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ABSTRACT Electricity theft is a global problem that negatively affects both utility companies and electricity
users. It destabilizes the economic development of utility companies, causes electric hazards and impacts
the high cost of energy for users. The development of smart grids plays an important role in electricity theft
detection since they generate massive data that includes customer consumption data which, through machine
learning and deep learning techniques, can be utilized to detect electricity theft. This paper introduces
the theft detection method which uses comprehensive features in time and frequency domains in a deep
neural network-based classification approach. We address dataset weaknesses such as missing data and class
imbalance problems through data interpolation and synthetic data generation processes. We analyze and
compare the contribution of features from both time and frequency domains, run experiments in combined
and reduced feature space using principal component analysis and finally incorporate minimum redundancy
maximum relevance scheme for validating the most important features. We improve the electricity theft
detection performance by optimizing hyperparameters using a Bayesian optimizer and we employ an
adaptive moment estimation optimizer to carry out experiments using different values of key parameters
to determine the optimal settings that achieve the best accuracy. Lastly, we show the competitiveness of our
method in comparison with other methods evaluated on the same dataset. On validation, we obtained 97%
area under the curve (AUC), which is 1% higher than the best AUC in existing works, and 91.8% accuracy,
which is the second-best on the benchmark.

INDEX TERMS Deep neural network, electricity theft, machine learning, minimum redundancy maximum

relevance, principal component analysis, smart grids.

I. INTRODUCTION

ELECTRICITY theft is a problem that affects utility compa-
nies worldwide. More than $96 billion is lost by utility com-
panies worldwide due to Non-Technical Losses (NTLs) every
year, of which electricity theft is the major contributor [1].
In sub-Saharan Africa, 50% of generated energy is stolen,
as reported by World Bank [2].

The ultimate goal of electricity thieves is to consume
energy without being billed by utility companies [3], or pay
the bills amounting to less than the consumed amount [4].
As aresult, utility companies suffer a huge revenue loss due to
electricity theft. [5] reports that in 2015, India lost $16.2 bil-
lion, Brazil lost $10.5 billion and Russia lost $5.1 billion.
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It is estimated that approximately $1.31 billion (R20 billion)
revenue loss incurred by South Africa (through Eskom) per
year is due to electricity theft [2].

Apart from revenue loss, electricity theft has a direct nega-
tive impact on the stability and reliability of power grids [3].
It can lead to surging electricity, electrical systems over-
load and public safety threats such as electric shocks [4].
It also has a direct impact on energy tariff increases, which
affect all customers [3]. Implementation of smart grids comes
with many opportunities to solve the electricity theft prob-
lem [4]. Smart grids are usually composed of traditional
power grids, smart meters and sensors, computing facilities
to monitor and control grids, etc., all connected through the
communication network [6]. Smart meters and sensors collect
data such as electricity usage, grid status, electricity price,
etc. [6].
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Many Utilities sought to curb electricity theft in tradi-
tional grids by examining meters’ installation and configura-
tions, checking whether the power line is bypassed, etc. [4].
These methods are expensive, inefficient and cannot detect
cyber attacks [4], [7]. Recently, researchers have worked
towards detecting electricity theft by utilizing machine learn-
ing classification techniques using readily available smart
meters data. These theft detection methods have proved to
be of relatively lower costs [8]. However, existing classi-
fication techniques consider time-domain features and do
not regard frequency-domain features, thereby limiting their
performance.

Regardless of the fact that there is active ongoing research
on electricity theft detection, electricity theft is still a prob-
lem. The major cause of delay in solving this problem may
be that smart grids deployment is realized in developed
nations while developing nations are lagging behind [9].
The challenges of deploying smart grids include the lack
of communication infrastructure and users’ privacy concerns
over data reported by the smart meters [10]. However, [10]
reports that smart meters are being considered by many devel-
oped and developing countries with aims that include solving
NTLs. [11] predicted smart grids global market to triple in
size between 2017 and 2023, with the following key regions
leading smart grids deployment: North America, Europe and
Asia.

In this paper, we present an effective electricity theft
detection method based on carefully extracted and selected
features in Deep Neural Network (DNN)-based classifica-
tion approach. We show that employing frequency-domain
features as opposed to using time-domain features alone
enhances classification performance. We use a realistic
electricity consumption dataset released by State Grid
Corporation of China (SGCC) accessible at [12]. The dataset
consists of electricity consumption data taken from January
2014 to October 2016. The main contributions are as
follows:

o Based on the literature, we propose a novel DNN
classification-based electricity theft detection method
using comprehensive time-domain features. We further
propose using frequency-domain features to enhance
performance.

« We employ Principal Component Analysis (PCA) to
perform classification with reduced feature space and
compare the results with classification done with all
input features to interpret the results and simplify the
future training process.

o« We further use the Minimum Redundancy Maxi-
mum Relevance (mRMR) scheme to identify the most
significant features and validate the importance of
frequency-domain features over time-domain features
for detecting electricity theft.

o We optimize the hyperparameters of the model for
overall improved performance using a Bayesian opti-
mizer. We further employ an adaptive moment estima-
tion (Adam) optimizer to determine the best ranges of
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values of the other key parameters that can be used to
achieve good results with optimal model training speed.

o Lastly, we show 1% improvement in AUC and com-
petitive accuracy of our model in comparison to other
data-driven electricity theft detection methods in the
literature evaluated on the same dataset.

The remainder of this paper is organized as follows.
Section II covers the related work done in literature to tackle
the electricity theft problem. In Section III, we briefly intro-
duce techniques used in this paper. Section IV covers step
by step method taken in this work; which includes dataset
analysis and work done to improve its quality and customers’
load profile analysis which lead to features extraction and
classification. In Section V, we show and discuss the results.
We finally conclude the paper in Section VI.

Il. RELATED WORK

Research on electricity theft detection in smart grids has
attracted many researchers to devise methods that mitigate
against electricity theft. Methods used in the literature can
be broadly categorized into the following three categories:
hardware-based, combined hardware and data-based detec-
tion methods and data-driven methods.

Hardware-based methods [13]-[19] generally require
hardware devices such as specialized microcontrollers, sen-
sors and circuits to be installed on power distribution lines.
These methods are generally designed to detect electricity
theft done by physically tampering with distribution compo-
nents such as distribution lines and electricity meters. They
can not detect cyber attacks. Electricity cyber attack is a
form of electricity theft whereby energy consumption data is
modified by hacking the electricity meters [7].

For instance, in [13], an electricity meter was re-designed.
It used components that include: a Global System for Mobile
Communications (GSM) module, a microcontroller, and
an Electrically Erasable Programmable Read-Only Memory
(EEPROM). A simulation was done and the meter was able
to send a Short Message Service (SMS) whenever an ille-
gal load was connected by bypassing the meter. Limited
to detecting electricity theft done by physically tampering
with distribution components such as distribution lines and
electricity meters. Authors in [16] used the GSM module,
ARM-cortex M3 processor and other hardware components
to solve the electricity theft problem done in the following
four ways: bypassing the phase line, bypassing the meter,
disconnecting the neutral line, and tampering with the meter
to make unauthorized modifications. A prototype was built to
test all four possibilities. The GSM module was able to notify
with SMS for each theft case.

