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ABSTRACT The research aims to effectively monitor the state of complex industrial equipment in real time,
diagnose the internal Partial Discharge (PD) pattern of Gas Insulated Metal Enclosed Switchgear (GIS),
implement effective health management, and change the traditional model optimization route of increasing
training time in exchange for performance improvement. This paper studies the complex equipment-oriented
Health Management System (HMS) based on Internet of Things (IoT) technology and Transfer Learning.
Firstly, the principles of Transfer Learning and Deep Learning (DL) technology are introduced. Secondly, the
requirements of GIS internal status recognition and management are studied. Furthermore, a GIS-oriented
HMS based on Transfer Learning-optimized Convolutional Neural Networks (CNN) is proposed, and the
training dataset is constructed. Finally, the proposed model is tested. The results show that the complex
equipment-oriented HMS based on IoT technology, CNN, and Transfer Learning can detect the internal
status of GIS in real time. Compared with the traditional DL algorithm and expert system, the proposed
model has a shorter training time of only 16min, faster convergence speed, high testing recognition rate,
and over 96% recognition rate. Compared with other mainstream algorithms, it has higher identification,
the storage parameter volume is 408, and the storage space is 12.8MB. Moreover, the proposed Transfer
Learning-optimized CNNmodel can accurately detect the status of GIS, identify abnormal statuses, and help
prolong the service life of GIS. The proposed complex equipment-oriented HMS contributes to the intelligent
manufacturing industry and provides a new direction for applying emerging Computer Technology in the
intelligent industry.

INDEX TERMS Internet of Things, convolutional neural network, GIS, status recognition, equipment health
management.

I. INTRODUCTION
Chinese continuous industrialization has gradually entered
the era of ‘‘industry 4.0’’, which helps to popularize industrial
reform, thus affecting all walks of life through advanced tech-
nologies, such as Information Technology (IT). As a result,
the manufacturing industry set off a new round of revolution
towards intelligent manufacturing, and intelligent industrial
equipment sees extensive application [1], [2]. In particular,
Gas-InsulatedMetal Closed Switchgear (GIS), [3] because of
its unique advantages, such as small footprint, high reliability,
and little electromagnetic contamination is widely used in
modern power systems. However, due to the limited produc-
tion, transmission, and installation conditions, GIS will have
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potential insulation defects after long-term operation and
maintenance, resulting in various Partial Discharges (PDs) [4]
that severely harm GIS. The Internet of Energy (IoE), aiming
at comprehensive perception, interconnection, and intelligent
decision-making, provides new GIS online monitoring and
fault diagnosis opportunities. At the same time, it also poses
new challenges for real-time and rapid diagnosis. As one of
the critical links in IoE, online detection and fault diagnosis is
the premise and foundation of comprehensive perception of
equipment information, system interconnection, and multi-
directional service application. Although the mechanism of
PD pattern in GIS is complex, the IoE enables the preserva-
tion of equipment information to solve the representative and
comprehensive problems of defect and fault samples. It is of
great significance to realize the intelligent state perception
and evaluation of GIS and ensure the safe and stable power
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system operation. This paper studies the complex industrial
equipment-oriented Health Monitoring System (HMS) based
on IoT technology and Transfer Learning.

Many domestic and international researchers have stud-
ied the automatic HMS for complex industrial equipment.
For example, Zelyakovskiy et al. [5] proposed a techni-
cal diagnostic Intelligent Control System (ICS) for complex
equipment and a flexible production system. The proposed
system could automatically select input and output param-
eters using the Neural Network (NN) training process. Per-
haps, the variation of active neuron numbers would not
impact the diagnostic results because the selection and activa-
tion of redundant neurons could help avoid network failure.
Qiang et al. [6] put forward an Inertial Neural Network (INN)
of fuzzy memory reactor. The passivity criterion was given
based on the eigenfunction, Linear Matrix Inequality (LMI),
and the calculation of time scale. Two memristor and fuzzy
correlation control protocols were designed against passiva-
tion. Ding et al. [7] invented a short-term load forecasting
method in distributed cloud-edge environment based on the
Long Short-Term Memory (LSTM) network to provide more
accurate results for intelligent forecasting of industrial power
load. The LSTM network could perform the prediction task,
and the whole system was extended to the cloud edge plat-
form to realize parallel neural computing. Narwariya et al. [8]
suggested a method to capture and visualize the structure of
complex equipment through graphs and used Graph Neural
Network (GNN) to model multi-sensor Time Series Data
(TSD). The proposed method was applied in residual life
estimation to evaluate the advantages of merging graph struc-
ture on the publicly available turbofan engine benchmark
dataset. The resulting network could focus on the possible
failed module (node) through a simple Attention Mechanism
(AM). Windau and Itti [9] constructed the Inertial Machine
Monitoring System (IMMS) for non-intrusive upgrading of
existing machines to detect and classify equipment faults or
degraded status. They also provided strategies to optimize
sensors’ number, placement, and efficiency. Consequently,
Support Vector Machines (SVM) and NN could detect and
classify regular operation along with ten kinds of equip-
ment abnormal behaviors (loose tape and machine compo-
nent faults). Chen et al. [10] applied Deep Learning (DL)
in complex equipment HMS and realized a Backpropagation
Neural Network (BPNN)-based DL model. To sum up, the
previous research on complex industrial equipment-oriented
HMS mainly focuses on the simple application of Deep Neu-
ral Network (DNN) without much improvement. In simpler
terms, they improved model performance mainly by increas-
ing training time. Therefore, this paper innovatively opti-
mizes the Convolutional Neural Network (CNN) model by
Transfer Learning (TL). Transfer Learning has a higher start-
ing point. The original performance of the untrained model
is better before fine-tuning. Such that, in the training process,
the model performance will be improved faster. As a result,
the trained model will converge better. The proposed Trans-
fer Learning-optimized CNN model realizes the intelligent

monitoring and recognition of equipment PD, with a high
recognition rate and strong reliability. The research content
provides a basis for the refined management and automatic
monitoring based on newComputer Technology and provides
a new perspective for future research.

