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ABSTRACT Visual sensor networks are one potential enabler for the evolution of the Internet of things. Due
to their limited resources in terms of energy and bandwidth, it is crucial to identify appropriate approaches
that take into considerations such constraints and reduce the amount of data transmitted to the gathering point
(sink). In this context, this paper describes the impact of a distributed smart-camera system that exploits an
analyze-then-compress strategy, on a multi-view vehicle tracking at roundabouts application. In the tested
system, part of the processing is shifted to the smart cameras, i.e., the object detection/classification and
feature extraction, so that only the extracted features describingmoving vehicles are transmitted instead of the
whole image/video. Features are further compacted by using a state-of-the-art distributed coding technique,
based upon an efficient clustering method that exploits the temporal and spatial (multiple views) correlations
between features. The system is tested on a real-data scenario, by evaluating the bit-rate reduction capabilities
in dependence of the channel conditions, as well as the matching accuracy of the reconstructed descriptors
in the specific tracking application. Both feature-wise and object-wise matching are investigated. For the
chosen application scenario, a bit-rate reduction of 30−35% is proved to be achievable in non-ideal channel
conditions. Even more interestingly, such reduction is proved not to harm the matching accuracy (i.e., it is
coherent with the target application), for which an F-score up to 0.923 is guaranteed.

INDEX TERMS Bit-rate reduction, distributed feature coding, feature matching, multi-view, resource
allocation, roundabouts, smart city, traffic monitoring, vehicle tracking, visual sensor networks.

I. INTRODUCTION
Traffic monitoring [1] is one of the most important
applications in smart city technologies. Multiple video solu-
tions have been proposed for vehicle tracking and congestion
estimation [2] in highways, intersections, and roundabouts;
such scenarios have proved to be extremely challenging due
to the high number of conflicting nodes, important occlusion
probabilities, and the existence of several driving routes [3].
To overcome these challenges and to build an efficient vehi-
cle tracking system at intersections and roundabouts, it is
crucial to cover the entire area by placing multiple cameras.
To this purpose, scientific and industrial research has been
developing low-cost scalable visual sensor networks (VSNs),
i.e., networks consisting of several connected embedded
smart camera sensors that are able to process the sensed data
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and communicate among each other to gather the information
at a central sink node with higher energy and processing
capabilities [4], [5]. The use of partially-overlapped fields
of views (FoVs) of cameras in these networks allow solving
many practical problems, such as occlusions, illumination
changes, and pose variations. Unfortunately, smart traffic
monitoring applications require the processing and transmis-
sion of huge amount of data, as well as a significant energy
consumption [5]. Satisfying these requirements by VSNs
is challenging due to their limited computational, commu-
nication, and energy resources. This imply a urgent need
for efficient visual compression architectures that minimize
the transmission and processing powers, while keeping a
satisfying accuracy in the final processing task, e.g., object
tracking [6]–[8].

Previous works have tackled the problem following
two different paradigms. The compress-then-analyze (CTA)
approach compresses the acquired data (i.e., the whole image
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or video) at the node terminal and sends it to the sink node
where the visual analysis is performed [9]. Alternatively,
in the analyze-then-compress (ATC) paradigm the source
nodes locally process the visual data to generate a set of
visual features that consist in a semantically-relevant repre-
sentation of the acquired scene; features will be then deliv-
ered to the sink node for further high-level analysis [9], [10].
This second strategy can significantly reduce the amount
of transmitted data and energy consumption since irrele-
vant details (with respect to the target task) can be dis-
carded and coding schemes can exploit the correlation among
data from different sensors. Interestingly, whenever cam-
eras’ FoVs are significantly overlapped, local features show
a significant inter-view correlation (i.e., spatial correlation
between features at the same time instant but from differ-
ent cameras), as well as the usual intra-view correlation
(i.e., temporal correlation between features from the same
camera at different instants) [11]. Under the ATC paradigm,
inter-view correspondences can be used to design collabora-
tive strategies such as predictive [12] or distributed source
coding (DSC) [13]–[16]. In the latter option, also known as
distributed feature coding (DFC), each camera encodes its
extracted features independently modulating the amount of
coded information depending on the inter-view correlation,
which is fully exploited at the receiver where a joint decoding
of features is performed [17]. Indeed, previously-decoded
descriptors from a generic view (either spatially or temporally
adjacent) can be used as a side information (SI) to decode the
currently-received information [18].

This paper elaborates upon, generalizes, and substantially
revises the seminal conference results [19], based on a one-
view vehicle tracking system. In this paper, we describe a
smart-city context of a traffic monitoring in VSN application,
whose primarily task is that of multi-view vehicles tracking at
roundabouts. The proposed system respects the constrained
resources of the camera sensor nodes in VSN and aims at
reducing the communication burden between the cameras and
the amount of transmitted data to the gathering point (sink).
As a matter of fact, the multi-view vehicle tracking task is
performed by the sink since it has much more processing
capacity compared to the camera sensor nodes and it is much
better to exploit the spatial correlation between received data
from cameras with overlapped FoV at the sink node in such a
way that unnecessary communication among those cameras
are prevented. Moreover, we apply the ATC approach where
camera nodes acquire video frames, extract relevant features
compactly representing the captured data and transmit them
to the sink to perform feature-based tracking. In order to
reduce furthermore the amount of transmitted data, an appro-
priate feature selection stage is performed at camera nodes
to select only features that pertain to the desired objects
to track with respect to the specific application scenario
(i.e., moving vehicles). The feature selection is realized by
first detecting and classifying moving vehicles and then
extracting features that describe those detected vehicles.
To efficiently code the extracted features, we harness the

