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ABSTRACT The widely linear minimum variance distortionless response (WL-MVDR) beamformer has
a better performance than the conventional MVDR beamformer when the received signals are potentially
noncircular. However, it is sensitive to the extended steering vector (ESV) mismatches which can be
caused by direction of arrival (DOA) errors, noncircularity coefficient errors, array imperfections and so
on. To improve the robustness against large ESV mismatches, a robust WL beamformer based on the
worst-case performance optimization (WCPO) method with multiple uncertainty sets is proposed. The
resultant beamformer has the mathematical form of a nonconvex optimization problem, which can be
converted into a semidefinite programming (SDP) problem and solved iteratively. Simulation results show
that, in comparison with several representative robust WL beamformers, the proposed method can achieve
better performances, especially under large ESV mismatch conditions.

INDEX TERMS Robust adaptive beamforming, noncircular signal, worst-case performance optimization,
multiple constraints.

I. INTRODUCTION
Adaptive beamforming plays an important role in array signal
processing and has been widely applied in various fields,
such as radar, sonar, wireless communications, and so on
[1]–[3]. Conventional beamformers such as the well-known
minimum variance distortionless response (MVDR) beam-
former mainly consider signals to be second-order (SO) cir-
cular. Nevertheless, there are many SO noncircular signals
used in the areas of radio communication or satellite com-
munication, such as amplitude-shift keying (ASK), phase-
shift keying (BPSK), and unbalanced quaternary phase-shift
keying (UQPSK) signals [4]. For noncircular signals, con-
ventional beamformers become suboptimal since they ignore
the correlation information between the real and imaginary
parts of the noncircular signals. And the optimal beamformers
are proved to be widely linear (WL), which use both the
noncircular signal and its conjugate [5], [6].

The WL-MVDR beamformer was first proposed in [7]
but remains suboptimal since it only exploits the SO
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noncircularity of interferences. In [8], the optimalWL-MVDR
beamformer was proposed, which takes into account both
the noncircularity of desired signals and interferences. And
the superior performance of the optimal WL-MVDR beam-
former was analyzed in [9], [10].

In practice, conventional beamformers suffer from severe
performance degradation in the presence of steering vec-
tor (SV) mismatches. To improve the robustness against
SV mismatches, numerous robust adaptive beamforming
methods have been proposed, such as linearly constrained
minimum variance (LCMV) methods [11]–[13], diagonal
loading (DL) methods [14]–[17], subspace-based meth-
ods [18], [19], and interference-plus-noise covariance matrix
reconstruction methods [20]–[23]. With the application of
convex optimization theory to array signal processing, robust
adaptive beamforming methods based on the uncertainty
set constraints have been developed [16], [17], [24]–[28].
In these methods, the desired SV is constrained in a possible
uncertainty set, then the optimal weight vector or the actual
SV can be found by solving optimization problems. Many
of these optimization problems are nonconvex and will be
transformed into tractable convex forms, which can be solved
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by suitable numerical techniques such as the interior point
algorithm [29], the newly proposed IAIDNN method [30],
and so on.

To improve the robustness against extended steering vec-
tor (ESV) mismatches, some robust methods for WL beam-
formers have also been proposed [31]–[35] in recent years.
In [31], Xu et.al proposed a classical estimator of noncircu-
larity coefficient and extended the diagonal loading method
to the WL beamformer. In [32], a robust WL beamforming
method based on the spatial spectrum of noncircularity coeffi-
cient was presented, but it heavily depends on the precision of
desired signal’s SV. [33] and [34] extended the robust Capon
beamforming (RCB) method to WL beamformers. And a
robust algorithm combining the iterative adaptive method and
interference-plus-noise covariance matrix reconstruction was
proposed in [35]. These robust WL beamformers perform
well when the ESVmismatches are small. However, if a large
mismatch occurs, the robustness of these beamformers cannot
be guaranteed.

In this paper, a robust WL beamforming design based on
the worst-case performance optimization (WCPO) method
is proposed. To improve the robustness against large ESV
mismatches, multiple uncertainty sets are used in the con-
straint to characterize the entire large uncertainty region
instead of a single one. The resultant beamformer has the
mathematical form of a nonconvex optimization problem
which can be transformed into a tractable form by semidef-
inite relaxation (SDR) and solved iteratively. Simulation
results demonstrate that, in comparison with several repre-
sentative robust WL beamformers, the proposed method is
more robust against kinds of large ESV mismatches caused
by DOA errors, noncircularity coefficient errors, and array
imperfections.