This paper studies intelligent health monitoring for
complex industrial equipment. Firstly, the principle of
Transfer Learning and CNN technology is introduced.
Secondly, the GIS status recognition requirements in com-
plex, intelligent equipment are studied. Thirdly, the Transfer
Learning-optimized CNNmodel is implemented, based upon
which the GIS-oriented HMS is implemented; finally, the
proposed model is tested. The research results are of great
significance to developing China’s intelligent manufacturing
industry and help ensure the safety of industrial equipment
and relevant personnel.

II. DESIGN OF GIS-ORIENTED HEALTH
MANAGEMENT SYSTEM (HMS)
A. GAS INSULATED METAL ENCLOSED SWITCHGEAR (GIS)
In GIS, at least part of themetal closed switchgear and control
equipment are insulated using superior dielectric gas-Sulfur
hexafluoride (SF6) compressed by a higher than atmospheric
pressure [11] GIS comprises the circuit breaker, disconnector,
grounding switch, transformer, lightning arrester, bus, con-
nector, and outgoing terminal. These equipment or compo-
nents are all enclosed in a metal grounded shell, in which
there is a certain pressure of insulating gas, so they are also
called fully enclosed combined circuit breakers [12], [13].
GIS uses gas higher than atmospheric pressure as an insulat-
ing medium for at least a part of metal-enclosed switchgear
and control equipment. GIS comprises circuit breaker, dis-
connector, grounding switch, transformer, lightning arrester,
bus, connector, and outgoing terminal. All these equipment or
components are enclosed in a metal grounded shell and filled
with insulating gas with a certain pressure, so it is also called a
fully enclosed combined circuit breaker. GIS has been widely
used worldwide since it was implemented in the 1960s. GIS
has seen broad applications not only in high voltage but
also in the field of Ultra-High Voltage (UHV). Compared
with conventional open substation equipment, GIS has the
advantages of compact structure, small footprint, high relia-
bility, flexible configuration, convenient installation, strong
safety, strong environmental adaptability, and minor main-
tenance workload, and the maintenance interval of its main
components is not less than 20 years. Moreover, GIS is high-
voltage electrical equipment with high operation reliability,
less maintenance workload, and a long maintenance cycle. Its
failure rate is only 20% ∼ 40% of conventional equipment,
but GIS also has inherent disadvantages. Due to the influ-
ence of gas leakage, external moisture infiltration, conductive
impurities, insulator aging, and other factors, GIS internal
flashover fault may be caused. The fully sealed structure of
GIS makes the fault location and maintenance more compli-
cated. The average power outage maintenance time after the
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accident is longer than that of conventional equipment, and its
power outage range is more extensive, which often involves
non-fault components.

B. INTERNET OF THINGS (IOT) TECHNOLOGY
The IoT [14] refers to the real-time collection of miscel-
laneous information with various devices and technologies,
such as information sensors, Radio Frequency Identification
(RFID) [15], Global Positioning System (GPS) [16], infrared
sensors, and laser scanners. IoT uses network access to con-
nect things and people and intelligently perceive, identify,
and manage things. So far, IoT techniques cover numerous
cutting-edge technologies, including RFID, sensors, Cloud
Computing (CC), and network communication. IoT can be
regarded as a kind of physical object-oriented intelligent
manufacturing technology, the further expansion of Internet
technology, and an emerging Information Service Architec-
ture (ISA) based on Internet and RFID communication tech-
nology. IoT aims to empower IT infrastructures to provide
safe and reliable ‘‘goods’’ information over the Internet and
create an intelligent environment for smoother Information
Exchange (IEX) within the Supply Chain (SC). Significantly,
in recent years, the IoT has been matured and is reshaping
people’s lifestyles and benefiting all social aspects. Nonethe-
less, it has also brought a series of imminent technical ethics,
security, and legal problems. IoT relies on user identifica-
tion to be fully functional; this, however, has also become
an inherent leak that is difficult to resolve merely through
technical means; some simple expedients include informing
users of specific privacy terms in advance. The IoT transmits
intelligent services over the network from the users’ stand-
points. Thus, it can track users’ health status over the long or
short term, offer navigation information and road conditions,
detect and analyze air or water quality, and digitally link res-
idential areas and workplaces [17], [18]. This paper utilizes
IoT sensors and cameras to collect the internal data of GIS.
Fig. 1 depicts the basic architecture of the IoT.

FIGURE 1. Basic architecture of IoT.

The following are the functional components of the IoT:
Equipment –It includes existing standard equipment, such

as intelligent instruments or vehicles, integrated into the prod-
uct design. It also includes new IoT-based devices, such as
pet trackers. Such devices must have sensors, communication
functions, and other elements (e.g., power supply).

Devices connected with sensors or actuators – Sensors
can capture data (e.g., temperature) from the environment.
The actuator responds to the command and changes the

equipment status (for example, adjusting the thermostat’s
temperature). The instructions of the actuator can come from
sensors on the same device or from other sources (for exam-
ple, when the homeowner comes home, he can activate the
thermostat through his mobile phone). The device can have
two functions: sensor and actuator.

Communication hardware enables devices to connect to
the network to send data from sensors to back-end systems.
It includes hardware for wireless connection through Blue-
tooth, Wi-Fi, ZigBee, LoRa, and cellular network), various
proprietary technologies, or wireless connection through the
fixed network. Some devices will have hardware that con-
nects to multiple types of networks.

The connection network (a cellular network, fixed net-
work, or satellite network) can transfer the data from the
sensor to the user’s back-end system through the Internet
or private network. Additionally, various applications can
provide added value to end-users.

The server software includes a server for collecting and
analyzing data from sensors and other sources (for example,
weather forecast data). These server-side systems can be
found in public or private cloud or local hardware. For a
straightforward system, the server software can be a standard
computer.

Software platforms such as device management, security,
and data analysis can ensure the normal operation of IoT
devices. Such a platform also includes data analysis software
for analyzing data and improving business processes and a
database for storing data.

The application software also includes services, such as
billing and customer support.