Authors in [17] designed ADE7953 chip-based smart
meter which is sensitive to current and voltage tempering,
and mechanical tempering. ADE7953 was used to detect
overvoltage, dropping voltage, overcurrent, the absence of
load and other irregularities in voltage and current. It sent
an interrupt signal to the Microcontroller Unit (MCU) which
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reported tampering status. Mechanical tampering was over-
come by connecting a tampering switch to MCU’s 1O ports
so that it can send alarm signals to MCU once tampered
with. The design was tested with tampering cases such as
connecting the neutral and the phase lines, connecting the
meter input and output in reverse mode, and bypassing the
phase line to load. The probability of detection failure was
2.13%.

Authors in [15] used a step down transformer, voltage
divider circuit, microchip and other hardware components
to design a circuitry to detect electricity theft by comparing
forward current on the main phase line with reverse current
on the neutral line. The circuitry was installed before the
meter.The design was tested on Proteus software and on
actual hardware. When the meter was bypassed, the problem
was detected and an alarm sounded. In [14], a circuit to detect
electricity theft done by bypassing the meter was designed.
The transformers, rectifiers, microcontroller, GSM module
and other hardware components were used. The GSM con-
troller notified the operator with SMS when the meter was
bypassed.

Authors in [18] proposed putting the Radio Frequency
Identification (RFID) tags on ammeters and capturing unique
data about each ammeter. Ammeters were to be tracked
and managed real-time. Electricity theft was to be inspected
onsite. Damaged, removed or a tag with a different informa-
tion from the original one means high possibility that an elec-
tricity theft happened. Evaluation based on analysis on cost
of deployment. With a case study made on utility company
in China, Return on Investment (ROI) was found to be >1.
In [19], An Arduino-based real-time electricity theft detector
was designed. The following hardware was used: Arduino
Uno, GSM module, current sensors and LCD. The Arduino
Uno obtained measurements from current sensors which were
located one on the secondary side of the transformer and the
other on the electric service cap. If the difference between
current sensors’ measurements exceeded a set threshold, the
message would be sent to the operator via a GSM module.
The simulation was done using Proteus 8 software and the
prototype was built on hardware, which was able to report
theft cases when tested.

Apart from their inability to detect cyber attacks, these
methods are also expensive due to their need for special
hardware deployment and maintenance. Combined hardware
and data-based electricity theft detection methods [20]—[22]
employ the use of hardware, machine learning and/or deep
learning techniques to tackle the electricity theft problem.
Due to hardware requirements, these methods also pose the
challenge of being expensive to deploy and maintain.

In [20], a method to measure the total consumption of
a neighbourhood and compare the results with the usage
reported by the smart meters in that neighbourhood was
proposed. A significant difference between smart meters’
and transformers’ measurements would mean the presence
of unfaithful customers in the neighbourhood. To locate
the unfaithful customers in the neighbourhood, the authors
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proposed using a Support Vector Machine (SVM) classifier.
The classifier was tested on a dataset of 5000 (all faithful)
customers. A maximum detection rate of 94% and a minimum
false positive rate of 11% were achieved.

Authors in [22] developed a predictive model to calcu-
late TLs. To get NTL, TLs would be subtracted from total
distribution network losses. Based on an assumption that
distribution transformers and smart meters share data to the
utility after every 30 minutes, a smart meter simulator was
used to generate data for 30 users in 30 minutes intervals for
6 days. On the simulator, unfaithful users stole electricity by
bypassing the meter. Stolen electricity was varied between
1% and 10% of the total consumption. For stolen electricity
value over 4%, the detection rate was 100%, which dimin-
ished as stolen electricity percentage was decreased.

In [21], a method which would use an observer meter
that would be installed on a pole away from households and
record the total amount of electricity supplied to » households
where it is suspected that one or more meters have been
tampered with was proposed. The observer meter would have
camera surveillance to protect it from being tampered with.
A mathematical algorithm that utilizes data from an observer
meter and smart meters to detect a smart meter tempered
with was developed. A mathematical algorithm was tested
with a real-world consumption dataset by increasing the
consumption of some meters which were picked randomly.
The algorithm was able to detect the meters with altered
consumption.

Due to high-cost demand in the above categories, many
researchers work on data-driven methods to overcome the
electricity theft problem. For instance, the authors in [3]
designed an electricity theft detection system by employ-
ing three algorithms in the pipeline: Synthetic Minority
Over-sampling Technique (SMOTE), Kernel function and
Principal Component Analysis (KPCA) and SVM. They used
SMOTE to generate synthetic data for balancing an unbal-
anced dataset, KPCA to extract features and SVM for classi-
fication. They obtained maximum overall classifier quality
characterized by Area Under the Curve (AUC) of 89% on
validation.

Authors in [4] used wide and deep Convolutional Neural
Networks (CNN) model to detect electricity theft. Based on
that normal electricity consumption is periodical while stolen
electricity consumption data is not periodical, wide was to
learn multiple co-occurrences of features for 1-D series data,
while deep CNN was used to capture periodicity with data
aligned in a 2-D manner by weeks. They varied training and
validation data ratios, to obtain maximum AUC value of 79%.
By utilizing the same dataset used in [3] and [4], the method
we present in this paper achieves AUC results beyond 90%
on both validation and testing.

In [23], PCA was used to transform original high-
dimensional consumption data by extracting Principal
Components (PCs) which retained the desired variance.
An anomaly score parameter that was defined between set
minimum and maximum thresholds was introduced. For
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each test sample, the anomaly score parameter was calcu-
lated. If the result was not between the set thresholds, the
sample would then be treated as malicious. The true pos-
itive rate (TPR) was used to evaluate the method, which
hit the best-recorded value of 90.9%. Authors in [24] used
One-Class SVM (0O-SVM), Cost-Sensitive SVM (CS-SVM),
Optimum Path Forest (OPF) and C4.5 tree. From customer
consumption data, different features were selected, and the
performance of each classifier was analyzed independently
on a different set of features, followed by combining all
classifiers for the best results. Best results were achieved
when all classifiers were combined, with 86.2% accuracy.

Authors in [25] employed a combination of CNN and Long
Short-Term Memory (LSTM) recurrent neural network deep
learning techniques. Seven hidden layers were used, of which
four of them were used by CNN and three were utilized
by LSTM. This method relied on CNN’s automatic feature
extraction ability on a given dataset. Features were extracted
from 1-D time-series data. On model validation, the maxi-
mum accuracy achieved was 89%. The authors in [26] used
a combination of Local Outlier Factor (LOF) and k-means
clustering to detect electricity theft. They used k-means clus-
tering to analyze the load profiles of customers, and LOF
to calculate the anomaly degrees of customers whose load
profiles were from their cluster centres. On the evaluation
of the method, they attained an AUC of 81.5%. Our model
achieves a maximum value of 91.8% accuracy and 97% on
validation.