The rest of this paper is organized as follows. The defi-
nition for noncircularity signals and the widely linear beam-
former are given in Section II. In section III, the WL-WCPO
robust beamforming design with multiple uncertainty sets is
proposed. In section IV, simulation results are presented to
illustrate the performance of the proposed method. Finally,
the conclusions are drawn in Section V.

II. SIGNAL MODEL AND PROBLEM FORMULATION
A. SIGNAL MODEL
Considering a uniform linear array (ULA) with M omni-
directional sensors that receives one desired signal and P
interferences, the observation vector at the nth snapshot can
be written as

x(n) = a0s0(n)+
P∑
i=1

jisi(n)+ n(n)

1
= a0s0(n)+ v(n), (1)

where s0(n) and si(n), i = 1, 2, . . . ,P are the complex
envelope of the desired signal and interferences, assumed
zero-mean and potentially noncircular. All of them are
far-field narrowband signals and uncorrelated with each

other. a0 and ji, i = 1, 2, . . . ,P are the steering vectors of
the desired signal and interferences, respectively. n(n) is the
additive white Gaussian noise vector and v(n) represents the
whole interference-plus-noise (IPN) vector.

To describe the noncircularity of the desired signal, the
noncircularity coefficient of s0(n) is defined as [6]

γ0 =

〈
E
[
s20(n)

]〉〈
E
[
|s0(n)|2

]〉 = |γ0| ejϕ0 , 0 ≤ |γ0| ≤ 1, (2)

where 〈·〉 denotes the time-averaging operation over the
observation window, |γ0| and ϕ0 are called the noncircularity
rate and noncircularity phase of s0(n). When γ0 6= 0, s0(n) is
a noncircular signal.

The noncircularity coefficient γ0 can be regarded as a
measure of the correlation between s0(n) and s∗0(n). When
γ0 6= 0, s∗0(n) is correlated with s0(n) and can be orthogonally
decomposed as

s∗0(n) = γ
∗

0 s0(n)+ [σ 2
0 (1− |γ0|

2)]1/2s′0(n), (3)

where σ 2
0 = 〈E[|s0(n)|

2]〉, s′0(n) is the component orthogonal
to s0(n), thus 〈E[s0(n)s′0(n)

∗]〉 = 0 and 〈E[|s′0(n)|
2]〉 = 1 [8].

Then, define the extended observation vector x̃(n) 1
=[

xT (n), xH (n)
]T . Combining the result in (3), x̃(n) can be

described as

x̃(n) = s0(n)ã0 + ṽ(n), (4)

where ã0 =
[
aT0 , γ

∗

0 a
H
0

]T is defined as the ESV of desired
signal, ṽ(n) = [vT (n), vH (n) + s′0(n)[σ

2
0 (1− |γ0|

2)]1/2aH0 ]
T

is the extended interference-plus-noise vector.

B. WIDELY LINEAR BEAMFORMER
Given that w̃ denotes the 2M × 1 weight vector, the output of
the WL beamformer can be expressed as

y(n) = w̃H x̃(n) = s0(n)w̃H ã0 + w̃H ṽ(n). (5)

According to [8], the optimal WL-MVDR beamformer is
given by solving

min
w̃

w̃HRṽw̃ s.t. w̃H ã0 = 1, (6)

where Rṽ =
〈
E
[
ṽ(n)ṽH (n)

]〉
is the extended interference-

plus-noise covariance matrix and the optimal solution can be
written as

w̃MVDR =

[
ãH0 R

−1
ṽ ã0

]−1
R−1ṽ ã0. (7)

The output signal to interference-plus-noise ratio (SINR)
at w̃ is defined by

SINR[w̃] 1=
σ 2
0

∣∣w̃H ã0
∣∣2

w̃HRṽw̃
. (8)

In practice,Rṽ and ã0 are typically unavailable. Therefore,
Rṽ is usually replaced by the extended sampled covariance
matrix

R̂x̃ =
1
N

N∑
n=1

x̃(n)x̃H (n), (9)
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where N is the number of snapshots. And the actual ESV
of desired signal ã0 is replaced by the nominal ESV ã0.
Due to the existence of various errors, such as the DOA
estimation errors, noncircularity coefficient estimation errors,
array imperfections and so on, there are mismatches between
the nominal ESV ã0 and the actual one ã0. In the presence of
significant ESV mismatches, the optimal WL-MVDR beam-
former will mistake the desired signal from ã0 as interference
and suppress it, resulting in severe degradation of beamform-
ing performance.