The IoT value chain also includes system integrators
or developers who design, build, and manage IoT ser-
vices. Physical devices usually require installation and
maintenance.

C. TRANSFER LEARNING
Transfer Learning is a research topic in Machine Learning
(ML), which refers to influencing a new learning process
through a given related learning process, or the influence of
acquired experience on the other activities to be completed.
Generally, Transfer Learning learns new knowledge through
existing knowledge. The core is to excavate the connection
between existing knowledge and new knowledge to draw
inferences from one instance [19]. Generally, it is too costly
to learn from scratch directly on the target domain, so there is
a need to resort to the existing relevant knowledge to help
learn new knowledge faster. Transferring process is com-
monly found in humans learning various knowledge, skills,
and social norms. Transfer Learning focuses on storing the
solution model of existing problems and using it on other
different but related problems. It transfers the pre-trained
model parameters to retrain the new model. Considering
that most data or tasks are relevant, new models can partly
share the learned parameters (also known as the knowledge
learned by the model) with the old ones through Transfer
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Learning to speed up and optimize the learning efficiency
while avoiding repetitive works [20], [21]. Transfer Learning
mainly includes three dimensions: A. Study what knowl-
edge can be used for Transfer Learning in different domains
or tasks and what common knowledge can be transferred
between different domains. B. Study what Transfer Learning
algorithms can be used against specific transference targets.
That is to design an appropriate algorithm to extract and
transfer common knowledge. C. Study what circumstances
are suitable for Transfer Learning and whether transference
skills are suitable for specific applications, which involves
the problem of negative transference. This paper uses the
pre-trained data images of the Mstar database to construct
the dataset. Fig. 2 outlines a rough classification of Transfer
Learning.

FIGURE 2. Rough classification diagram of transfer learning.

Mstar database adopts the measured ground still target
image data published by the Plan supported by the United
States (US) Defense Advanced Research Program. Most
domestic and international research on image target recog-
nition is based on the Mstar. The sensor collecting the data is
a high-resolution spotlight Synthetic Aperture Radar (SAR)
with a resolution of 0.3m × 0.3m. Working in X-band, the
sensor employs the HH polarization mode. The collected
images are preprocessed, containing various targets’ slice
images by 128× 128. Most of the data are SAR slice images
of stationary vehicles, including target images obtained by
various vehicles in multiple azimuth angles. The dataset
includes a training set and testing set recommended by the
Plan. The training set is the target image data obtained when
the radar working pitch angle is 17. By comparison, the
testing set is the target image data obtained when the radar
working pitch angle is. The data set also includes three
categories. Targets of various categories also have different
models. Targets of the same type but different models have
some differences in equipment, but the overall scattering
characteristics are notmuch different.Mstarmixed target data
also contains slice images of a group of other military targets.
These targets are the imaging pictures of each target when the
radar works at various pitch angles. Therefore, the Mstar data
set is applied to train the model in the present work. Transfer

Learning can adjust the CNN model trained on a dataset to
generalize to another dataset. Ideally, with the increase of
the number of layers and complexity of the model, the error
rate of the CNN model can continue to decrease. However,
training a complex CNN requires a lot of labeled data and
is extremely time-consuming. To this end, this section intro-
duces Transfer Learning on the following principle. In the
trained model, the output of the bottleneck layer can be well
distinguished from 1,000 kinds of images through a single-
layer fully connected layer neural network. Thus, the node
vector output by the bottleneck layer can be used as a more
expressive feature vector of any image. Therefore, the trained
neural network can be directly used to extract the image fea-
tures on the new dataset. The extracted feature vector is used
to train a new single-layer fully connected neural network
to address the new classification problem. Generally, given
sufficient training samples, the effect of Transfer Learning
is not as good as complete retraining. However, the training
time and training samples required by Transfer Learning are
far less than a learn-from-scratch process.

D. DEEP NEURAL NETWORKS
1) DEEP LEARNING
2006 has witnessed a new research upsurge in ML, namely
DL; since then, academia has studied DL and gradually
applied it in different industries. In 2012, Stanford Uni-
versity takes the lead in using 16,000 Central Processing
Unit (CPU) parallel computing platforms to build a training
model: Deep Neural Networks (DNN) [22]. This technology
has made a great breakthrough in Speech Recognition (SR)
and Image Recognition (IR). In 2016, Alpha Dog, an artificial
go software developed based on DL, defeats Li Shishi, the
world’s top go master. After that, well-known high-tech com-
panies worldwide have launched tremendous investment and
research institutes for DL and efforts to cultivate Research
and Development (R & D) personnel [23], [24]. ML technol-
ogy studies how computers simulate or realize the learning
behavior of animals to learn new knowledge or skills, rewrite
the existing data structure, and then improve the program per-
formance. From a statistical perspective, DL predicts the data
distribution, specifically, creates a model through data learn-
ing and then predicts new data through this model, requiring
a similar distribution between the test and training data [25].
Its basic feature is to imitate the mode of information trans-
mitting and processing between brain neurons, which are
well illustrated in applications, such as computer vision and
Natural Language Processing (NLP). Therefore, DL has a
strong relation with NN in ML, and NN structures are also
the main algorithm or means to realize DL; more concretely,
DL can be regarded as an enhanced NN algorithm [26].

2) ARTIFICIAL NEURON
As a mathematical function, artificial neurons imitate biolog-
ical neurons’ basic operational mechanism; thus, they have
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specific characteristics of biological neurons [27]. Its struc-
ture is shown in Fig. 3.

FIGURE 3. Artificial neuron structure.

The artificial neuron receives the front neuron’s weighted
signal. This neuron will be activated (activation status) under
all weight statuses’ joint action, expressed by Eq. (1).

f (x) =
n∑
i=1

xiwi (1)

In (1), f (x), xi, and wi represent the ultimate output status,
the input signal, and the weight of the input. There are n
groups in total.