In [27], two electricity theft models were developed. The
first model is based on Light Gradient Boosting (LGB)
classifier. A combination of SMOTE and Edited Nearest
Neighbour (ENN) was used to balance the dataset. Fea-
ture extraction was done using AlexNet, followed by clas-
sification with LGB. This proposed model was named as
SMOTEENN-AlexNet-LGB (SALM). The second model
is based on the Adaptive Boosting classifier. Conditional
Wasserstein Generative Adversarial Network with gradient
penalty (CWGAN-GP) was used to generate synthetic data
that resembled the minority class data to balance data of the
unbalanced classes. Feature extraction was performed using
GoogleNet, then classification by AdaBoost followed. The
proposed model was named as GAN-NETBoost. The models
were evaluated with SGCC data used in this work. SALM
and GAN-NetBoost attained an accuracy of 90% and 95%,
and AUC of 90.6% and 96% respectively on validation.

Although these models were able to achieve impres-
sive results, their consideration of time-domain features
alone limited their performance. Our solution shows that
adding frequency-domain features on time-domain features
improves classification performance.

Ill. PRELIMINARIES

In this section, we give a summary of the main techniques
used, which are: Deep Neural Networks (DNNs), Princi-
pal Component Analysis (PCA), and Minimum Redundancy
Maximum Relevance (mRMR).
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A. DEEP NEURAL NETWORKS

Artificial Neural Networks (ANNs) are a class of machine
learning techniques that have been built to imitate biological
human brain mechanisms [28], [29]. They are typically used
for extracting patterns or detecting trends that are difficult to
be detected by other machine learning techniques [30].

They consist of multiple layers of nodes/neurons which
are connected to subsequent layers [29]. A neuron is the
basic element of a neural network, which originates from
the McCulloch-Pitts neuron, a simplified model of a human
brain’s neuron [31]. Figure 1 shows a model diagram of a
neuron that comprises a layer following the input to the ANN.

x
w.
1
T2
- @y
xs w3
w4 g Output
Ty .
A
T
b
Inputs Weights Bias

FIGURE 1. First hidden layer neuron model.

It consists of an activation function f, which takes a
weighted sum of the real number input signal and gives real
number output y given by Equation (1).

g=f_ (wix) +b). (1

where x; € X, w; € W, X is input vector, w is weights
vector and b is the bias [31]. Neural network nodes mimic
the brain’s neurons, while connection weights mimic connec-
tions between neurons, which are unique for each connection
[28], [29]. A neural network stores information in the form of
weights and bias.

The Deep Neural Networks (DNNs) concept originates
from research on ANNs [32]. DNNs are characterized by two
or more hidden layers [28]. They are able to learn more com-
plex and abstract features than shallow ANNs [33]. Often-
times in classification problems, the output layer is made up
in such a way that one neuron represents a certain class [29].
All neural network layers are used to filter and learn the com-
plicated features, except for an output layer which classifies
based on learnt features [29], [34]. Before DNNs develop-
ment, most machine learning techniques explored architec-
tures of shallow structures which commonly contain a single
layer of non-linear transformation [32]. Examples of these
architectures include SVMs, logistic regression and ANNs
with one hidden layer.

DNNs have different architectures, which are used to solve
different problems. Examples of DNN architectures include
feed-forward DNN, convolutional DNN and recurrent DNN.
In this research work, a fully connected feed-forward
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FIGURE 2. Fully connected feed-forward DNN general architecture.

DNN was used. the typical structure of a fully connected
feed-forward DNN is shown in Figure 2.

The DNN given in Figure has the following major parts:

« Input layer (x)
A layer that comprises input data features or representa-
tion.

« Input weights (w;)
Weights of the connections between the input layer and
the first hidden layer of a DNN.

« Hidden layers
The layers of neurons between the input and output
layers. They are used to analyse the relationship between
the input and output signals [30].

« Hidden neurons weights ([wy,, -+, wp,])
Weights of the connections between the hidden layers.

o Output weights (w,)
Weights between the last hidden layer and the output
layer.

o Output layer (y)
The last layer of a DNN. It gives the output of the
network from network inputs.

In a feed-forward architecture, computation is a sequence
of operations on the output of a previous layer. The final
operations generate the output. For a given input, the output
stays the same, it does not depend on the previous network
input [33].

1) HISTORY OF DNNs DEVELOPMENT

[33] reports that ANNs were first proposed in the 1940s,
and research on DNNs emerged in the 1960s. In 1989, the
LeNet network, which used many digital neurons, was built
for recognizing hand-written digits. Major breakthroughs
were seen in the years beyond 2010, with examples such
as Microsoft’s speech recognition system, AlexNet image
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recognition system, and DNN accelerator research such as
Neuflow and DianNao brought into play.

The following reasons are reported by [30], [32], [33] as
major contributors to DNNs’ improved development:

« Advancements in semiconductor devices and computer
architecture, leading to parallel computing and lower
costs of computer hardware.

« Huge amount of data obtained by cloud providers and
other businesses, making large datasets that train DNNs
effectively.

o Advances in machine learning and signal/information
processing research which leads to the evolution of tech-
niques to improve accuracy and broaden the domain of
DNNs application.

With present technology permission, DNNs can have a
count of layers that is beyond a thousand [33].

2) DNN TRAINING

A large dataset and high computational abilities are the
major requirements in training the DNN since weight updates
require multiple iterations [33]. DNN training process is con-
cerned with adjusting the weights between the neurons [30].
Through the training process, the DNN learns information
from the data. Learning can be in the following major four
ways: supervised, semi-supervised, unsupervised or rein-
forcement [33]-[36].

In this work, supervised learning was used. The typical
procedure for supervised learning in DNNs as given by [28],
[34] is as follows:

1) The weights W = [w;, Wy, - -

ized with adequate values.

2) Input signal x is fed to the network’s input layer.

3) Output error is calculated, and then weights adjusted

with an aim to reduce an error.

4) Steps 2 and 3 are repeated for all training data.

-, Wpy,, W,] are initial-

3) BACKPROPAGATION

A loss function of a multi-layered ANN is composed of
weights from successive layers between input and output
layers [36]. Backpropagation uses chain rule to obtain the
gradient of the loss function in terms of summation of local
gradient products over different nodes connections between
input and output layers [28], [29], [36]. Backpropagation
algorithms typically use gradient-based optimization algo-
rithms to update the neural network parameters on each
layer [37].