existing DFC solution available from the literature. The cod-
ing system relies on the state-of-the-art findings of [18],
an approach that takes advantage of data clustering to esti-
mate and exploit the intra- and inter-view correlation among
features from all cameras, and the powerful DSC technique
that has been proven to reduce significantly the transmitted
bitrate. The cameras are assumed to communicate with each
other and with the sink in a multi-hop routing scheme. The
data received at the sink are decoded and then used for
further high-level visual analysis, i.e., matching features to
track vehicles, whose expected accuracy is accurately tested
in a real-data scenario and for imperfect camera calibration.
We aim in this paper at evaluating the crucial impact of the
DFC solution on the overall system performance (i.e., at the
application level), as well as at testing its capability in a
non-ideal scenario and in dependence on the most relevant
system parameters (i.e., non ideal transmission channel con-
ditions, bit puncturing and level of bit-rate reduction). Since
we are interested in tracking vehicles, we focus on object-
wise matching which consists in matching features related
to the same object detected in two different views even if
matched features don’t represent the same part of that object.
In other words, feature-to-feature matching errors (e.g., due
to the noisy channel or punctured bits) can be tolerated if
they belong to correctly matched objects in the two views.
By focusing on the object-wise matching, we prove in this
paper that further bitrate reduction can be achieved while
maintaining good multi-view matching accuracy.

The main contributions of the present paper can be sum-
marized as follows:

1) We analyze a multi-view vehicle tracking system at
roundabouts for VSNs where the processing tasks are
effectively partitioned between the cameras and the
sink. This is achieved by using the impressive ATC
technique, in conjunction with an appropriate feature
selection stage that selects only those features that rep-
resent moving vehicles. Unlike many of the solutions
currently available in the literature, that mainly rely
on sending the entire image/video content [1], [20],
[21], our approach is able to efficiently perform the
target application task (i.e., multi-view vehicle track-
ing) while at the same time to control the transmission
burden, which is a critical request for VSNs.

2) Our system efficiently exploits the multiple-camera
views by performing tracking at the sink side, thus
being able to exploit the inter-view correlation among
cameras without the burden of inter-camera communi-
cation which consumes energy and shortens the net-
work lifetime, unlike state-of-the-art proposals of the
literature where tracking is carried out at the camera
side with uniquely intra-view data [22] or with inter-
view data gathered after cameras exchange some infor-
mation about their obtained intra-view tracking results
(e.g., single camera vehicle trajectories) [23], [24].

3) We analyse the impact of DFC at the application
level, taking into consideration real-world scenario
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impairments such as imperfect camera calibration and
transmission errors (channel noise), by evaluating their
impact on the multi-view matching accuracy, as well as
bit-rate requirements.

4) Matching accuracy is evaluated object-wise in order
to provide a reliable measure of the effective system
performance for tracking vehicles at roundabouts, that
is not captured by the literature since solutions using
feature-based tracking approach are commonly propos-
ing one-view tracking system based on the Kanade-
Lucas-Tomasi Feature Tracker (KLT) which requires
the intensities of the neighboring pixels of the detected
feature to estimate their position each frame and to
track them over time [20], [21], [25].

The rest of the paper is organized as follows. The related
work is presented in Section II. An overview of the proposed
system is available in Section III, while Section IV presents
a number of experimental results that validate the system
by suitably measuring the system performance, i.e., bit-rate
reduction capabilities and feature matching accuracy, in a
practical traffic monitoring scenario at roundabouts. Conclu-
sions are finally drawn in Section V.

II. RELATED WORK
A. TRACKING/FEATURE TRACKING
Recently, several works on vision-based intelligent trans-
portation systems have been proposed in the literature, in the
context of traffic monitoring [20], [26], traffic data collec-
tion [1], and accident detection [27]. They are all based on
three main steps, namely: 1) vehicle detection, 2) tracking,
and 3) extraction of useful information from the tracking
results.

The first step can be realized by performing image segmen-
tation, or more specifically background subtraction, which
consists in detecting the moving objects by exploiting the
subtle differences between the foreground and the back-
ground. Themost used algorithmicmethods are: the Gaussian
Mixture-based Background/Foreground Segmentation sub-
tractor [28]; Mog2 [29], namely an improved version of the
mixture of Gaussians (MoG) algorithm with better adaptabil-
ity to illumination changes and shadows; the Gaussian Mix-
ture Model (GMG) [30], which is a combination of statistical
background estimation and Bayesian segmentation; and the
universal video background subtraction (ViBe) [31], that, for
each pixel, selects a set of background samples randomly in
order to estimate the background model.

Concerning the second step, there exist four main types
of object tracking: region-based, contour-based, model-
based [2], and feature-based [20], [21], [32], [33]. In this
paper, we are more interested in feature-based tracking since
transmitting features requires less resources than the pixel
presentation, and even in partial occlusion cases it is still
possible to extract and to track features from the visible
part of the vehicle [9]. Feature-based tracking consists in
tracking features over time and then grouping the formed
trajectories of features belonging to the same object in such

a way that each object is represented by a single trajectory.
Most approaches for feature-based vehicle tracking proposed
in the literature are based on the KLT tracker [25] which
consists in tracking a window of pixels instead of a single
pixel, i.e., the intensity values of the pixel and its neighbours
in order to estimate the new position of a feature in the next
frame. This feature tracker can only be applied in the CTA
approach since the intensity information is needed at the sink
node.

B. CODING/DISTRIBUTED SOURCE CODING
Efficiently coding the local features is a crucial task, espe-
cially for feature-based applications that are deployable on
distributed camera networks with limited resources such as
VSNs. This issue has gained the interest of many researchers
and several works for coding features have been proposed.