III. PROPOSED METHOD
In this section, the WL-WCPO beamformer with multiple
uncertainty sets is proposed. Firstly, we derive the expres-
sion of the ESV error and extend the WCPO method to
the WL beamformer. Then, multiple small uncertainty sets
are exploited in the constraint and an iterative semidefinite
programming method is developed to solve the resultant non-
convex problem. Finally, the computational complexity of the
proposed method is analyzed.

A. ROBUST WIDELY LINEAR BEAMFORMER BASED ON
THE WCPO METHOD
According to the WCPO method, it is assumed that the SV
error e0 = a0− ā0 belongs to an uncertainty set that describes
various possible mismatches. And the norm of e0 has a given
upper bound ε. Consequently, the actual SV a0 belongs to an
uncertainty set A, whose radius is ε and center is determined
by the nominal SV ā0, i.e.

A 1
= {p|p = ā0 + e, ‖e‖ ≤ ε} , (10)

where p is any vector in A, e is the corresponding error vector
of p.

Similarly, the ESV error can be described as

ẽ0 = ã0 − ã0 =
[

a0 − ā0
γ ∗0 a
∗

0 − γ̂
∗

0 ā
∗

0

]
=

[
e0

γ ∗0 e
∗

0 + γ
∗
1(ā0 + e0)

]
, (11)

where γ0 and γ̂0 are the actual and estimated noncircular-
ity coefficient of the designed signal respectively. And the
estimation error is denoted as γ1 = γ0 − γ̂0, which is also
assumed to have an given upper bound εγ .
The common estimator of γ̂0 is given by [31]

γ̂0 = −
āH0 Eā

∗

0

āH0 Dā0
·

āH0 ā0
āH0 (IM − σ̂

2
nR
−1
x )ā0

, (12)

where

D 1
= (Rx − CxR∗−1x C∗x )

−1, (13)

E 1
= −DCxR∗−1x , (14)

where Rx =
〈
E
[
x(n)xH (n)

]〉
, Cx =

〈
E
[
x(n)xT (n)

]〉
, σ̂ 2

n can
be estimated by the minimum eigenvalue of Rx .

Therefore, the upper bound of the ESV error is calculated
by ∥∥ẽ0∥∥2 = ẽH0 ẽ0 = ‖e0‖

2
+
∥∥γ̂0e0 + γ1ā0 + γ1e0∥∥2

≤ ‖e0‖2 +
(∥∥γ̂ e0∥∥+ ‖γ1ā0‖ + ‖γ1e0‖)2

≤ ε2 + (
∣∣γ̂0∣∣ ε + εγ√M + εγ ε)2︸ ︷︷ ︸

ε̃2

. (15)

Thus, ε̃ is the radius of the ESV’s uncertainty set and the
uncertainty set of the ESV can finally be expressed as

Ã 1
=

{
p̃|p̃ = ã0 + ẽ,

∥∥ẽ∥∥ ≤ ε̃} , (16)

where p̃ is any vector in Ã and ẽ is the corresponding error
vector of p̃.

Since the actual ESV ã0 can be any vector in Ã, a constraint
is imposed that for all vectors belonging to Ã, the absolute
value of the array response should not be smaller than one.
Thus, the WL-WCPO beamformer with single uncertainty
set (expressed as WL-WCPO-S in the following) can be
described as

min
w̃

w̃H R̂x̃w̃

s.t.
∣∣∣w̃H p̃

∣∣∣ ≥ 1, ∀ p̃ ∈ Ã. (17)

The constraints in (17) guarantee that the distortionless
response will be maintained in the worst case, and improve
the beamforming robustness against kinds of ESV mis-
matches that satisfy

∥∥ẽ∥∥ ≤ ε̃.
Problem (17) is a semi-infinite nonconvex quadratic pro-

gramming problem and can be equivalently expressed as [24]

min
w̃

w̃H R̂x̃w

s.t. w̃H ã0 ≥ ε
∥∥w̃∥∥+ 1

Im(w̃H ã0) = 0, (18)

which is a second order cone programming (SOCP) problem
and can be solved by the interior point method [36] directly.
Note: According to [17], the WCPO method has an equiv-

alent solution to the robust Capon beamformer (RCB) [16].
Similarly, the WL-WCPO-S method can also have an equiv-
alent solution to the WL-RCB method in [33].