4) ACTIVATION FUNCTIONS

An activation function takes an input signal, by simulating a
response of a biological neuron, transforms the signal into an
output signal which may be an input to another neuron [38],
[39]. There are many activation functions, which can be
generally divided into two kinds: the linear and non-linear
activation functions. The type of activation function used in
a DNN plays a major role in the prediction accuracy of the
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model [39]. The selection of an activation function depends
on the reasons such as computational power, analytic flexi-
bility and whether the desired output should be continuous or
discrete [30]. Let z = > (wjx;) + b. Then Equation (1) can
be re-written as shown in Equation (2).

§=f@ @

5) LINEAR ACTIVATION FUNCTIONS

Linear activation functions usually have an activation that is
directly proportional to the input. They can be expressed in
the form of Equation (3).

f@)=Cz (3)

where C is a constant. The output of the linear activation
function is in the range (— 00, 00) and its derivative is f/(z) =
C. Since the gradient is not related to the input, an error can
not be minimized by the use of a gradient [40]. This activation
function is normally used in regression problems [41].

6) NON-LINEAR ACTIVATION FUNCTIONS

Non-linear activation functions are widely used in DNNs
because of their ability to adapt to data variations and differ-
entiate outputs [40]. Among the many developed non-linear
activation functions, the most popular are described as fol-
lows [38]-[41].

o Sigmoid activation function
Sigmoid activation function is given by Equation (4)

f@= 7= @)

where input z € (—o0, 00) and an activation f € (0, 1).

Sigmoid is continuous and differentiable everywhere. Its

derivative is given by Equation (5).

e—Z

(1 4+ e2)2
Due to less computation in finding its derivative, this
activation function is widely used in shallow neural net-
works. It is rarely used in DNNs’ hidden layers because
of its soft saturation property which makes DNNs delay
converging during training.

o Hyperbolic tangent activation function
Like the sigmoid, hyperbolic tangent is continuous and
differentiable everywhere. It is given by Equation (6). Its
derivative is given by Equation (7).

fl@= &)

(@) = tanh(z) = e“_r—z_z 6)
, 4e=2%
f (2) = m~ @)

The input z € (—00, 00) and an activation f € (—1, 1).
Using a hyperbolic tangent for activation makes the neu-
ral networks converge faster than when using a sigmoid,
therefore a hyperbolic tangent is more preferred than a
sigmoid.
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o Rectified linear unit activation function
Rectified linear unit (ReLU) activation function is given
by Equation (8) and is derivative by Equation (9).

z, >0
f(@) = max(0, 2) = {0’ 2 <0 (8)
ey )L z=0
f'(2) = max(0,2) = {0’ 1 <0 9

Compared to sigmoid and hyperbolic tangent activation
functions, ReLU is the simplest and most commonly
used in DNNs because of its good property of being
close to linear, hence better convergence. It is more
efficient since it activates less number of neurons at the
same time. For z > 0, its gradient is constant thereby
avoiding the vanishing gradient problem. Its gradient
is cheaper to compute as there are no calculations that
involve exponents.
o Softmax activation function
Softmax activation function is given by Equation (10).
Zi
fRi=—— (10
Z] 1 e¥

where K is the number of classes.
Softmax is typically used in the output layer of a DNN
for classification purposes. The output of a softmax is a
probability of a particular class j, therefore if the softmax
activation function is used in the output layer, all of the
output layer activations sum to 1.

B. PRINCIPAL COMPONENT ANALYSIS
PCA [42] is used to extract important information from a
data table of inter-correlated features/variables that represent
observations. This extracted information is represented as a
new set of orthogonal variables known as Principal Compo-
nents (PCs). In this work, PCA uses a Singular Value Decom-
position (SVD) algorithm [43] which works in the following
manner: for input feature matrix X, SVD decomposes it into
three matrices, i.e., X = PQRT, such that:

« P is the normalized eigen vectors of the matrix XXT,

« Q= E? where Eis a diagonal matrix of eigen values of

matrix XXT, and

« Ris the normalized eigen vectors of matrix XTX.

When PCA is applied to a matrix X of size m x n, n PCs
{c}L_, are obtained, which are ordered in descending order
with respect to their variances [23]. A PC at position p is
given by

¢p = arg max [|(X - Zxc, Dell, (11)

and its variance is obtained by evaluating ||Xcp| 2.

The main goals achieved with PCA are as follows:

o Extraction of most important information from
data/feature table, thereby compressing and simplifying
dataset description, and

« Analysis of observations and variables’ structure.
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For dimensionality reduction purposes, the first r < n PCs
that retain acceptable variance can accurately represent fea-
ture matrix X in a reduced r-dimensional subspace.

C. MINIMUM REDUNDANCY MAXIMUM RELEVANCE

An mRMR [44], [45] is a feature selection scheme that selects
features that have a high correlation with the response vari-
able and low correlation with themselves. It ranks features
based on mutual information of a feature and a response
variable, and pairwise mutual information of features. Mutual
information between variables A and B is given by

MIA.B) =) ") " p(a, b)log Pab (12)
A ben p(a)p(b)
For all features {X;}, maximum relevance R; is imple-
mented using mean value of their mutual information with
an output class O.i.e.,

1
= ZMI(O, X)). (13)

Minimum redundancy R, helps to select features that are
mutually maximally dissimilar. It is given by:

1
R, = XP ZMI(Xi, X;). (14)

where X;, X; € X. mRMR feature selection goal is achieved
by optimizing relevance and redundancy in the following
manner: max(R; — Ry).

R;

IV. DNN-BASED ELECTRICITY THEFT

DETECTION METHOD

The electricity theft detection method outlined in this section
consists of the following three steps: Data Analysis and Pre-
processing, Feature Extraction, and Classification. Figure 3
shows the workflow diagram.

Original > Data Analysis &

‘ _— Feature
Data Pre-processing

Extraction

——

Test Data
Features

: :

Pre-trained Trained >
DNN DNN

Train Data
Features

Results

FIGURE 3. Electricity theft detection workflow diagram.

A. DATA ANALYSIS AND PRE-PROCESSING
In this sub-section, we present the dataset used and its quality
improvement by identifying and removing observations that
had no consumption data. In this work, an observation refers
to a single instance/record in the dataset, for the duration
of measured consumption. i.e., given a dataset A of size N,
a; € A; where a; is the i observation of A and 1 <i < N.
We show customers’ load profiles analysis. We further
present data interpolation and synthetic data generation
details that have been undertaken.
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1) DATASET ANALYSIS AND PREPARATION

As stated in Section I, we used a realistic electricity consump-
tion dataset released by SGCC, which is accessible at [12].
The dataset consists of daily electricity consumption data
taken from January 2014 to October 2016, summarized in
Table 1. The sampling rate of the data is uniform for every
customer, it is one measurement per day; which corresponds
to the total power consumption for that day. The used dataset
consists of 42372 observations, of which 3615 observations
are electricity consumption data of unfaithful customers and
the remaining observations are electricity consumption data
of faithful customers.

TABLE 1. Dataset summary table.