In [11], a coding scheme was proposed for encoding
local real-valued features extracted from video sequences
by exploiting both the intra-frame correlation (i.e., spatial
redundancy between descriptors extracted from the same
frame), and inter-frame correlation (i.e., temporal redundancy
between descriptors from successive frames). In both cases,
the coding procedure follows three steps: descriptor trans-
form, quantization (lossy compression), and entropy coding.
Other works addressed the problem of coding binary local
features [34], [35]. Besides the spatial and temporal redun-
dancy, many researchers, during the last few years, were
interested in exploiting the inter-view correlation between
cameras with overlapped fields of view. In this case, features
are coded resorting to a reference set of features extracted
from other views (other cameras). In [36], the authors pro-
posed a solution to jointly encode local features extracted
from different cameras. It consists in inter-view prediction at
the encoder side by exchanging information between cameras
with overlapping fields of view. In fact, one camera, chosen
to be the base view, exchanges its extracted features with
the neighboring cameras in order to be used as a reference
set. In [12], another joint multi-view coding architecture is
proposed to encode local binary features. In the latter solu-
tion, first features are matched and then, for each obtained
correspondence, one feature is considered as a reference and
encoded using intra-view coding technique while for the
second feature only the differential residual is encoded.

Alternatively, multi-view feature coding can also be per-
formed by applying DSC techniques which can be very
beneficial particularly for networks where communica-
tion between cameras is prohibitively expensive. In [37],
an unsupervised multi-view feature selection and distributed
coding was proposed for a network of cameras with con-
strained energy and bandwidth resources. In this approach,
the extracted local features are quantized using a global
vocabulary (bag-of-words model) commonly known between
the cameras and the decoder. In [18], authors described an
architecture for inter-view feature coding using DSC that
is able to guarantee further bit-rate savings. Each camera
clusters and encodes its features independently of the other
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FIGURE 1. System diagram.

cameras using channel coding schemes (systematic linear
channel codes). Then the obtained parity bits are forwarded
to the decoder where decompression and error correction
are performed. A side information is used at the decoder to
predict the decoding of the received descriptor. In this paper
we work upon the state-of-the-art solution [18], and investi-
gate its performance in the specific application of multi-view
vehicle tracking at roundabouts, with a specific view on both
bit-rate reduction and feature matching performance.

III. SYSTEM DESCRIPTION
We consider a VSN connecting multiple cameras with over-
lapped FoV to a sink node through low bandwidth links.
The system employs an ATC paradigm where each camera
collects visual data and extracts a set of local features. Since
the camera nodes in the VSN have limited computational and
energy resources, performing all the tasks related to vehicle
tracking at the camera level is very challenging. Hence, these
tasks are divided between cameras and the data gathering
point. The proposed feature-based tracking system is mainly
composed of three essential modules: 1) vehicle detec-
tion and feature extraction, 2) feature coding/decoding and
3) features matching and vehicle tracking. The cameras,
in this case, perform the two first modules (vehicle detection
and classification, feature extraction and clustering, and fea-
ture coding) while the sink performs feature decoding and the
last module. Figure 1 depicts the global system architecture
for the proposed multi-view features coding and tracking
which will be explained in more details in the following.

A. SMART CAMERA NODES
Camera nodes (see Figure 1) are responsible of data acquisi-
tion, detecting moving objects and classifying them into one
of the five possible classes: car, small truck, big truck, bus,
and motor bike. Note that in case objects do not belong to the
mentioned classes, they are skipped so that only the elements
of interest are transmitted to the sink node [19]. Then, a set of
visual features representing the moving vehicles are extracted

and clustered into non-overlapping regions (see Figure 2).
Finally, the cameras encode their extracted features indepen-
dently and transmit the resulting data to the sink together with
the feature’s cluster ID.

1) VEHICLE DETECTION
The first step to detect vehicles is image segmentation,
which involves identification of moving objects at each
frame. The chosen approach is background subtraction by
performing the MoG subtractor [28], which is an efficient
solution for modeling fast changing in illumination, provid-
ing a good compromise between the consumed computing
resources and the achieved segmentation precision and for
treating repeated camera shaking.Morphological transforma-
tions on the obtained binary image are also used to refine
the detection. At the end of this step, any moving object is
extracted including vehicles, moving trees by the wind, and
pedestrians.

With the intention of selecting only moving vehicles,
a verification step is added to classify each detected object.
To accomplish this task, camera nodes apply the YOLOv2
detector [38] right after the background subtraction and the
morphological transformations. YOLOv2 is a real-time object
detector and classifier based on 19 convolutional neural net-
work layers. The algorithm is trained on a huge data set
collected from camera sensors (see details in Section IV-A)
in order to classify objects in the images into five classes of
vehicles: cars, small trucks, big trucks, motor bikes and buses.
After training, the YOLOv2 algorithm is able to detect every
object in the image belonging to one of the five classes.

Figure 2(a) illustrates an example of vehicles detection and
classification result where the label and the classification’s
confidence percentage are shown for each vehicle.

2) FEATURES EXTRACTION
To reduce the transmitted bit rate, the ATC paradigm is
applied in conjunction with appropriate feature selection
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FIGURE 2. Pictorial representation of the tasks performed at the camera nodes.

stage, which implies that only features about the detected
moving vehicles are sent to the sink node (see Figure 2(b)).
Local feature vectors are a compact representation of the local
content of an image patch that differs from its immediate sur-
roundings by means of texture, color or intensity. As features
are capable of describing the main characteristics of vehicles,
the receiver can efficiently identify and track vehicles by
simply estimating the trajectory of the received feature points
from one frame to another [25]. Since an effective and robust
algorithm is needed to extract relevant features capable of
representing vehicles even in the presence of partial occlu-
sion, illumination and pose change, the real-valued feature
extractor speeded-up robust features (SURF) [39] is selected
for its robustness, speed and low computational requirements,
thus generating descriptor vectors of 64 real-valued elements.