Given an input, a neuron output a specific value; each
neuron corresponds to a threshold. If the sum of the inputs
exceeds the threshold, the neuron is activated; otherwise,
it will be inhibited. The Transfer Functions (TF) of artificial
neurons are as follows [28], [29].

a. The expression of the Linear Function (LF) is shown in
Eq. (2):

f (x) = kx (2)

b. The expression of slope function reads:

f (x) = α(x ≥ θ ) (3)

f (x) = kx(−θ < x < θ) (4)

f (x) = −α(x ≤ θ ) (5)

The calculation of the transition function reads:

f (x) = α(x ≥ θ ) (6)

f (x) = β(x ≤ θ ) (7)

The Sigmoid function f (x) reads:

f (x) = a+
b

1+ e−dx
(8)

k , a, d , α, and β are used to set the required parameters.
The TF needs to be selected in combination with the specific
application range. The LF will amplify the output signal, the
nonlinear slope function can minimize the impact of network
performance degradation, and the S-type function is used in
the hidden layer.

3) CONVOLUTIONAL NEURAL NETWORKS
DL structure is divided into CNN and Deep Belief Net-
works (DBN) [30], which are constructed through simulation
of human neurons; each neuron receives information, pro-
cesses, and transmits it to all adjacent neurons. Its structure
is sketched in Fig. 4.

FIGURE 4. Forward propagation processing method of CNN.

In Fig. 4, the leftmost side is the data input layer.
It processes the data, such as de-averaging (centralizing all
dimensions of the input data to 0 to prevent data-excessive
deviations from affecting the training effect), normaliza-
tion (normalizing all data to the same range), and Principal
Component Analysis (PCA)/whitening. CNN only does the
‘‘de-averaging’’ step for the training set. In the middle is
CONV: convolution calculation layer, linear product summa-
tion. RELU: excitation layer. Rectified Linear Unit (ReLU)
is a kind of Activation Function (AF). POOL: pooling layer
takes the regional average or maximum. On the far right is
FC: fully connected layer.

The operation of CNN is divided into two stages:
a. Forward propagation – The dataset sample i is repre-

sented by (x i, yi), x i denotes the output vector, and yi stands
for the sample label. The l-th layer is set as the convolution
layer. x l−1 and x l refer to the input and output of the l-th layer,
respectively [31], [32]. The calculation of the output of the l-
th layer is expressed as in Eq. (9).

x l = f (x l−1 ∗ wl + bl) (9)

In Eq. (9),wl represents the convolution kernel of the l−1-
th layer and the l-th feature maps, ∗ denotes the convolution
operation, bl indicates the bias, and f stands for the nonlinear
AF. The lower sampling layer uses the principle of correlation
between local images to reduce calculation.

b. Backward propagation – it is commonly used for adjust-
ing network structure parameters. It updates the parameters
by backward propagation of the residuals of network nodes
[33], [34]. Fig. 5 demonstrates the process of backward
propagation.

FIGURE 5. Backward propagation process.

The specific steps are as follows.
a. Parameter initialization – each layer’s number of input

(W ) and output feature maps are initialized by Eq. (10).

1W = 0,1b = 0 W ∈ [−

√
6

fanin
+

√
6

fanin + fanout
],

b = 0(10) (10)
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In Eq. (10), fanin and fanout are the number of output and
input feature maps of each layer.

b. The output of each layer is calculated by Eqs. (11)
and (12).

W ∈ [−

√
6

fanin
+

√
6

fanin + fanout
], b = 0 (11)

zl = x l−1 ∗ wl + bl (12)

In Eq. (12), l represents the number of layers; x denotes the
feature map; w refers to the convolution kernel; f stands for
the front of the current layer, and f is the AF.
c. Suppose the output results are divided into m categories,

that is, the final output ism dimensional data; In that case, the
Mean Square Error (MSE) between the output and the sample
label can be used to calculate the cost function J (w, b, x, y)
of the n-th sample, as manifested in Eq. (13).

al = f (zl) (13)

tni and yni represent the expected and actual output of the
i-th neuron in the n-th sample, respectively. Then, the deriva-
tive of the single-sample cost function to the parameter is
obtained by the l-th layer sensitivity, as counted by Eq. (14).

J (w, b; x, y) =
1
2

m∑
i=1

(tni − y
n
i )

2
=

1
2

∥∥tn − yn∥∥22 (14)

ni represents the output layer, and the sensitivity of the
output layer can be calculated by Eqs. (15) and (16).

δl =
∂J
∂zl

(15)

l = ni − 1, ni − 2, · · ·, 2); the sensitivity of each layer is
expressed in Eq. (16).

δ(ni) = −(y− a(ni)) · f ′(z(ni)) (16)

d. After the backpropagation of the cost function, the Gra-
dient Descent Method (GDM) can obtain the partial deriva-
tive of the cost function to the parameters in the network,
update the parameters, and finally, obtain the minimum of
the cost function. The partial derivative of the cost function
J (w, b, x, y) tow(t) and b(t) is calculated by the Eqs. (17)-(20).

∇w(t)J (w, b, x, y) =
∂J (w, b, x, y)

∂zl+1i

∗
∂zl+1i

∂wlij
− = δ(l+1)(a(j))T (17)

e. The weight parameters w(l) and b(l) are updated by
Eqs. (19) and (20).

w(l)
= w(l)

− α[(
1
m
1w(l)] (18)

∇b(t)J (w, b, x, y) =
∂J (w, b, x, y)

∂zl+1i

∗
∂zl+1i

∂blij
= δ(l+1)(a(j))T (19)

b(l) = b(l) − α[(
1
m
b(l)] (20)

In Eqs. (19)-(20) α represents the Learning Rate (LR).

E. CONVOLUTIONAL NEURAL NETWORKS PRETRAINING
AND EXPERIMENTAL TEST DESIGN
This section employs a five-layer CNN model. The first
convolution layer contains eight 5 ∗ 5 filters, the convolution
kernel of the second sampling layer is 2×2, the third convolu-
tion layer contains sixteen 4 ∗ 4 filters, and the last layer is the
fully connected layer. CNN inputs large-scale samples using
ReLU asAF and adjusts each layer’s weight and error through
forward-propagation and backpropagation based on Eq. (19).
The training parameters are set with 50,000 iterations, four
data batch, initial LR = 0.0001, Adam optimizer, and a
0.1/20,000 iterations LR attenuation.