B. WL-WCPO BEAMFORMER WITH MULTIPLE
UNCERTAINTY SETS
Asmentioned above, theWL-WCPO-Smethod can be robust
against kinds of ESV mismatches that satisfy

∥∥ẽ∥∥ ≤ ε̃.
However, due to the movement of signal sources and kinds
of non-ideal factors, such as array imperfections, source
wave-front distortions and so on, it is common to find large
DOA mismatches along with other small errors. In this case,
the ESVmismatches will increase, and a large uncertainty set
is required accordingly for the WL-WCPO-S method. If the
size of the uncertainty set is too large, this method will be
too conservative and the ability to suppress the noise and
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FIGURE 1. Illustration with three small uncertainty sets.

interferences can not be guaranteed. But if the size is not
large enough, the actual ESV of the designed signal may not
be included in the uncertainty set and the performance will
deteriorate dramatically.

To alleviate such problems, we use multiple small uncer-
tainty sets rather than a single large one to characterize
the entire large uncertainty region. Considering large DOA
estimation errors, some ESVs corresponding to the direc-
tions θ̄k , k = 1, 2, . . . ,K around the desired signal’s esti-
mated direction θ̂0 are selected as the centers of these small
uncertainty sets. Thus, the constraint region can finally be
described as

Ãk =
{
p̃|p̃ = ãk + ẽ,

∥∥ẽ∥∥ ≤ ε̃k} , k = 1, 2, . . . ,K , (19)

where ãk =
[
aTk , γ̂

∗
k a

H
k

]T is the kth ESV that is presumed,∥∥ãk∥∥ = M
√
1+

∣∣γ̂k ∣∣2. ak = a(θ̄k ) is the presumed SV of
θ̄k , and γ̂k is estimated with ak in (12). ε̃k is the radius for
the kth uncertainty set and K is the number of the uncertainty
sets. The illustration with three small uncertainty sets Ãk , k =
1, 2, 3 compared with the large one Ã is shown in Fig.1.
By eliminating unnecessary regions in the large uncertainty
set Ã, the interference and noise suppression ability of the
beamformer is guaranteed.

Then the WL-WCPO beamformer with multiple uncer-
tainty sets can be expressed as

min
w̃

w̃H R̂x̃w̃

s.t.
∣∣∣w̃H p̃

∣∣∣ ≥ 1, ∀p̃ ∈ Ãk , k = 1, 2, . . . ,K . (20)

It’s also a semi-infinite nonconvex constraints optimization
problem and can be transformed into a finite constraints
problem similarly

min
w̃

w̃H R̂x̃w̃

s.t.
∣∣∣w̃H ãk

∣∣∣− ε̃k ∥∥w̃∥∥ ≥ 1, k = 1, 2, . . . ,K . (21)

It is noted that only if Im
(
w̃H ãk

)
= 0, k = 1, 2, . . . ,K ,

thus
∣∣w̃H ãk

∣∣ = w̃H ãk , this problem can be a convex
problem. But it is hard to find a w̃ that satisfies all these
K constraints.

C. SOLUTION TO PROPOSED METHOD
Since the resulting optimization problem (21) is nonconvex,
in this section it will be approximately transformed into a
convex form by SDR and solved in an iterative way.

Firstly, K auxiliary variables βk , k = 1, 2, . . . ,K are
introduced and let∣∣∣w̃H ãk

∣∣∣ = √βk , k = 1, 2, . . . ,K . (22)

Then the constraints in (21) can be rewritten as

ε̃k
∥∥w̃∥∥ ≤ ∣∣∣w̃H ãk

∣∣∣− 1 =
√
βk − 1, k = 1, 2, . . . ,K .