3) FEATURES CLUSTERING
In furtherance of accurately exploiting the correlation among
extracted features for the DSC [18], we classify features
into groups of strong likelihood in such a way that the fea-
tures belonging to the same cluster have similar descriptors
(i.e., they are correlated features). Clusters must cover all
possible descriptors that might represent a vehicle and each
cluster is identified by a centroid. Once the clusters are
defined (the output of offline constructed clusters block of
Figure 1), we assume that the set A of centroids and the
centroids’ IDs are a common knowledge between both the
cameras and the sink. The clustering operation is similar
to vector quantization since it allows each descriptor to be
coded in a very compact yet efficient way by exploiting
the correlation between the descriptor and the centroid or
between descriptors belonging to the same cluster. A reliable
way to identify setA is by exploiting theK-means clustering
algorithm that aims at grouping data points into K clusters by
reducing within-cluster variances [40]. For the initialization
process, the K-means++ approach [41] is selected.
Overall, the process of feature clustering is illustrated

in Figure 2(c) where the clusters and the corresponding
allocated features are represented in descriptor space after
dimensionality reduction using the principal component anal-
ysis (PCA) technique. For illustration purposes, we show in
Figure 2(c) only 5 clusters out of 1000 and a limited number
of features per cluster (620).

FIGURE 3. DSC approach at the smart camera side.

4) DISTRIBUTED SOURCE CODING (DSC)
Once features (i.e., real valued descriptors) are extracted,
a quantization step is performed to the aim of converting
them to binary vectors. We use a uniform scalar quantizer
with 100 levels (8 bits) and a step size 1 = 0.02. Each
SURF descriptor with 64 float elements is therefore quantized
into a binary vector of 512 bits, then encoded using the
Slepian-Wolf (SW) approach [17]. In our proposed system,
we implement a DSC encoder using a (6,4) regular systematic
low-density parity-check (LDPC) encoder of rate 1/3. The
length of the encoded vector is n = 1536 = k · 3, with
k = 512 bits the size of each descriptor. To construct the
parity check matrix H we harnessed the predefined func-
tionparity_check_matrix from thepyldpc library in
python, which builds a regular Parity-CheckMatrix follow-
ing Gallager’s algorithm [42]. For each encoded descriptor,
the systematic part is discarded and only the parity informa-
tion as well as the cluster ID to which the descriptor belongs
are transmitted to the sink node, as illustrated in Figure 3.
To evaluate the bit-rate savings that can be achieved using
the DSC technique, a number of bits from the redundancy
part are pseudo-randomly punctured. We define the fraction
of punctured bit, which is equivalent to the fraction of reduced
bit-rate, as

ρ =
Number of punctured bits
Total number of parity bits

. (1)

B. SINK NODE
Once the data gathering point (sink) receives the transmit-
ted features, it uses the available information, also named
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side information SI (i.e., the clusters’ centroids and the
already decoded descriptors), in order to decode the descrip-
tor from the received redundancy bits corrupted by noise.
The approach is a standard LDPC decoder based on belief
propagation (BP) algorithm, whose parameters are carefully
set by the correlation noise model (CNM) block of Figure 1.
Once features are successfully decoded, the sink identifies
objects to track and estimates their trajectory over time by
exploiting the multi-view information.

1) SLEPIAN-WOLF DECODING
The decoding process (SW decoder block in Figure 1) is
based on the idea that the systematic part, which is not
transmitted, is replaced by a noisy counterpart given by the
SI. This can either be the cluster centroid, retrieved from
the transmitted cluster ID, or already decoded descriptors
available from multiple views (see details in later Section III-
B2). The received bits corrupted by noise, and the SI, are then
used to build the log-likelihood ratios (LLRs) that are needed
to run the BP algorithm [43]. LLRs are differently constructed
for the redundancy bits and for the systematic part. For the
redundancy part we assume a channel with an additive white
Gaussian noise (AWGN) and have [44]

LLRred =
2r
σ 2 , (2)

where σ 2 is the noise variance and r is the received vector
corrupted by noise. The bits that were punctured (i.e., not
transmitted) are simply set to LLR value zero. For the system-
atic part we model noise through a binary symmetric channel
(BSC), for which we have [44]

LLRsys = log
(
1− pbit
pbit

)
c+ LLRapriori, (3)

where pbit is the average bit error probability, c is the BPSK
map of the binary SI vector, and the a priori contribution is
entry-wise modeled as LLRapriori(n) = log((1 − pn0)/pn0)
where pn0 = p(dn = 0) is the probability that the nth descrip-
tor element dn is equal to 0. All parameters are set in the CNM
estimation block (see later Section III-B3 for details). The
maximum number of iterations of the BP algorithm is fixed to
100 for quasi-optimal performance. If the maximum number
of iterations is achieved before convergence, then sink has to
request for more parity bits from camera through a feedback
channel.

2) SI CREATION
By relying on the assumption that the clusters’ representative
vectors are known at the receiver side, the received centroid
ID is used to retrieve the corresponding centroid, in its binary
presentation, and to create the SI [18]. In our multi-view
setup, the SI is the set of all already successfully decoded
descriptors from current and previous frames and from all
cameras belonging to the cluster identified by the received
centroid ID, plus the binary centroid vector. In this way we

make a good use of the statistical correlation between descrip-
tors in the buffer and the target one, i.e., we exploit both
the intra-correlation among features from the same camera
through consecutive time frames and the inter-correlation
among features from different cameras with overlapped FoV.

3) CNM ESTIMATION
Building a good statistical model that accurately depicts the
correlation noise between the SI and the true descriptor is a
crucial phase in the DSC procedure, which should accurately
identify parameters pbit and p(dn = 0) to be used in (3). Since
a cluster groups features that are very similar, a precise CNM
can be built. Specifically, we consider two cases, namely:
• One-view decoding mode: Whenever there is no avail-
able already decoded descriptors in the buffer, we rely
on the cluster centroid c, and set pbit to the average
distance between the corresponding centroid and all the
descriptors belonging to that cluster that comes from
the correlation statistics provided by the offline feature
clustering operation. We also set p(dn = 0) = 1

2 , so that
the a priori LLR in (3) is set to LLRapriori = 0.