Specifically, the SAR data images pre-trained on the Mstar
database are used for the experiment, with a resolution of
0.3m ∗ 0.3m and a target image size of 128 ∗ 128 pixels.
BRDM2, BTR60, D7, 2S1, T62, T72, ZIL131, and ZSU1234
are used as the experimental data, and each image is manually
labeled. The experimental data are divided into three parts.
The first four types of datasets contain 1,250 training samples
and 1,120 testing samples; the last four types of datasets
include 1,270 training samples and 1,190 testing samples; the
actual status map set of GIS consists of 300 training samples
and 100 testing samples. The PD pattern recognition of GIS is
tested, and the recognition results of four kinds of discharge
patterns are compared.

Then, the Coefficient of Determination (CD) (between 0-1)
is used to determine the Goodness Of Fit (GOF) of the model.
The larger the CD is, the higher the model GOF is, and the
lower the CD is, the worse the GOF is. In particular, the CD,
also known as the determinable coefficient, is often used to
represent the relationship betweenmultiple random variables.
It is a statistical index used to measure the reliability of
the regression model to explain the change of dependent
variables. Eqs. (21) and (22) are the functional relationship
expressions.

y− y = a+ b(x − x) (21)

R2 =

∑
(y− y)2∑
(y− y)2

(22)

In Eqs. (21) and (22), y represents the regression fitting
value of the independent variable y. y is the average of the
independent variable y. a and b are the calculated constant.

The transfer Learning process is presented in Figure 6.
First, it transfers the models’ knowledge that has achieved
excellent results under other target tasks and then uses theGIS
PD signal for the model’s cascaded fine-tuning. Afterward,
the model effect is judged. The PD time domain map is
transformed into a single channel through binary processing
in the data preprocessing. The input image is compressed into
the size required by the corresponding CNN model. The data
enhancement method randomly selects 20% of the training
data to improve themodel generalization. Subsequently, input
data are normalized by the Z-score method to compare data
indexes from different sources. After that, the model parame-
ters trained under the known task are transferred to solve the
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FIGURE 6. GIS PD pattern recognition and classification process.

problem that some DL models cannot be trained due to the
gradient disappearance when they are trained from scratch.
This paper transfers the Mftf dataset. The backpropagation
algorithm and Stochastic Gradient Descent (SDG) algorithm
are used to fine-tune the model. The normalization technol-
ogy is introduced into the pooling layer, and the dropout
method is introduced into the fully connected layer. Finally,
the Transfer Learning-optimized CNN model is tested with
the remaining map to verify its generalization, fault recogni-
tion accuracy, and testing time.

Insulation defects will occur in the manufacturing, trans-
portation, installation, and operation of GIS, including metal
particle defects, metal tip defects, suspended electrode
defects, insulator air gap defects, and insulator surface dirt.
This section designs an experiment to simulate four types
of typical defects by changing the position of the Ultra
High Frequency (UHF) PD sensor to replace the transfor-
mation of defect position. The test voltage is set between
−5∗10−5V-5∗10−5V. Altogether, 1,000 groups of data are
obtained for each type of defect, and then the GIS PD pattern
recognition and classification dataset is constructed. Finally,
the diameter of the central conductor is 120mm, the diameter
of the cylinder is 400mm, the thickness of the cylinder wall
is 10mm, and the cylinder length is 2.2m. The metal tip
defect is explicitly simulated: a metal needle with a length
of 30 mm is installed on the high-voltage conductor, and a
source with 3GHz and 30dB attenuation is applied. Then,
to ensure consistency with the actual situation, both ends
of the model are truncated by the Finite Difference Time
Domain Method (FDTD). Seven Perfect Matched Layers
(PML) are set to match the wave impedance of its adjacent
medium. Additionally, both the high-voltage conductor and
the cylinder are ideal conductors, ignoring the surface loss.
The relative dielectric constant filled in GIS is 1.00205, the
density under the pressure of 0.4MPa is 23.7273 kg/ m3, the
relative permeability is 1, and the conductivity is 1.1015 ×
10-5 S/ m. calculation.

Themaximum frequency is 3GHz, and the unit size is set to
10 mm×10 mm×10 mm, the simulation time is 300ns, and

the time step is set to 9.616 74 × 10−6µs. The simulation
conditions of the other three defects are the same.

F. NETWORKING MODULE
This section selects the Alibaba cloud server to connect
the equipment data acquisition system to realize the cloud
platform’s software installation and service deployment. Five
servers are chosen to build the cloud-based data collection
system and deploy the message queue service and web ser-
vice to the same server based on the cost and performance
consideration. Because these two services have high network
transmission and bandwidth requirements, selecting a high-
bandwidth supportive server is needed. The server provides
Message Queuing Telemetry Transport (MQTT) service and
inputs data to the cloud platform. At the same time, the
server provides background services and can visualize system
functions to customers through web pages. Finally, this paper
selects three servers to form a cluster to store all historical
data.

i The local data transmission network can be divided into
local hardware and gateway. In implementing the local hard-
ware transmission network, there is a need to simultane-
ously interpret the transmission mode according to the output
of different sensors, including hall ring, magnetic suction
temperature sensor, laser displacement sensor, and proxim-
ity sensor, which all output analog signals through Serial
Port (SPORT). Therefore, the output of these four sensors
first needs to be connected to the data acquisition card to
complete Digital to Analog Conversion (DAC). Then the
data acquisition card uses the Remote Terminal Unit (RTU)
protocol to output SPORT signals to the SPORT server. Then,
the analog signal is converted digitally and output over the
Transmission Control Protocol (TCP) through network cable
and transmitted to the gateway. In particular, the triaxial
accelerometer comes with a data analysis function itself and
output TCP-compatible data; it can be directly connected to
the SPORT server and output uniformly through the SPORT
server. To sum up, the SPORT server outputs five types of
sensor data, distinguishable by the gateway through a net-
work address and port number. The programmable Logic
Controller (PLC) register stores the signal information rep-
resenting the device’s start, standby, operation, and stop. The
device can read the data in the corresponding address through
the User Datagram Protocol (UDP), and its output can also
be directly connected to the gateway. Further, data processed
by the local gateway module will be transmitted to the
cloud through the Fourth Generation (4G) wireless network
card over the Message Queue Telemetry Transport (MQTT)
protocol. The implementation of the local gateway network
mainly involves the interaction between the front-end page,
background system, and database. This paper uses a single-
page web display application in the front-end page design,
which will be introduced in detail in the subsequent soft-
ware design section. Firstly, the single-page web application
directly subscribes to the sensor data through theMQTT tech-
nology in real time. Secondly, the initialization configuration
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FIGURE 7. Network module flow chart.