Number of observation days: 1,034

Number Of Observations

From Original  After Removin, After Synthetic
Customer Class Dataset ¢ Ej:npty Observgtions Dfata G>enemtion
Faithful 38,757 36,679 36,679
Unfaithful 3,615 3,579 36,679
Total 42,372 40,258 73,358

As with many datasets used in the literature, data comes
with many errors caused by factors such as smart meters
failures, data storage problems, data transmission issues and
unscheduled systems maintenance [4]. Dataset used in this
work is no exception. It consists of traces of non-numerical
or null values.Using data analysis methods, we found approx-
imately 5.45% of observations in this dataset to either have
only null values, or zeros, or a combination of both, for
the whole duration of 1034 days. These observations were
regarded as empty observations. i.e., An observation a is
regarded as an empty observation if ; = 0 or g¢; ¢ R for
all a; € a. These observations do not have any differentiating
characteristics between the classes since they do not have any
consumed electricity record greater than 0 kWh. To improve
the dataset quality, these observations were removed. They
could not be identified with any class as they were labeled
with either of the classes, therefore they were discarded. The
third column of Table 1 shows a summary of observations left
after the removal of empty observations.

Figure 4 shows line plots of consumption data of a faithful
customer and an unfaithful customer against the consumption
days, for the duration of three months. Comparing the two
graphs, we observed that the consumption behaviour of the
honest customer is mostly uniform and has a predictable
trend, while electricity thief’s consumption behaviour takes
different forms and is not predictable. We further carried out
histogram analyses for both classes of customers, as shown
in Figure 5.

From the histograms shown, we observe that for faithful
customer’s consumption data, statistical parameters mean,
mode, and median are generally closer to the histogram cen-
tre as compared to unfaithful customer’s consumption data.
We did a similar analysis for many customers and found that
an observation presented here is true for most of the dataset.
From these observations, we argue that by defining outliers
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FIGURE 4. Faithful and unfaithful customers’ consumption plots.

as values beyond three Median Absolute Deviations (MAD),
honest customers can be characterized as having fewer out-
liers percentage in a given data, than unfaithful customers.

2) DATA INTERPOLATION

For all observations consisting of a combination of null or
non-numerical values and real consumption values, data were
interpolated. Piecewise Cubic Hermite Interpolating Polyno-
mial (PCHIP) [46] was used to fill in missing data during data
interpolation while preserving consumption patterns.

A cubic Hermite interpolating polynomial H(x) is a
shape-preserving interpolant which preserves data mono-
tonicity on a sub-interval x; < x < x;;1 applied to. For
the data consumption vector containing NaN values at the
beginning, the raw data mean was evaluated excluding NaN
values and then inserted as the first vector element. The rest
of the elements were filled in using PCHIP. This helped to
maintain consumption shape and avoided adding outliers to
data.
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FIGURE 5. Faithful and unfaithful customers’ consumption histograms.

Figure 6 shows an example of one observation taken ran-
domly before and after interpolation. A consumption duration
of 200 days around days with missing consumption data is
shown for clear presentation. Interpolated data points make
a smooth curve that lies between the minimum and maxi-
mum near points with no overshooting, as can be seen from
Figure 6b. In this manner, the consumption data is preserved
from the addition of outliers and data points that can make
interpolated data pattern to resemble unfaithful customer’s
consumption pattern of the minority class of unfaithful cus-
tomers, such shown in Figure 4b.

3) SYNTHETIC DATA GENERATION

After eliminating empty observations and interpolating data,
we carried out the initial classification process. Experiment-
ing with the dataset as is, we observed that the classifier sat-
isfactorily classified faithful customers and performed badly
on unfaithful customers due to a class imbalance problem
[20], [25]. A class imbalance problem is a situation whereby
the number of observations in one class is much greater than
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FIGURE 6. Plots of consumption data before and after interpolation.

the number of observations in the other class. In a class imbal-
anced problem, classification models classify the majority
class on a dataset successfully, while performing badly on
the minority class [25]. Dataset used in this work has faithful
customers number that is much greater than that of unfaithful
customers.

We solved the class imbalance problem in the following
manner:

1) Define g and r as the number of faithful and unfaith-
ful customers respectively and evaluate the difference
p=q—r.

2) From a set of faithful customers observations, ran-
domly select p observations represented by p x 1034
matrix O defined by Equation (15), such that

01,1 012 01,1034
02,1 022 02,1034

0 . . ... . . (15)
Op,1  Op2 0p,1034
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3) Inspired by [20] and dataset analysis observations
in IV-A, we evaluated synthetic observations O° by
Hadamard product in Equation (16).

0'=CoO0 (16)

where C is a matrix of randomly generated numbers of
size p x 1034 with elements between 0 and 1.
This helps to distort the pattern of consumption as
observed through faithful customers’ consumption data
line plots shown in IV-Aj; hence the result better repre-
sents unfaithful customers’ consumption data.

This approach of generating synthetic is cheap and fast to
do as it uses the available data of faithful customers’ class
to generate data for the opposite class. It involves a single
operation on the measured data, which is multiplication of
measured data by a matrix of randomly generated numbers.
The resulting data was added to the original dataset, labeling
it as belonging to unfaithful customers consumption class.
The fourth column in Table 1 shows a summary of observa-
tions after synthetic data generation.

B. FEATURE EXTRACTION

Electricity consumption data used in this project is univari-
ate time-series data. A univariate measurement is a single
measurement frequently taken over time [47]. For solving
classification problems, data can be represented by its fea-
tures (properties), which can then be fed as input to the
classifier, as is the case in [29], [34] and [48]. Data is clas-
sified based on the similarity between features [47] given a
dataset of different samples. In this work, time-domain and
frequency-domain features were extracted and used as input
to a deep neural network for classification. Classification
performance comparison between time-domain, frequency-
domain and combined features from both domains was car-
ried out.

1) TIME-DOMAIN FEATURE EXTRACTION

As shown in IV-A, faithful and unfaithful customers’ con-
sumption data differs clearly by a pattern of consumption,
as shown by line plots and histogram graphs. Based on this
information, time-domain features stipulated in Table 2 can
collectively be used to differentiate between the two classes of
customers. Apart from an observation that consumption data
of faithful customers roughly follow a predictable pattern, and

TABLE 2. Time-domain and frequency-domain features table.