• Multi-view decoding mode: We adopt the CNM pre-
sented in [18] for which p(dn = 0) = N

NSI
, whereN is the

number of times nth element of descriptors from SI are
equal to zero, and NSI is the total number of descriptors
within the SI, and we set pbit = 1

2 in such a way that the
contribution of the centroid c alone in (3), which does
not represent the full created SI, is not used.

4) FEATURES MATCHING
Feature matching implies a number of concurrent actions that
are meant to strengthen the tracking performance. Observe
that all the proposed criteria for selecting correct matches
work on objects (i.e., cars, trucks, etc.) in such a way to
enhance their detectability and their trajectories estimation
accordingly to the reference application scenario. We call this
approach object-wise matching. The concurrent actions are:
1) intra-view matching, that is, the idea of detecting and

recognizing the same objects over time on each view
which is essential for constructing the objects’ trajec-
tories on each camera separately, and

2) inter-viewmatching, that is, to identify the objects pres-
ence on multiple views in order to switch and continue
tracking the same objects from one camera to the other
which can be very useful to solve practical problems
such as occlusions (see Sect. III-B5).

We detail them in the following.

a: INTRA-VIEW MATCHING
For the current frame i, the sink matches each grouped
features (i.e., features belonging to the same bounding box
and thus presenting the same object) with features from the
previous frame i − 1. Each object from frame i should be
matched with at most one object from the frame i− 1. If one
object has feature matches with features corresponding to two
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FIGURE 4. Epipolar lines obtained by the estimated fundamental matrix F and the point correspondences (inliers).

or more different objects in frame i− 1, then the selection of
the best match is based on the number of matched features
and their distances. In fact, the object with the higher number
of matched features and the lowest distances between feature
descriptors is considered as the best match and therefore,
the remaining feature matches with the other objects are
considered as wrong matches and they are eliminated.

In this paper, the k-nearest neighbors Brute Force
(Knn BF) with k = 2 is used to match features. The algo-
rithm is implemented in the Open computer vision (OpenCV)
library [45]. The Lowe’s Ratio test is performed to select the
correct matches. Oncematching is completed successfully for
each object in frame i and all wrong matches are discarded,
features trajectories from frame i − 1 to frame i can be
estimated.

b: INTER-VIEW MATCHING
For the current view v, the sink matches features representing
each detected object with features from another view w. Each
object from view v should be matched with at most one object
from view w. Similarly to the intra-view matching, Knn BF
and the Lowe’s Ratio test are applied to select matches.

A further step is added to improve the multi-viewmatching
accuracy which consists of exploiting the epipolar geometric
relations [46] between the two cameras (relations between
the 3D points and their projections onto the 2D images in
both cameras, illustrated in Figure 4) to select the correct
matches. These relations lead to some constraints between the
image points, namely that a point in one view is constrained
to a line, named the epipolar line, in the other view. The
fundamental matrix F is the algebraic representation of such
epipolar geometry.

In the case of non calibrated cameras, the fundamen-
tal matrix can be approximately estimated, independently
of scene structure and the cameras’ internal parameters,
by using at least eight correspondences of imaged scene
points. The resulted system of equations for the points cor-
respondences is a linear least square problem that can be
solved using the Eight-Point algorithm [47]. In the pro-
posed system, the fundamental matrix F is estimated for two
non calibrated cameras by considering a number of point
correspondences that are selected manually. The predefined

function findFundamentalMat from OpenCV [45] is
used to compute the matrix F with input the point corre-
spondences. Once the fundamental matrix F is computed,
the epipolar lines are estimated using the predefined function
computeCorrespondEpilines in OpenCV.

The fundamental matrix F and the epipolar lines are esti-
mated offline and are assumed to be known at the sink node.
Since the cameras are assumed not to be moving, they are
computed only once.

5) VEHICLE TRACKING
One-view object tracking can be defined as the process of
identifying and locating the object from one frame to the
other from the same view as it moves in the scene, and
then estimating its trajectory over time by simply performing
intra-view matching of features representing that object as
described in Section III-B4. As a matter of fact, each object is
represented by a number of extracted features, and therefore,
the object is tracked by grouping trajectories formed by these
features over time. One-view tracking can be performed for
each view simultaneously and independently.

The vehicle tracking module of Figure 1 performs also
multi-view tracking to cope with one-view tracking loss of
an object at a certain camera, i.e., a so far tracked vehicle up
to the previous frame is not detected at the current frame due
to partial or total occlusions or failure at detecting or clas-
sifying the object at the camera side. Indeed, for each view,
upon receiving features that represent a new object to track,
the system performs inter-view matching (i.e., matching the
object’s features from the current view with features from
other available views as described in Sect. III-B4), and if a
potential matched object from a second view is found for
more than three consecutive frames then it is considered as
correct matching and this information is stored in a database
to be used later when multi-view tracking is needed. Once
one-view tracking of an object fails, the system refers to
the reconstructed database aforementioned and check if the
corresponding object in the other view can still be located and
thus switches and continues the tracking in this second view.
The probability of finding another view with better sight and
tracking conditions of the same object increases accordingly
to the number of cameras with overlapped FoV.

39508 VOLUME 10, 2022



S. Eleuch et al.: Study on Impact of Multiview DFC on Multicamera Vehicle Tracking System at Roundabouts

FIGURE 5. Vehicle classification: Detection and classification examples.

