks. [Online]. Available:
https://cornami.com/1416-2/

[24] P. Teich, ‘‘Tearing apart Google’s TPU 3.0AI coprocessor,’’ Next Platform,
U.K., Tech. Rep., May 2018.

[25] E. Medina and E. Dagan, ‘‘Habana labs purpose-built AI inference
and training processor architectures: Scaling AI training systems using
standard Ethernet with Gaudi processor,’’ IEEE Micro, vol. 40, no. 2,
pp. 17–24, Mar. 2020, doi: 10.1109/MM.2020.2975185.

[26] L. Gwennap, ‘‘Habana offers Gaudi for AI training,’’Microprocessor Rep.,
Habana Labs, USA, Jun. 2019. [Online]. Available: https://habana.ai/wp-
content/uploads/2019/06/ Habana-Offers-Gaudi-for-AI-Training.pdf

[27] R. Merritt. (Jul. 2018). Baidu Accelerator Rises in AI. [Online]. Available:
https://www.eetimes.com/baidu-accelerator-rises-in-ai/

[28] C. Duckett. (Jul. 2018). Baidu Creates Kunlun Silicon for AI. [Online].
Available: https://www.zdnet.com/article/ baidu-creates-kunlun-silicon-
for-ai/

[29] D. Schor. (Nov. 2017). The 2,048-Core PEZY-SC2 Sets a Green500
Record—WikiChip Fuse. [Online]. Available: https://fuse.wikichip.org/
news/191/the-2048-core-pezy-sc2-sets-a-green500-record/

[30] L. Gwennap, ‘‘Tenstorrent scales AI performance: Architecture leads
in data-center power efficiency,’’ Microprocessor Rep., Tenstorrent,
USA, Apr. 2020. [Online]. Available: https://www.tenstorrent.com/
wp-content/uploads/2020/04/Tenstorrent-Scales-AI-Performance.pdf

[31] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and
J. Kepner, ‘‘Survey of machine learning accelerators,’’ in Proc.
IEEE High Perform. Extreme Comput. Conf. (HPEC), Sep. 2020,
pp. 1–12.

[32] (Oct. 2019). Cornami Achieves Unprecedented Performance at Lowest
Power Dissipation for Deep Neural Networks. [Online]. Available:
https://cornami.com/1416-2/

[33] V. Mehta, ‘‘Performance estimation and benchmarks for real-
world edge inference applications,’’ in Proc. Linley Spring
Processor Conf. Linley Group, 2020. [Online]. Available: https://
www.youtube.com/watch?v=PS3BjfzhYGo

[34] D. Piyasena, S.-K. Lam, and M. Wu, ‘‘Accelerating continual learning on
edge FPGA,’’ in Proc. 31st Int. Conf. Field-Program. Log. Appl. (FPL),
Aug. 2021, pp. 294–300.

[35] D. Piyasena, S.-K. Lam, and M. Wu, ‘‘Edge accelerator for lifelong deep
learning using streaming linear discriminant analysis,’’ in Proc. IEEE
29th Annu. Int. Symp. Field-Program. Custom Comput. Mach. (FCCM),
May 2021, p. 259.

[36] S. Park and T. Suh, ‘‘Speculative backpropagation for CNN
parallel training,’’ IEEE Access, vol. 8, pp. 215365–215374,
2020.

[37] Y. LeCun and C. Cortes. MNIST Handwritten Digit Database. Accessed:
Oct. 17, 2020. [Online]. Available: http://yann.lecun.com/exdb/mnist/

[38] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio,
‘‘An empirical investigation of catastrophic forgetting in gradient-based
neural networks,’’ 2013, arXiv:1312.6211.

[39] S.-W. Lee, J.-H. Kim, J. Jun, J.-W. Ha, and B.-T. Zhang, ‘‘Overcom-
ing catastrophic forgetting by incremental moment matching,’’ 2017,
arXiv:1703.08475.

[40] H. Ritter, A. Botev, and D. Barber, ‘‘Online structured Laplace approxima-
tions for overcoming catastrophic forgetting,’’ 2018, arXiv:1805.07810.

[41] H. Shin, J. K. Lee, J. Kim, and J. Kim, ‘‘Continual learning with deep
generative replay,’’ 2017, arXiv:1705.08690.

[42] S. Farquhar and Y. Gal, ‘‘Towards robust evaluations of continual
learning,’’ 2018, arXiv:1805.09733.

[43] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
2014, arXiv:1412.6980.

[44] V. Kathail, J. Hwang, W. Sun, Y. Chobe, T. Shui, and J. Carrillo, ‘‘SDSoC:
A higher-level programming environment for Zynq SoC and ultrascale+
MPSoC,’’ in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays,
Feb. 2016, p. 4.

[45] Y.-C. Hsu, Y.-C. Liu, A. Ramasamy, and Z. Kira, ‘‘Re-evaluating continual
learning scenarios: A categorization and case for strong baselines,’’ 2018,
arXiv:1810.12488.

[46] Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit. Accessed: Nov. 21,
2021. [Online]. Available: https://www.xilinx.com/products/boards-and-
kits/ek-u1-zcu102-g.html

[47] Zynq UltraScale+MPSoC. Accessed: Dec. 13, 2021. [Online]. Available:
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-
mpsoc.html

[48] Training Deep Net on 14 Million Images by Using a Single
Machine. Accessed: Jan. 9, 2022. [Online]. Available: https://mxnet-
tqchen.readthedocs.io/en/latest/tutorials/imagenet_full.html

38564 VOLUME 10, 2022

http://dx.doi.org/10.1145/3007787.3001177
http://dx.doi.org/10.1109/MM.2020.2975185