Time-domain features

Standards probability (stdsProb)
Standards mean (stdsMean)

Standards standard deviation (stdsDev)

Frequency-domain features

Harmonic frequency (hfInd)

Harmonic frequency amplitude (hfAmp)
99% spectrum bandwidth (bww99)

Outliers probability (outsProb)

Outliers mean (outsMean)

Outliers standard deviation (outsDev)

Data mean (dataMean)

Data mode (dataMode)
Data median (dataMedian)
Average of pchip interpolant

curve fitted parameters (cfpMean)

Lower bound frequency (flb)
Upper bound frequency (fub)

99% bandwidth power (bwwpwr)

50% bandwidth (bw50)
Median frequency (fmed)
Mean frequency (fmean)
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unfaithful customers consumption behaviour is not predic-
tive, as shown in Figure 4, customers do not consume an equal
amount of energy per given time. Energy needs per customer
may differ due to different reasons such as the number of
appliances used, kind of appliances per household, household
size, etc. To achieve higher accuracy in classifying features,
all observations are made to fit within the same axes. This is
achieved by normalizing data for each observation using the
Min-Max method [49] given by Equation (17). The Min-max
method shrinks the data between 0 and 1 while keeping the
original consumption pattern.
Xx; — min(x)
fxi) = ———F— a7
max(X) — min(x)

2) FREQUENCY-DOMAIN FEATURE EXTRACTION
Fourier theorem states that a periodic signal x(#) can be
represented by a summation of complex sinusoidal signals
with frequencies that are an integer multiple of fundamental
frequency fr [50]. Using the Fourier theorem, the consump-
tion data graphs shown in IV-A can be seen as a time series
signal that can be transformed into the frequency-domain by
using Fourier transform. Represented in frequency-domain,
we extracted frequency-domain features from each observa-
tion. Since neural networks are sensitive to diverse input data,
using Equation (17), features were normalized after being
extracted so that they could be fed as input to the classifier.
Table 2 shows features extracted from both domains.

C. CLASSIFICATION

1) NETWORK ARCHITECTURE

A fully connected feed-forward DNN architecture shown in
Figure 7 was used for the classification process.

In order to avoid network underfitting and overfitting [35],
the following rule of thumb methods [35], [51] were consid-
ered in the design of hidden layers of a deep neural network
classifier shown in Figure 7:.

o Number of hidden neurons should be between the size

of the input layer and size of the output layer,

« Number of hidden neurons should be approximated to
the summation of % size of input layer and size of the
output layer.

o Number of hidden neurons should be less than twice the
size of the input layer.

Rectified Linear unit (ReLU) activation function was used
in the hidden neurons because of its better convergence prop-
erty in comparison to other activation functions [28].

2) TRAINING

The maximum number of training iterations was limited to
1000. The classification approach was split into four parts.
In the first part, only time-domain features were used for clas-
sification. In the second part, only frequency-domain features
were used. The third part comprised of combined features
from both domains, while in the last part, classification was
performed in reduced feature space by incorporating PCA.
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Holdout validation scheme was used as follows: in all the
procedures, as a rule of thumb, 80% of the whole data was
used for training and validation, while 20% of the whole
data was used for testing. Within training and validation
data, 80% was used for training while 20% was used for
validation. Similar results were obtained when using k-fold
cross-validation scheme with k = 5. More about using k-fold
cross-validation scheme with & = 5 can be seen in [52] as an
example.

3) PERFORMANCE METRICS
Based on true positives (TP), true negatives (TN), false posi-
tives (FP) and false negatives (FN) obtained from a confusion
matrix [41], we used the following performance metrics to
evaluate the classifier’s performance: Recall/True Positive
rate (TPR) [53], [54], Precision/Positive Predictive Value
(PPV) [53], [54], F1-Score [55], Matthews Correlation Coef-
ficient (MCC) [25], Accuracy and Area Under the Curve
of Receiver Operator Characteristic (AUC-ROC) curve [56].
We briefly introduce performance metrics used as follows.
Recall/True Positive Rate (TPR): is the measure of the
fraction of positive examples that are correctly labeled. It is
given by:

TP

TPR = —.
TP + FN

(13)

Precision/Positive Predictive Value (PPV): is the measure
of the fraction of examples classified as positive that are truly
positive. It is given by:

TP
PPV = —— . (19)
TP + FP
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F1-Score: shows the balance between precision and recall.
It is given by:
TPR x PPV
Fl1-Score =2 % ———. (20)
TPR + PPV

Accuracy: shows the fraction of predictions classified cor-
rectly by the model. It is given by:

Number of correct predictions

Accuracy =
Y Total number of predictions

TP + TN 91
~ TP+TN +FP+FN’ @D
Matthews Correlation Coefficient (MCC): a single digit
that measures a binary classifier’s performance. Its value
ranges from —1 to 41, with values closer to 41 signifying
good performance, while values closer to —1 signify bad
performance. MCC is given by:

TP x TN — FP x FN

= /(TP £ FP)(TP  FN)(IN +FP)(IN + FN)’
(22)

MCC

Area Under the Curve (AUC): measures the classifier’s
overall quality. Larger AUC values indicate better classifier
performance.

4) HYPERPARAMETERS OPTIMIZATION
To achieve the best classification performance at a reason-
able amount of time, we used the Bayesian optimization
method [57] to tune the following hyperparameters: number
of hidden layers, size of each layer, regularization strength
and activation function. Bayesian optimization is derived
from Bayes’ theorem which states that for events A and B,
P(A|B) = w (23)
P(B)

This optimization method determines the distribution of
hyperparameters by assuming that an optimization function
obeys the Gaussian distribution. To get the best combination
of hyperparameters, 100 optimization steps were conducted.
The resultant optimized network was trained and tested in a
similar manner as the network in Figure 7.

5) IMPACT OF KEY PARAMETERS INVESTIGATION

Using adaptive moment estimation (Adam) optimizer [58],
an impact of the following three key parameters were inves-
tigated on the optimized network: initial learning rate, mini-
batch size and 12-regularization parameter. Data was divided
into two parts: the training and validation data.

The volume of the training and validation/test data plays an
important role in classification success. The higher the corre-
lation between input features and the class label, the lesser the
data needed for training [59]. However, given a dataset, the
training data portion of less than 50% is not adviced for as it
will negatively affect the test results [59]. With this in mind,
we therefore determined parameters’ impact with different
training data percentages.
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TABLE 3. Investigated parameters table.

Parameter Initial Log Final  Fixed
Value  Step Value Value
Initial learning rate  10—> 10993 102 104
Minibatch size 10! 100-04 105 128
L2-regularization 10~8 100:06  10—2 10~°

We carried out the following procedure for 60%, 70% and
80% training data portions. For each parameter, its impact
was investigated by determining training and validation accu-
racies with varied parameter values. Parameters were loga-
rithmically varied in 100 steps between the initial and final
values. For each step, the number of training epochs was
limited to 30. The other parameters were held at fixed values
while adjusting a parameter under study. Table 3 shows inves-
tigated parameters’ initial values, step values, final values as
well as fixed values.

V. RESULTS AND DISCUSSION

In this section, we show and discuss the experimental results.
In Section V-A, we present results obtained before synthetic
data generation. In Section V-B, we show a comparison
between classification performance when using time-domain
features, frequency-domain features and combined features
from both domains as inputs to the classifier. We ana-
lyze PCA dimensionality reduction impact on experimental
results in Section V-C. We present Bayesian optimization
results as well as best results attained with optimized clas-
sifier in Section V-D. We present an investigation of opti-
mal parameter settings for best classification performance
by varying different parameters using Adam optimizer in
Section V-E, and we finally show how our method compares
to data-based electricity theft detection methods in the litera-
ture in Section V-F.