information function, query function, and report printing
function interact with the background system through Hyper-
text Transfer Protocol (HTTP). Finally, The background sys-
tem uses a database driver and Mongo database for data
transmission. The cloud data transmission network can be
realized according to different data types. According to the
output of the local gateway, the cloudwill receive two types of
data: sensor data and PLC data. There are three transmission
paths available for sensor data. (1) Offline storage through the
cluster. These historical data are used to train the fault diagno-
sis algorithm model. The final real-time diagnosis results are
saved in the database. The terminal regularly sends requests
to obtain the diagnosis results through Hypertext Transfer
Protocol (HTTP). (2) Timestamped TSD in the spatiotem-
poral database. Timestamped TSD facilitates the calculation
of statistical indexes. The terminal also regularly requests
to calculate statistical values through HTTP protocol and
then obtain the returned results. (3) Terminal-subscribed data
through the MQTT technology. These data are displayed on
the front-end page. By comparison, PLC data can only have
one transmission path. After the cloud platform subscribes
to PLC data, the script will analyze the PLC data according
to the specific rules and save various status information to
the database. Then, the terminal regularly sends requests to
obtain PLC data through HTTP to display the device status
(Start or Standby) on the front page.

G. PARTIAL DISCHARGE DATA ACQUISITION
The online detection methods of GIS PD can be divided into
the acoustic method, chemical method, pulse current method,
and UHF method. UHF method has become the primary
method in GIS PD detection technology because of its strong
anti-interference ability, high sensitivity, good real-time per-
formance, and fault location. Because GIS’s installation and
operation place are very complex, interference signals are
relatively strong and miscellaneous. According to the actual
production experience, most interferences are concentrated
in the lower frequency. When PD occurs in GIS, the signal
spectrum is vast, and the discharge process can stimulate
UHF electromagnetic wave signals from several Hertz to
thousands of MHz. Therefore, the UHF sensor is adopted
to collect PD signals in the frequency band above 0.5GHz

to avoid substantial amounts of electromagnetic interference.
The system installs multi-channel UHF sensors at the GIS
utility hole or on the basin insulator to obtain the PD signal
and acquire the PD signals.

Since UHF sensor-collected signals are high frequency,
high-speed Analog-to-Digital Converter (ADC) and signal
processor must be used, which is exceptionally costly and
inefficient. Therefore, the signal must go through Radio
Frequency (RF) filters. After pre-amplification, mixing, and
detection, the signal can be output with 1∼10 MHz band-
width before entering the data processing module. The data
processing module mainly includes the ADC and Field Pro-
grammable Gate Array (FPGA). Remarkably, the designed
system utilizes a 14 bit and 50 Msps ADC module to realize
the synchronous sampling of PD signals.

Through digital processing technologies, such as wavelet
analysis of FPGA, the local discharge signal is extracted
under intense noise and uniformly transmitted to Digital Sig-
nal Processing (DSP)module. Then, the signals are sent to the
terminal analysis unit after centralized processing. Finally,
the terminal analysis unit completes the analysis, identifica-
tion, and judgment of the discharge characteristic spectrum
of PD information.

The ADC and DSP module cannot directly process UHF
sensor-collected signals. Thus, the signal must be prepro-
cessed. First, the signal passes through the first-order Low
Pass Filter (LPF), the wave below 1.5 GHz is retained for
RF amplification, and a 0.5∼1.5GHz frequency sweep is per-
formed on the signal. Then, the three-stage mixing circuit can
effectively shield the frequency band with large interference
and improve the system detection sensitivity. Afterward, the
down-conversion technology is adopted to adjust the Inter-
mediate Frequency (IF) output bandwidth to 10∼20MHz and
convert the UHF signal into an ADC and DSP addressable
frequency band. The IF signal is converted into a digital
signal through ADC, enters the data processing module, and
separates the PD signal characteristics.

Analyzing the original waveform of GIS finds that there
may be substantial electromagnetic interference in the site,
such asmobile communication or subway interference. These
interference and PD signals enter the data processing module
through the mixing circuit, inconveniencing the PD diag-
nosis. Meanwhile, these interferences are generally concen-
trated in a narrow band. They can be significantly weakened
by classifying and summarizing the interference signals and
then performing digital band-pass filtering on their respective
narrow bands.

After the concentrated narrow-band interference is weak-
ened, the white noise can be eliminated by wavelet pro-
cessing, and the local discharge waveform can be extracted.
The distribution law of PD signal and white noise in the
depth of wavelet decomposition is not consistent; the low-
scale high-frequency coefficient contains most of the white
noise, while the high-scale coefficient concentrates the PD
signal. Therefore, the PD signal should be concentrated in
the high-scale coefficients as much as possible after wavelet
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FIGURE 8. Data synchronization function structure.

decomposition, and the distribution of white noise cannot
be changed. Figure 8 describes the structure of PD data
collection and data synchronization function.

Table 1 lists the specific data classification.

TABLE 1. PD data collection category.