(23)

The problem (21) is transformed into

min
w̃,βk

w̃H R̂x̃w̃

s.t.


∣∣w̃H ãk

∣∣ = √βk
ε̃k
∥∥w̃∥∥ ≤ √βk − 1

k = 1, 2, . . . ,K .

(24)

According to the SDR method [37], defining the rank one
symmetric positive semidefinite (PSD) matrix W 1

= w̃w̃H

and taking square on both sides of the constraints, prob-
lem (24) can be rewritten as

min
W,βk

tr(R̂x̃W)

s.t.


tr(ãk ãHk W) = βk
ε̃2k tr(W) ≤ βk − 2

√
βk + 1W � 0

rank(W) = 1
k = 1, 2, . . . ,K .

(25)

where tr (·) is the trace operator, rank (·) is the rank of the
matrix.

Dropping the rank-one constraint in (25), the relaxed prob-
lem is given by

min
W,βk

tr(R̂x̃W)

s.t.


tr(ãk ãHk W) = βk
ε̃2k tr(W) ≤ βk − 2

√
βk + 1W � 0

k = 1, 2, . . . ,K .

(26)

Due to the existence of the nonlinear terms
√
βk , k =

1, 2, . . . ,K , problem (26) is still nonconvex. To solve
this problem, an iterative method is proposed in the
following.

Assumed that (Wn−1, β1,n−1, β2,n−1, . . . , βK ,n−1)
is a feasible solution to (26) which is obtained in the (n−1)th
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TABLE 1. WL-WCPO method with multiple uncertainty sets.

iteration, it is also a feasible solution to the problem (27)

min
W,βk

tr(R̂x̃W)

s.t.



tr(ãk ãHk W) = βk

ε̃2k tr(W) ≤ βk −
βk + βk,n−1√

βk,n−1
+ 1

W � 0
k = 1, 2, . . . ,K .

(27)

Noted that for given βk,n−1, k = 1, 2, . . .K , (27) is
a semidefinite programming (SDP) problem and can be
solved via the interior point method efficiently. Considering
(Wn, β1,n, β2,n, . . . , βK ,n) is the optimal solution to (27), it is
obvious that

tr
(
R̂x̃Wn

)
≤ tr

(
R̂x̃Wn−1

)
. (28)

According to the relationship βk + βk,n−1 ≥ 2
√
βkβk,n−1,

we can get

βk −
βk + βk,n−1√

βk,n−1
+ 1 ≤ βk − 2

√
βk + 1. (29)

Namely, the feasible domain in (27) is a subset of that
in (26). Therefore, (Wn, β1,n, β2,n, . . . , βK ,n) is another fea-
sible solution to (26) and has a better performance than
(Wn−1, β1,n−1, β2,n−1, . . . , βK ,n−1).
If given initial variables βk,0, k = 1, 2, . . . ,K , the itera-

tion can be performed as aforementioned until the following
ending condition holds∥∥βn − βn−1∥∥ ≤ ξ, (30)

where βn =
[
β1,n, β2,n, . . . , βK ,n

]T . Thus, the approximate

optimal solution (Ŵ, β̂1, β̂2, . . . , β̂K ) is obtained.
According to [28], the initial variables βk,0, k =

1, 2, . . . ,K can be given by

βk,0 = βk,min =
1(

1− ε̃k
/√

λmax
{
ãk ãHk

})2 , (31)

where λmax {·} represents the maximum eigenvalue of the
matrix.

FIGURE 2. The convergence rate of the proposed method.

Then the approximate optimal solution Ŵ to (27) should
be converted into a feasible solution w̃ to (24). According
to [37], if Ŵ is of rank one, Ŵ can be written as Ŵ = w̃w̃H

and w̃will be a feasible–in fact optimal solution to the original
problem. On the other hand, if the rank of Ŵ is larger than
one, a rank-one approximation should be extracted from Ŵ
to obtain the feasible solution w̃ to (24).

An efficient way to obtain the rank-one approximation is
the eigenvalue-decomposition method. Let

Ŵ =
r∑
i=1

λiuiuHi , (32)

where r = rank(Ŵ), λ1 ≥ λ2 ≥ . . . ≥ λr > 0 are the
eigenvalues of Ŵ and ui, i = 1, 2, . . . , r are the respective
eigenvectors.