A. VALIDATION RESULTS BEFORE SYNTHETIC DATA
GENERATION

As stated in Section IV, when there was an imbalance in the
number of observations between two classes, the classifier
performed badly on the class with a relatively lower num-
ber of observations. The classifier shown in Figure 7 was
trained with features extracted from an original dataset with
no augmented synthetic data. 80% of the data was used for
training while 20% was used for validation. The third col-
umn of Table 4 shows the validation results. For the faithful
customers class, validation results are much better than the
unfaithful class. This can be seen by a comparison between
faithful and unfaithful customers’ recall, precision and F1-
score shown.

Compared with validation results in combined domains
before the incorporation of PCA, there was no significant
change in the recall, precision and F1-score for faithful cus-
tomers’ class since the difference in corresponding values
was within 1% margin. However, for the unfaithful class,
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TABLE 4. Performance evaluation table.

Parameter  Class Before synthetic After synthetic data generation
data generation Time-domain Frequency-domain Combined Domains
PCA Not Used PCA Used
Val(%) Val(%)  Test (%) Val(%)  Test (%) Val(%) Test(%) Val(%) Test (%)
Recall Faithful 94.6 85.8 84.1 92.8 923 94.2 94.5 93.0 92.5
Unfaithful 4.3 89.2 81.4 90.4 79.9 90.0 80.0 89.0 79.2
Precision Faithful 914 88.8 81.9 90.6 82.1 90.4 82.6 89.4 81.6
Unfaithful 6.9 86.3 83.7 92.7 91.2 93.9 93.5 92.7 914
F1-Score Faithful 93.0 87.3 83.0 91.7 86.9 92.3 88.2 91.2 86.7
Unfaithful 5.3 87.7 82.5 91.5 85.2 91.9 86.2 90.8 84.9
Accuracy 86.9 87.5 82.8 89.9 86.1 91.1 87.3 90.5 85.8
AUC-ROC 66 94 90 96 92 97 93 96 92
MCC = 0.84 (on validation) and 0.75 (on test).
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FIGURE 8. Performance metrics graphs.

which was the minority class, validation results in terms of
recall, precision and F1-score were not good at all before bal-
ancing the classes. A significant improvement was obtained
after balancing the classes. This shows that the sensitivity
of the classifier to the minority class was not as good as its
sensitivity to the opposite class.

The subsequent subsections show the results which were
obtained after augmenting synthetic data to the original
dataset to balance classes.

B. DIFFERENT DOMAINS FEATURES’

CONTRIBUTION ANALYSIS

To ensure the reliability and robustness of the method intro-
duced in this work, we present experimental results based on
widely-accepted performance metrics summarized in Table 4.
To simplify the analysis, classification performance between
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(c) F1-Score

(e) AUC-ROC

time-domain, frequency-domain and combined features from
both domains is graphically presented in Figure 8.

From Table 4 and Figure 8, it can be seen that the classifica-
tion process taken with time-domain features gave impressive
validation and test results for both faithful and unfaithful cus-
tomers classes. An experiment done with frequency-domain
features alone showed improved results. The best results
were obtained when all features from both domains were
combined. For example, on validation, accuracy was 87.5%,
which improved to 89.9%, and finally 91.1% when the experi-
ment was done with time-domain features, frequency-domain
features and all features from both domains respectively. The
red trend line in Figure 8 graphs portrays significant improve-
ment on results obtained from experiments done with time-
domain features, frequency-domain features and all features
from both domains. This improvement can be explained by a
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bar chart of predictors presented in order of their prominence
shown in Figure 9, which has been produced through the
mRMR scheme.

As shown by Figure 9 bar chart, there are more
frequency-domain features to the left of the bar chart (i.e.,
features with the best scores) than time-domain features,
with mean frequency achieving the highest predictor score.
We confirmed the exactness of features’ ranking through the
mRMR scheme by doing classification tasks using top 3,
middle 3 and bottom 3 features on the same network in
Figure 7. Figure 10 bar chart shows classification accuracy
and AUC-ROC results.

Comparing the results in Figure 10, we observed that accu-
racy and AUC-ROC are best for the top 3 features and worst
for the bottom 3 features, as expected. MCC was determined
on the last experiment when all features were combined. Its
values were found to be 0.84 and 0.75 on validation and test
respectively, which are closer to +1 than —1. AUC-ROC
values were found to be 97% and 93% on validation and
test respectively. These results portray a satisfactory overall
classification task.

C. ANALYSIS OF COMPONENTS REDUCTION WITH PCA
When PCA was incorporated with the component reduc-
tion criterion of leaving enough components to explain 95%
variance, seven components were left, having the following
percentages contributions to total variance: 35.84%, 27.02%,
15.55%, 7.69%, 4.87%, 3.30% and 1.81%. Figure 11 shows
2-D biplots of original features contribution to each of the
components in the principal components space.
Frequency-domain feature vectors are labeled with ‘s’,
while time-domain features are labeled with ‘t’. The con-
tribution of each feature to the principal component is sig-
nified by that feature’s vector direction and length. From
Figure 11, we observed that frequency-domain features con-
tributed more to principal components. This was also con-
firmed by features importance scores analysis shown by
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Figure 9 based on the mRMR scheme. The last two columns
in Table 4 shows both validation and test results obtained after
components reduction with PCA. We observed that with just
seven principal components, we were able to achieve results
very close to when no feature reduction criterion was used.

D. HYPERPARAMETERS OPTIMIZATION RESULTS
Following the hyperparameters optimization procedure stip-
ulated in Section IV-C4, Figure 12 shows observed objective
function values vs optimization steps.

The best hyperparameters combination was obtained at the
26" optimization step and remained unchanged till the 100"
step. Their values are shown in Table 5.

An improved classification network architecture con-
structed with optimized hyperparameters achieved maximum
validation and test accuracies of 91.8% and 88.1% respec-
tively, which are 0.7% and 0.8% higher than an unoptimized
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TABLE 5. Optimized hyperparameter values.

Parameter Value
Fully-connected Layers  [41 21]
Regularization strength ~ 5.6882 x 10~ 7
Activation function Sigmoid

architecture. The classifier obtained a maximum AUC-ROC
value of 97%.