The model fits the training data well but poorly for other
data in the actual training. Such a fitting degree can eval-
uate the model generalization in model selection. Notably,
k-fold cross-validation can be utilized for model correction:
part of the original data is used as the training set and the
remainings as the verification set. Firstly, the training set is
used to train the model, and then the verification set is used

to test the model generalization. Additionally, labeled data
are less available in reality, and k-fold cross-validation can
reuse some original data for a classification or regression
problem. K-fold cross-validation takes 1/k of the training set
as the testing set, trains each model k times, tests k times, and
averages the error rate of k times. Finally, it selects the model
Mi with the lowest average rate.
a. Divide all training sets S into k disjoint subsets. Suppose

the number of training samples in S is m, then each subset has
m/k training samples.

b. Take one Mi from the model set M each time and select
k-1 training subsets. After training Mi with this k-1 subsets,
the hypothesis function hi is obtained. Finally, the remaining
Sj is used for testing, and empirical errors are obtained.
c. Since one Sj is retained every time, k empirical errors

will be obtained. The empirical error of Mi is the average of
k empirical errors.

d. Select the Mi with the lowest average empirical error
rate, and then use all S to perform another training to get the
final result.

Data are classified as follows:
(1) True Positive (TP) – The model recognizes the positive

samples as positive.
(2) False Negative (FN) – The model recognizes the posi-

tive samples as negative.
(3) False Positive (FP) – The model recognizes the nega-

tive samples as positive.
(4) True Negative (TN) – The model recognizes the nega-

tive samples as negative.
The matrix can be used for easily understandable binary

classification problems. At the same time, the confusion
matrix can be easily applied to problems with three or more
class values by adding rows and columns. The classification
index is obtained from the confusion matrix, from which
more advanced classification indexes can be obtained. The
indexes include Accuracy, Precision, Recall, Specificity, and
sensitivity. Then, the binary classification can segment the
samples according to their real categories and the predicted
categories byML. Thus, total samples= TP+FN+FP+TN .
Accuracy is the most commonly used classification perfor-
mance index to express the model accuracy. It is defined as
the number of correct model recognition/the total number of
samples, as calculated by Eq. (23). Generally, the higher the
Accuracy is, the better the model performance is.

Accuracy = (TP+ TN )
/
(TP+ FN + FP+ TN ) (23)

Precision or accuracy rate indicates the proportion of truly
positive samples in the positively predicted samples. Gener-
ally, the higher the Precision is, the better the model effect is,
as calculated by Eq. (24).

Precision = TP/ (TP+ FP) (24)

Recall – also known as recall rate, shows the classifier’s
predictability against the positive samples. True positive rate
(TPR) indicates the ratio of correctly identified positive sam-
ples to the total true positive samples. Generally, higher
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Recall means that the more positive samples are predicted
correctly, and, thus, the better the model effect is, as counted
by Eq. (25):

Recall = TP/ (TP+ FN ) (25)

Precision and Recall a pair of contradictory indexes.
A high Precision usually indicates a lowRecall. Likewise, the
higher Recall is, the low Precision will be.
Specificity refers to the ratio of the negatively identified

samples to the total number of negative samples. The calcu-
lation of False Positive Rate (FPR) reads:

FPR = FP/ (TN + FP) (26)

Generally, the lower the proportion of negative samples
identified positively in all negative samples is, the better the
model performance is, as calculated by Eq. (27).

Specificity = 1− FPR (27)

F-Score – its physical meaning is a weighted average of
the Recall and Precision, during which the weight of the
former is F times of the latter. Then, the F-Score is defined as
the harmonic average of Recall and Precision. The value of
F-Score = 1 varies from 0 to 1, 1 being the optimal and 0
being the worst.

The above 1,000 groups of PD data are used for pattern
recognition and classification. 80% of the data are randomly
selected for training, 30% are used as the training set, 50%
are used as the cross-validation set, and the remaining 20%
are used for testing, and the model is tested multiple times.

III. EXPERIMENTAL RESULTS OF GIS INSULATED
SWITCHGEAR
A. CLASSIFICATION AND RECOGNITION RESULTS OF THE
MODEL TRAINING SET
Fig. 9 illustrates the results of the model’s classification
and recognition against the first four categories in the Mstar
dataset.

FIGURE 9. Classification and recognition results of the first four types of
Mstar.

In Fig. 9, when the first four types of Mstar train the
proposed Transfer Learning-optimized CNN, the recognition
rate is generally more than 95%, the recognition rate for
the BRDM2 dataset is the lowest, reaching 95.22%, and the
recognition rate for 2S1 data set is slightly higher, reaching
97.05%. The recognition rate of the BTR60 data set is higher,
reaching 99.26%, and the recognition rate for the D7 data set
is the highest, 99.26%. Thus, after training, the overall model
recognition rate reaches 97.23%.

B. MODEL TRAINING SET EFFECT TEST
Table 2 compares the effects of the Transfer Learning-
optimized CNN, CNN, and Deep CNN (DCNN) approaches.

TABLE 2. Comparison of testing results of mainstream network
structures.

As shown in Table 2, compared with the mainstream
network structures CNN and DCNN, the recognition rate
of the proposed Transfer Learning-optimized CNN reaches
98.34%, slightly higher than 94.75% of CNN and 95.55%
of DCNN. Compared with other CNN and DCNN structures
requiring hundreds of seconds of training time, the Transfer
Learning-optimized CNN structure takes about 7.078 sec-
onds to train, and the effect is remarkable. Next, the first four
types in Mstar dataset is used to verify the classification and
recognition rate of the proposed Transfer Learning-optimized
CNN for small datasets, as detailed in Table 3.

TABLE 3. Verification of the proposed method on small sample datasets.

Table 3 suggests that when the data volume reaches 600,
the verification results stabilize at about 96.5%, close to
97.23% (the training results on the large dataset), which
means that the training results of medium-sized training sets
are good. When data volume increases from 100 to 300,
the recognition rate increases sharply, from 70% to 95.2%,
obviously higher than 95%, and beats the traditional CNN.
Therefore, the proposed Transfer Learning-optimized CNN
is also excellent for training and recognizing small samples
sets with at least a data volume of 300.
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C. TEST RESULTS OF ACTUAL GAS INSULATED
SWITCHGEAR DATASET
Further, the proposed Transfer Learning-optimized CNN
model is trained and tested and is compared with different
models, as in Fig. 10.

FIGURE 10. Comparison of training and testing time of different models.