IV. EXPERIMENTAL RESULTS
In this section we test the proposed system on a real-case
scenario, where video sequences were captured by two cam-
era sensor nodes with overlapped FoVs, using Pi NoIR
camera v2 sensors [48] connected to raspberry Pi
3 model B boards [49]. Performance is evaluated for all
the constituent modules of the proposed system (vehicle
classifier, offline features clustering, multi-view distributed
feature decoder, and multi-view vehicle tracking) in order to
cover both the DSC capabilities, as well as the impact of the
designed solution at the application level.

A. TRAINING AND TEST DATABASES
Considering the specificity of our multi-view vehicle tracking
system at roundabouts, a specific database had to be built
(see details on it in [19]). Data was collected at a roundabout
in front of SUP’COM university in the city of Al Ghazela,
Tunisia. The constructed data is termed SupCom roundabout
database (SR) and consists of two sets of images:
• a training set, which was mainly used for training the
vehicle detection and classification module, and which
is a collection of 2058 images from videos of 3 minutes
long captured by 10 camera sensor nodes. In order to
cover a large number of possible vehicle poses at the
roundabout, the cameras were placed in such a way that
they capture the same scene from 7 different views and
2 different heights. For strenghtening the vehicle detec-
tion training purposes, 4218 images gathered from the
database collected in the CBCL StreetScenes Challenge
Framework [50] and the voc 2007 train databases [38]
were added to the set.

• a test set, which is used to evaluate the classifier as well
as the tracking, is instead constructed from videos of 3
minutes in length with 25 fps captured simultaneously
from two camera sensors with overlapped FoV.

B. VEHICLE DETECTION AND CLASSIFICATION
The very first step in our system is vehicle detection and
classification (see Figure 5), which is a very important step
for the accuracy of the tracking and traffic data extraction.

The algorithmwas tested on images from the SR test set for
different values of threshold ranging from 10% to 90% [19].
A threshold is the minimum percentage of confidence for
classifying an object to a certain class. For each confidence
threshold, the true positive rate (TPR) and the false positive
rate (FPR) are computed. The TPR, termed also as the recall,
is the sensitivity of the classifier to correctly identifying as
much as possible objects (i.e., probability of detection). The
FPR, on the other hand, represents the proportion of wrongly
identified objects to a certain class (i.e., probability of false
alarm). In Figure 6, a receiver operating characteristic (ROC)
curve is measured by expressing the TPR as a function of the
FPR for all thresholds as the threshold varies.

In the case of classifying an object to the ‘‘car’’ class, the
TPR is defined as the percentage for correctly classifying
a car object to the class while the FPR is identified as the
percentage of wrongly classifying an object which is not a
car to the ‘‘car’’ class. The resulting ROC curve is illustrated
in Figure 6 along with the ROC curves of both the random
and perfect classifiers. The ROC curve is a way to choose the
ideal threshold to make predictions that is a trade-off between
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FIGURE 6. Vehicle classification: Receiver operating characteristic curve
for the ‘‘car’’ class.

FIGURE 7. Offline constructed clusters: Features distribution within the
obtained clusters from the K-means algorithm.

the TPR and the FPR. The higher is the threshold, the fewer
positive predictions and the more negative predictions are
made.

Considering that we are interested in tracking vehicles,
detecting and classifying all existing vehicles each frame is
crucial. In other words, it is more important to reduce the false
negative predictions and to increase the TPR than reducing
false positive predictions. In fact, incorrectly classifying an
object (e.g., a person) to the ‘‘car’’ class is a situation that
can be solved since the probability of making the same false
positive prediction for more than two or three consecutive
frames is very low. For this reason, we choose to work with
a confidence threshold resulting in a very high TPR value
as a sufficient accuracy model of classification even if the
obtained FPR is slightly high. The chosen point marked by a
star in Figure 6 corresponds to 30% threshold of confidence
for which the TPR and FPR values are respectively 0.945 and
0.767.

The results of vehicle detection and classification are illus-
trated in Figure 5. The rows (a) and (b) in Figure 5 respec-
tively represent the moving objects detected by the MoG

algorithm and the classified objects by the YOLOv2 classifier
for three examples. The last row, (c), instead, represents the
final result which is the combination of the MoG and the
YOLOv2 algorithms in order to detect moving vehicles. In all
the three examples given in Figure 5, stationary vehicles
are detected by YOLOv2 as it can be seen in row (b). Yet,
combined with the MoG subtractor, they are eliminated in
the final result. Thus the desired aim from combining the
two algorithms is achieved. However, in the cases of partially
occluded cars, the YOLOv2 classifier succeeded to detect and
classify the car hidden by the flag correctly in image (b3)
with 69% confidence but failed to detect the far car hidden
by the tree in the top of picture (b2). A failure in the vehicle
detection and classification step is critical to the one-view
tracking results as it implies loss in track of the vehicle over
time. Nevertheless, this problem can be solved in the context
of multi-view tracking by exploiting information from other
cameras with overlapped FoV where the same vehicle is seen
and detected successfully.

C. OFFLINE CLUSTERS CONSTRUCTION
The feature clustering step is performed offline by group-
ing 237759 descriptors from 1750 images taken from the
SR database [19]. We set the number of clusters to K =
1000. Figure 7 depicts the distribution of features within the
obtained clusters. The vast majority of clusters (98%) contain
at least 100 features.

D. ERROR RATE OF THE SW DECODER
The distributed feature decoder is evaluated in two different
scenarios:
• Ideal CNM, where we assume that the decoder has a
complete knowledge about the exact likelihood between
the created SI and the descriptor to decode, and thus an
ideal CNM is estimated.

• Practical CNM. The ideal CNM can not be known by
the decoder in practice, therefore, a second scenario is
considered for which an approximation of the correla-
tion between the SI and the received feature is proposed
as described in Section III-B3.

Figure 8 depicts the frame error rate (FER) evaluation for
different values of puncturing fraction ρ and for signal to
noise ratio (SNR) values ranging from 0 to 25dB. For the
sake of simplicity, only the FER evaluation is presented in
this paper since exactly the same considerations, and similar
interpretations, can be inferred from the bit error rate (BER).