E. KEY PARAMETERS’ IMPACT ANALYSIS

1) IMPACT OF INITIAL LEARNING RATE

To determine the impact of the initial learning rate on training
and validation accuracies, the initial learning rate was varied
between 107> and 1072 in 100 steps. Figure 13 shows scatter
plots of the results with fitted curves to simplify analysis.
For all tested training data portions, training and validation
accuracies values were lowest for the lowest initial learn-
ing rates, with recorded values less than 90%. Significant
improvement in both accuracies was seen for initial learning
rate values between 107 and 10™*. Low values of accu-
racies were attained in this range because lower learning
rates require higher training iterations (hence more training
time) for the model to converge to good results, therefore
accuracy was mainly limited by the limited number of epochs
allowed to train the network. Beyond the initial learning rate
of 10™*, average training and validation accuracies improved
beyond 90%. For all training data portions, the best accuracy
values were obtained for initial learning rate values in the
range [10737, 1072]. Both accuracies started dropping as
the initial learning rate approached 10~2. For optimal results,
an initial learning rate in the range [10737,1072-3] is recom-
mended for best accuracy.

2) IMPACT OF MINIBATCH SIZE

To determine the impact of the minibatch size on the accu-
racy, the minibatch size was varied between 10! and 107 in
100 steps. We present training and validation accuracy versus
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minibatch size parameter plots in Figure 14. For all tested
training data portions, the training and validation accuracies
averages were a little bit higher than 90% for minibatch
size values less than 103. For minibatch sizes closer to 101,
the training accuracy varied significantly between 80% and
100% for each training task, however, this did not have
an impact on validation as validation accuracy stayed the
same just above 90%. Both training and validation accuracies
declined drastically as minibatch size increased beyond 10*.
This is because as the value of the minibatch size increased,
the model had to learn from increased data size, resulting in
poor generalization. However, smaller minibatch size values
required relatively much time to train a model. A minibatch
size less than but closer to 103 is recommended to balance
efficiency and generalization.

3) IMPACT OF L2-REGULARIZATION PARAMETER
To determine the impact of the L2-regularization parame-
ter on validation accuracy, the L2-regularization parameter
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FIGURE 14. Impact of varying minibatch size on accuracy at different
training ratios.

was varied between 108 and 1072 in 100 steps. Figure 15
shows the results. For all training data portions, training
accuracy laid between 83% and 99%, with an average value
at around 91% for 12-regularization parameter values in the
range [1078, 10™%). Unstable average values of training accu-
racy were observed for 12-regularization parameter values
> 10~*. On the other hand, validation accuracy significantly
decreased for 12-regularization parameter values > 107,
This may be caused by the fact that when the 12-regularization
parameter > 1074, at each training iteration, a significantly
large number of weights was left not updated, thereby making
it hard for the model to converge to a good solution. Best
results were obtained when L2-regularization parameter val-
ues were in the range [1078,1074].

For all investigated parameters, the best validation accu-
racy was obtained for the 80% training data portion, followed
by the 70% training data portion and lastly 60% training data
portion. This shows that the more data is available for training
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the model, the more accurate the model becomes in detecting
electricity theft.

F. COMPARISON WITH EXISTING DATA-BASED
ELECTRICITY THEFT DETECTION METHODS
Based on electricity customers consumption data, different
data-driven methods have been used to tackle the electricity
theft problem. Due to the scarcity of datasets containing
both faithful and unfaithful customers’ consumption data,
many methods have been evaluated on different uncommon
datasets. In Table 6, we present an analysis in the difference
between our work and the recent works in the literature. For
each work, dataset details are given. We look at the techniques
and/or algorithms used, as well as features extracted from the
data in respective methods.

For the four methods which used the same dataset as ours
(References [3], [4], [27]), we compare the results in terms
of AUC and accuracy percentages. We obtained AUC that is
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TABLE 6. Comparison with existing data-based electricity theft detection methods.

Reference Techniques/ Features used Evaluation Dataset Details Performance Evaluation
Algorithms Used Source # of Customers
[3] SMOTE + Extracted from the SGCC 42372 Accuracy: 89%
KPCA + original time-series Precision: 85%
SVM. data with KPCA. Recall: 88%
[4] Wide + Wide and deep SGCC 42372 AUC: 79%
deep CNN. CNN used to learn Mean Average
features from the Precision (MAP): 96.9%
time-series data.
[23] PCA + PCs extracted Irish smart 5000 TPR: 90.9%
Calculation of from the original meter data
anomaly score time-series data
using PCA.
[24] O-SVM + Manually Uruguayan 1504 3338 Best accuracy: 86.2%
CS-SVM + selected features electric (two independent
OPF + from the original power datasets)
C4.5 tree time-series data company
[25] CNN + CNN used to learn SGCC 9956 Accuracy: 89%
LSTM features from the F1-score: 58.8%
time-series data.
[26] LOF + N/A SGCC 3500 AUC: 81.5%
k-means clustering MAP: 73.35%
[27] SALM AlexNet used to SGCC 42372 Accuracy: 90%
extract features AUC: 90.6%
from the original
time-series data.
[27] GAN-NetBoost GoogleNet used to SGCC 42372 Accuracy: 95%
extract features AUC: 96%
from the original
time-series data.
This work Feed forward Manually extracted SGCC 42372 Accuracy: 91.8%
DNN time-domain and AUC: 97 %
frequency-domain
features.

1% higher than the best AUC in the benchmark and accuracy
that is the second best. The results show that our work is very
competitive against other methods recently undertaken.

VI. CONCLUSION

In this work, the detection of electricity theft in smart grids
was investigated using time-domain and frequency-domain
features in a DNN-based classification approach. Isolated
classification tasks based on the time-domain, frequency-
domain and combined domains features were investigated
on the same DNN network. Widely accepted performance
metrics such as recall, precision, F1-score, accuracy, AUC-
ROC and MCC were used to measure the performance
of the model. We observed that classification done with
frequency-domain features outperforms classification done
with time-domain features, which in turn is outperformed by
classification done with features from both domains.

The classifier was able to achieve 87.3% accuracy and 93%
AUC-ROC when tested. We used PCA for feature reduc-
tion. With 7 out of 20 components used, the classifier was
able to achieve 85.8% accuracy and 92% AUC-ROC when
tested. We further analyzed individual features’ contribution
to the classification task and confirmed with the mRMR
algorithm the importance of frequency-domain features over
time-domain features towards a successful classification task.
For better performance, a Bayesian optimizer was also used to
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optimize hyperparameters, which realized accuracy improve-
ment close to 1%, on validation. Adam optimizer was incor-
porated and optimal values of key parameters were investi-
gated.

In comparison with other data-driven methods evaluated
on the same dataset, we obtained 97% AUC which is 1%
higher than the best AUC in existing works, and 91.8%
accuracy, which is the second-best on the benchmark. The
method used here utilizes consumption data patterns. Apart
from its application in power distribution networks, it can
be used in anomaly detection applications in any field. Our
work brings a small contribution towards accurately detecting
energy theft as we detect theft that only took place over time.
We wish to extend our method to detect real-time electricity
theft in the future. Since this method was evaluated based on
consumption patterns of SGCC customers, it can further be
validated against datasets from different areas to ensure its
applicability anywhere.
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