In the least squares sense, Ŵ1 = λ1u1uH1 is the best
rank-one approximation of Ŵ and the weight vector can
finally be written as

w̃ =
√
λ1u1. (33)

A summary of the proposed method is given in Table 1.
Computational Complexity: The complexity of the pro-

posed method mainly lies in solving the SDP problem (27) in
each iteration. According to [37], the SDP can be solved with
a worst-case complexity of O(max(M ,Nc)4N

1/2
c log(1/δ)),

where M is the number of the antenna elements, Nc is
the number of constraints and δ > 0 is a given solu-
tion accuracy. For WL beamformers, the virtual array
aperture is extended to 2M . Consequently, the worst-case
computational complexity of the proposed method is O(Nl ·
max(2M ,Nc)4N

1/2
c log(1/δ)), where Nl is the number of

iterations. Fig.2 illustrates the convergence rate of the pro-
posed method under the same condition as Section IV-B with
1θ = 2◦. And it can be noticed that this iterative approach
can converge in less than 10 iterations.
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FIGURE 3. Influence of different DOA errors and SNR on the estimation error of noncircularity coefficient. (a) Noncircularity rate errors
versus input SNR with different DOA errors; (b) Noncircularity phase errors versus input SNR with different DOA errors.

FIGURE 4. Robustness of the compared beamformers against noncircularity coefficient error in different scenarios. SINR versus
noncircularity rate error when (a) 1θ = 0◦, (c) 1θ = 2◦; SINR versus noncircularity phase error when (b) 1θ = 0◦, (d) 1θ = 2◦.

IV. SIMULATION RESULTS
In the simulations, a uniform linear array (ULA) with M =
10 omnidirectional sensors spaced half a wavelength is

considered. The desired signal comes from the direction
θ0 = 5◦ and two interferences impinge from the directions
θ1 = −30◦, θ2 = 40◦. All of them are BPSK signals
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FIGURE 5. Output SINR versus the DOA error that varies from −6◦ to 6◦
with SNR = 20dB.

with a noncircularity rate of 1. And the noncircularity phases
of them are 0, π

/
3, π

/
4, respectively. The interference-

to-noise ratio (INR) of each sensor is 20dB, and the number of
snapshots is fixed at 800. In each scenario, 200 Monte Carlo
simulations are carried out.

The proposed method is compared with the SMI beam-
former, the WL-SMI beamformer with an estimated non-
circularity coefficient, the robust WL beamformer based on
diagonal loading [31], the WL-RCB beamformer in [33],
and the WL-RCB beamformer in [34]. And the WL-WCPO
method with single uncertainty set (WL-WCPO-S) is also
presented for comparison. Besides, the optimal SINRs for
conventional beamformers and WL beamformers are shown
as performance benchmarks. The diagonal loading factor
ξ is assumed to be 10σ̂ 2

n for [31]. The parameters εs, εγ
are 1.2 and 0.1 for [34]. For the beamformer in [33], the
WL-WCPO-S method and the proposed method, the param-
eters εγ , ε̃ and ε̃k are set to be 0.1, 2.5 and 0.8 respectively.
The number of constraint points in the proposed method is set
to be 3. And the convex optimization problems are solved by
the convex optimization toolbox CVX [36].

A. ROBUSTNESS AGAINST NONCIRCULARITY
COEFFICIENT ERROR
In this section, the robustness against noncircularity coeffi-
cient errors is discussed. As mentioned above, the estimation
method of the noncircularity coefficient used in this paper is
described in [31]. At first, the influence of different factors
on the estimation error of the noncircularity rate (the modu-
lus of noncircularity coefficient) and noncircularity phase is
discussed. Fig.3(a) shows the absolute value of the noncir-
cularity rate error versus the input SNR with different DOA
errors. And Fig.3(b) is the absolute value of the noncircu-
larity phase error under the same circumstances. It can be

observed that, in the absence of the DOA error, both the
estimation errors of the noncircularity rate and noncircularity
phase are close to zero at high SNRs. And when the DOA
error increases, these estimated results get worse apparently.
Additionally, as input SNR decreases, the estimation error of
the noncircularity rate increases, but the effect on estimation
of the noncircularity phase remains negligible.