Interestingly, the practical CNM in Figure 8(b) has similar
behavior to the ideal CNM in Figure 8(a), but with higher
FER values and hence lower bit-rate savings. However, as the
SNR increases, the gap between the two decreases, especially
for SNR > 15dB since we can observe a saturation for high
SNR values. Starting from SNR equals to 8dB, a signifi-
cant number of bits can be saved without deteriorating the
decoder’s efficiency (fraction ρ values starting from 29.3%
and 14.6% in the ideal and practical cases, respectively). Yet,
if we increase the fraction ρ significantly, i.e., greater than or
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FIGURE 8. SW decoder: FER as a function of the fraction of punctured bits
ρ for different SNR values.

equal to 45%, the performance of the decoder breaks down
and we get high FER values even for high SNRs.

In Figure 9, we provide a further insight by illustrating
the bit-rate savings achieved by exploiting both the intra and
inter-camera correlation at the decoder side for both the ideal
and practical CNM cases. The bit-rate saving is inspected
for different values of SNR and different FER thresholds
under which we consider a decoding is done successfully.
Raising the FER threshold entails more bit-rate savings due
to the fact that we are tolerating more decoding errors. The
maximum bit-rate reduction attained at high SNRs ranges
from 29.3% to 41.5% in the ideal case, and from 29.3% to
36.62% in the practical case. In other words, the decoder in
the ideal CNM case results in an average of 2.44% more bit-
rate savings compared to the practical CNMcase. As the SNR
decreases, the channel becomes more noisy and the bit-rate
saving deteriorates.

E. EFFECT OF DECODING ON MATCHING ACCURACY
To assess the matching accuracy of the recovered descrip-
tors after decoding, the ROC curves were computed and

FIGURE 9. SW decoder: bit-rate savings achieved for different FER
thresholds.

illustrated in Figure 10 for the ideal and practical CNM
case scenarios. We consider a true positive TP as a correct
matching of features belonging to the same vehicle seen in
the two views and a false positive FP as matching between
features belonging to different vehicles. Hence, two features
are considered correctly matched if they belong to the same
vehicle even if they don’t actually represent the same part
of that vehicle (object-wise matching). Figure 10 depicts the
ROC curves, under a 30% puncturing and for different SNRs,
for both the ideal and practical CNM case scenarios, whereas
Figure 11 depicts the ROC curves for different puncturing
fraction ρ and for an SNR of 10dB in the best case scenario.
Bearing in mind the aforementioned saturation of the multi-
view feature decoding at high SNRs, the ROC curves for
SNRs greater than 10dB are exactly identical to the one
obtained for SNR = 10dB.

Also observe the blue ROC curves which are equiva-
lent to the performance of matching the original extracted
descriptors (i.e., the ROC curves under no quantization,
no puncturing and an ideal channel with SNR = ∞),
whose controlled gap with the red ROC curves (i.e., under
quantization, 30% puncturing and noisy yet sufficiently good
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FIGURE 10. Feature matching: Object-based matching accuracy for both
ideal and practical CNM scenarios, in dependence of the SNR value, and
for ρ = 30% puncturing percentage.

channel with SNR = 10dB and FER = 0) shows the limited
impact of quantization on the system performance. The lower
the SNR, the lower the matching accuracy we get because of
the increased errors at the decoding step (increased noise in
the communication channel) as it can be seen from Figure 10.
Moreover, the ROC curves in the practical CNM case have
similar behavior to those obtained in the ideal CNM case and
hence, the same observations made previously also apply to
the practical CNM scenario.

Similarly, when the puncturing fraction ρ increases, more
decoding errors are generated and thus the matching accuracy
is progressively deteriorating (see Figure 11). Yet, since the
gap between the ROC curves obtained for the two values
of the fraction ρ = 30% and 50% is small, we can reduce
significantly the bit-rate while still maintaining an acceptable
matching accuracy.

An example of multi-view feature matching when
SNR = 10dB and ρ = 50% is provided in Figure 12 where
two special examples are shown: example 1 is when a vehicle
is partially occluded in one view (vehicle obj2 in view 2) and
example 2 is a variation of the vehicle’s pose from one view to

FIGURE 11. Feature matching: ROC curves for different puncturing
fraction ρ in the ideal CNM scenario.

the other (vehicle obj1 in both views). As can be easily seen,
we can still match the vehicles correctly in both cases even
though few features per object are matched due to corruption
of reconstructed descriptors caused by decoding errors.

F. OBJECT-WISE MATCHING
Interestingly, the gap between the ROC curves obtained at
high SNRs and at SNR= 0dB is small despite of the tremen-
dous value of the FER at SNR = 0dB. This can be explained
by considering the fact that we are presenting the accuracy
of object-wise matching instead of feature-wise matching as
aforementioned. In this context, Figure 13 shows the ROC
curves obtained for applying object-wise matching (straight
lines) against ROC curves in the case of feature-wise match-
ing (dashed lines) of descriptors from our data set. In the latter
case, a couple of descriptors correspondence is considered as
correct match only if they represent the same part of the same
object. As can be easily seen, when the feature-wise matching
is performed the performance is deteriorated compared to the
one obtained for the object-wise matching. This deterioration
is due to the fact that we are considering non calibrated cam-
eras or imperfect stereo camera calibration. In other words,
we are slightly reducing the precision on selecting correct
feature matches (features level) in order to improve the multi-
view matching accuracy as long as we are matching correctly
the same vehicles from both views (object level).