Fig. 10 reveals the relationship between the six mainstream
DL models and the proposed Transfer Learning-optimized
CNN. Excessive training duration will make it impossible to
monitor and manage the health status of complex equipment
in real time, so it is necessary to shorten the testing time.
Meanwhile, lengthy training time leads to poor model updat-
ing, hinders model training, and, thus, fails to improve the
model accuracy. The training time of the proposed Transfer
Learning-optimized CNN model is 16min, the shortest by
comparison with other DL models. In terms of the testing
time, the proposed Transfer Learning-optimized CNN model
spends almost as little as the model with the shortest training
time, with only about 0.1s difference. Therefore, the proposed
Transfer Learning-optimized CNN model performs best in
training and testing time.

D. TEST RESULTS OF DISCHARGE DEFECT TYPES OF
ACTUAL GAS INSULATED SWITCHGEAR
The trained Transfer Learning-optimized CNN and other
mainstream NN models are used to classify the pictures, and
various GIS PD pattern recognition results are obtained, as in
Fig. 11.

In Fig. 11, M represents free metal defect discharge,
N denotes metal tip defect discharge, P means air gap defect
discharge, and O stands for suspended electrode defect dis-
charge. Fig. 8 displays that the LeNet5 model has a low PD
pattern recognition rate due to the obvious lack of learning of
feature representation, which is related to the excessive loss
of image features or the insufficient depth of the model the
inability to extract feature information fully. The proposed
Transfer Learning-optimized CNN model has a recognition
rate of 99.6% for M-type defects, 99.2% for N-type defects,
89.6% for O-type defects, 97.6% for O-type defects, and the

FIGURE 11. PD pattern recognition results of various GIS.

overall recognition rate is 96.5%. Compared with the other
algorithm models, it has the highest recognition rate for var-
ious PD patterns. The overall recognition rate is above 96%,
which shows that the proposed Transfer Learning-optimized
CNN model has the best recognition effect in practical appli-
cation. In all pattern recognitionmethods, the recognition rate
for insulator air gap fault is relatively low, mainly caused by
the small air gap in epoxy resin or the instability of PD in
the air gap between insulating materials and metal inserts.
By comparison, the algorithmmodels that employ start-from-
scratch training, such as VGG16, AlexNet, Inception, cannot
be trained due to the gradient disappearance. The Transfer
Learning training method improves the model recognition
rate significantly.

For GIS PD pattern recognition and classification, the
model trained with the Mstar dataset will be transferred,
and then the parameter update training will be carried out.
The proposed Transfer Learning-optimized CNN models’
parameter volume is 408, and the storage cost space is
12.8MB. Obviously, the MobileNet model has the best per-
formance, indicating that it is more suitable to be embed-
ded into the intelligent terminal under the ubiquitous IoE.
MobileNet is less bulky and has less computation and higher
accuracy. It has significant advantages in lightweight NNs.
Under Google Pixel-1 mobile phone test, all versions of
MobileNet can keep a running time below 120ms. The
following is the structure of MobileNet applied in this
paper: (a). The whole network does not calculate the aver-
age pooling and SoftMax layers, with altogether 28 layers.
(b). In the whole network structure, the convolution with
a step size of 2 is more characteristic, and the convo-
lution acts as the downsampling simultaneously. (c). The
27 layers after the first layer are the repeated convolution
operation of depthwise separable convolution. (d). Each
convolution layer (including conventional, depthwise, and
pointwise convolution) is followed by batch normalization
and ReLUAF. (e). The last fully-connected layer does not use
the AF.
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E. CONVOLUTIONAL NEURAL NETWORK ALGORITHM
CORRELATION
Figs. 12 and 13 illuminate the simulation diagrams of the
relationship between the training and testing sets’ measured
values and predicted values. The simulation value represents
the model predicted value, and the measured value is the
actual value of PD.

FIGURE 12. Simulation of the relationship between measured and
predicted values of the training set.

FIGURE 13. Simulation of the relationship between measured and
predicted values of the testing set.

R2 of the training set and the testing set are 0.95 and
0.91 after the CNN model training. Then, the correlation is
evaluated between the simulated and measured values. The
test results show that both the training and testing sets show
a high correlation between simulated and measured values.
The fast-fitting is a positive correlation line, and its GOF is
strong. When the error ratio of training and testing is close to
1.02, the gap between the testing and training errors is tiny.
Therefore, the training is more successful, and the training
effect is better than other similar algorithms.

IV. CONCLUSION
The IoT technology and Transfer Learning-optimized CNN
are used to study the complex equipment-oriented HMS to

optimize the GIS state management and reduce the possible
risks to personnel and equipment in the production process.
Firstly, it expounds on the principle of Transfer Learning
and DL technology. Secondly, the internal state identification
and management requirements of GIS are studied. On this
basis, a GIS-oriented HMS is proposed using the Transfer
Learning-optimized CNN, and the training dataset is con-
structed. Finally, the proposed Transfer Learning-optimized
model is verified. The experimental findings imply that the
proposed Transfer Learning-optimized CNNmodel has good
robustness. Meanwhile, given the strong training ability of
CNN, the experimental results after training show that the
overall recognition rate reaches 97.23%, which further short-
ens the iterative evolution speed of network training. The
overall recognition rate of the Transfer Learning-optimized
CNNmodel is 96.5%. Compared with the other six algorithm
models, the proposed model has the highest recognition rate
for various defects-induced PD, with an overall recognition
rate of 96%. The model training and testing time are short,
and the convergence speed is fast. The training and testing
sets’ R2 is 0.95 and 0.91, respectively, which have a high
correlation. Besides, the fast fitting is a positive correlation
line, so the GOF is very high. Thus the proposed Transfer
Learning-optimized CNN can effectively manage equipment
health and further improve the recognition rate and model
reliability of poor working state caused by GIS’s PD.

However, although this paper has achieved good research
results, there are still has some deficiencies. The research on
the GIS model is not enough. The proposed method has not
been verified under extreme conditions, so future work will
focus on improving the detection and management effective-
ness of the model under extreme conditions against GIS PD.
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