Then the performance of compared beamformers with
different noncircularity coefficient errors is shown in Fig.4.
In this simulation, the noncircularity coefficient error is
assumed to be independent of the DOA error. Fig.4(a) and
Fig.4(c) illustrate the output SINR versus different noncircu-
larity rate errors when the input SNR is fixed at 20dB and
the DOA error is 0◦ and 2◦, respectively. And Fig.4(b) and
Fig.4(d) illustrate the output SINR versus different noncir-
cularity phase errors in the same condition. We can see that,
compared with other beamformers, the proposed method is
able to hold satisfying robustness against the noncircularity
coefficient errors under all these conditions. In the cases
where noncircularity coefficient errors are small and the
DOA error is close to zero, the WL-WCPO-S and WL-RCB
beamformers can outperform the proposed method slightly.
But when DOA errors exist, even if they are small, the
proposed method has a better performance than the other
beamformers. Additionally, as mentioned in section III, the
WL-WCPO-S beamformer has the same performance as the
WL-RCB beamformer in [33].

B. ROBUSTNESS AGAINST DIFFERENT DOA ERRORS
In this simulation, the robustness against different DOA
errors is verified. Fig.5 considers the scenario where the DOA
error varies from −6◦ to 6◦ and the input SNR is fixed at
20dB. The output SINR curves of compared beamformers are
shown in this figure. It is observed that the optimal SINR of
the WL beamformer is 3 dB higher than that of conventional
beamformers in ideal conditions due to the utilization of
noncircularity in received signals. However, when a DOA
error occurs, the desired signal coming from the actual DOA
is suppressed and the performances of WL-SMI and SMI
beamformers degraded severely. Compared with SMI and
WL-SMI beamformers, these robust beamformers can main-
tain better performance. And proposed method outperforms
all these beamformers, especially when the DOA error is
large.

Fig.6 demonstrates the output SINR curves versus the input
SNR with different DOA errors. In Fig.6(a), we assume that
the DOA error 1θ = 2◦, the nominal DOA θ̄0 = 7◦, and the
constraint points are at angles 5◦, 7◦, 9◦. It can be seen that
when SNR ≤ 15dB, the proposed method, the WL-WCPO-S
beamformer and the WL-RCB beamformer in [33] almost
have the same output SINRs. As the SNR increases, the
proposed method is better than other competitors. In Fig.6(b),
the DOA error1θ = 4◦, θ̄0 = 9◦ and the constraint points are
at angles 5◦, 9◦, 13◦. It is observed that the proposed method
has a higher output SINR than the other beamformers over
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FIGURE 6. Output SINR versus input SNR that varies form 10dB to 30dB in the presence of different DOA errors. (a) the DOA error 1θ = 2◦; (b) the
DOA error 1θ = 4◦.

FIGURE 7. Output SINR versus input SNR that varies form 10dB to 30dB
with amplitude and phase perturbations.

a wide range of input SNR. And the performance difference
grows with the increase of SNR.

C. ROBUSTNESS AGAINST AMPLITUDE AND PHASE
PERTURBATIONS
In this simulation, we investigate the robustness against
amplitude and phase perturbations of compared beamformers.
It is supposed that the amplitude error and phase error of each
sensor is derived from the random generator N (1, 0.12) and
N (1, (0.25π)2), respectively. The DOA error is fixed at 2◦

and the SNR still varies from −10dB to 30dB. As shown in
Fig.7, the proposed method, the WL-WCPO-S beamformer,
and the WL-RCB beamformers in [33], [34] have similar

performances and all of them have good robustness against
amplitude and phase perturbations.

V. CONCLUSION
The WL-WCPO beamformer with multiple uncertainty sets
is proposed in this paper. To improve the robustness against
large ESV errors, the WCPO method is introduced to the
WL beamformer and multiple uncertainty sets of the ESV are
used in the constraint. The resultant beamformer is presented
mathematically as a nonconvex optimization problem that can
be transformed into a tractable form by SDR and solved by an
iterative method. Simulation results demonstrate that the pro-
posed method is robust to various types of ESV mismatches
and performs better than other compared beamformers, espe-
cially under large ESV mismatch conditions.
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