G. WORKING POINT IN THE ROC CURVE
Incidentally, each point on the ROC curve is the couple
(TPR, FPR) computed for a specific discrimination threshold
d . The latter denotes the maximum distance between two
features considered correctly matched. In the case of multi-
view object tracking, it is important to have high TPR and
low FPR values to ensure that we are tracking the object
correctly from one view to the other. As shown in Figure 10,
when the threshold d is small, the selectivity of the matching
function is at its highest values which means that only few
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FIGURE 12. Examples of multi-view features matching in the case of SNR = 10dB and ρ = 50%.

FIGURE 13. Object-wise against feature-wise matching accuracy
evaluation.

matches with great resemblance (i.e., with distance smaller
than d) are selected as TP and few FP are detected (low FPR
values). But in this case the number of false negatives is high
resulting in low TPR. With the increase of the discrimination
threshold d , the matcher gets more sensitive to TP detection
leading to higher TPR values at the price of an increased
FPR. In fact, a high threshold d entails low specificity of the
matching selection and thus more FP detection. In this case,
an object from view 1 can be matched to a wrong object in
view 2 leading to wrong tracking and information extraction.

FIGURE 14. Matching accuracy metric F-score as a function of the
discrimination threshold d for different puncturing fraction ρ.

Hence, it is crucial to find a trade-off between the TPR and
the FPR.

For the sake of simplicity, we illustrate a method to choose
the discrimination threshold and the corresponding accuracy
value by taking SNR = 10dB as an example. To measure the
matching accuracy at each threshold point d , we used the
F-score which is the harmonic mean of the precision P and
recall R, that is

F = 2
P · R
P+ R

, P =
TP

TP+ FP
, R = TPR. (4)
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FIGURE 15. FER performance on the MVSC dataset, to be compared with
Figure 8.

Figure 14 shows the evaluation of the matching accuracy for
different puncturing fraction ρ by measuring the F-score as a
function of the discrimination threshold d . As the threshold
d increases, i.e., the TPR gets higher, the F-score increases as

well. However, increasing the threshold d too much leads to
high F-score values at the price of very high FPR values. Hav-
ing regard to the aforementioned considerations, we chose a
discrimination threshold for which a good matching accuracy
(F > 0.85) and a low FPR (FPR6 0.5) are achieved. For the
ROC curve obtained at SNR = 10dB and ρ = 0.3, we chose
the threshold d∗ = 0.4782 which corresponds to the triplet
(TPR∗ = 0.942, FPR∗ = 0.383, F∗ = 0.955). Interestingly,
an F-score value close to F∗ = 0.955 obtained for SNR =
10dB and ρ = 30% can be achieved when the puncturing
fraction ρ is equal to 50% if d∗∗ = 0.4682 is chosen as
discrimination threshold. The latter corresponds to the triplet
(TPR∗∗ = 0.917, FPR∗∗ = 0.5, F∗∗ = 0.859).
To summarize, from what previously stated, we can infer

that for any puncturing fraction ρ between 30% and 50% we
can find a discrimination threshold d at which we can achieve
significant bit-rate savings greater than or equal to 30%while
preserving a good matching accuracy (0.859 6 F 6 0.955)
when SNR = 10dB.
Incidentally, in the case of feature-wise matching, the max-

imum achievable F-score when SNR = 10dB and ρ = 0.3 is

FIGURE 16. ROC curves obtained for feature-wise matching descriptors from both the SR and the MVSC datasets.
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0.644 for the triple (d = 0.4360, TPR= 0.84, FPR= 0.497).
As the number of bits lost increases, the maximum achievable
F-score decreases until reaching the value of 0.355 when
ρ = 0.5 which is a very low value as an accuracy metric.
This leads us to deduce that, for feature-wise matching, the
maximum bit-rate reduction we can obtain when SNR =
10dB in such a way that we guarantee an F-measure accuracy
no lower than 0.644 is 30%.

H. VALIDATING THE PROPOSED SYSTEM
To validate the proposed multi-view distributed feature
decoding system, we analyzed its performance on the widely-
known database MVSC [51] which is completely indepen-
dent of the chosen application. The MVSC data set is a
collection of high number of images containing patches sam-
pled from 3D reconstructions of three well-known world
sites: the Statue of Liberty (New York), Notre Dame (Paris)
and Half Dome (Yosemite). In this paper we used only
images from the Statue of Liberty database which is a set of
1758 1024 × 1024 bitmap images. Each image is composed
of 256 patches (16 × 16 array of image patches). Each patch
is sampled as 64 × 64 gray-scale. Along with the images,
associated metadata provide information about the location,
scale and orientation of each keypoint representing a patch,
as well as a ground truth for matching patches. For each
patch, one SURF descriptor is extracted and transmitted to
the sink node. At the receiver side, we used the descriptors
of the corresponding matched patches as SI for the SW
decoder.

Figure 15 reports the FER performance obtained for dif-
ferent values of SNR and different puncturing patterns. In the
comparison with Figure 8(a), note the quasi-identical behav-
ior of the FER under ideal CNM for the MVSC and the
SR datasets. Figure 16 further illustrates the ROC curves
obtained for evaluating the feature-wise matching of descrip-
tors from the MVSC dataset in the comparison to those of the
SR dataset. As amatter of fact, recall that the descriptors from
the MVSC database are feature-wise matched, and therefore
this is the only possible means of fair comparison. As can be
easily seen from Figure 16, the matching accuracy results for
both databases have similar behavior over the entire SNR and
puncturing fraction ρ ranges.

V. CONCLUSION
This paper presented a multi-view vehicle tracking system
at roundabouts suitable for VSNs. To reduce the bit-rate and
the energy consumption at the camera sensor nodes, the ATC
paradigm was adopted where cameras detect moving vehi-
cles and extract local features while the rest of the tracking
process is performed at the sink node. A multi-view dis-
tributed feature coding architecture based on DSC techniques
was applied to convey essential information to the sink. The
extracted features from all cameras are encoded separately
and jointly decoded at the receiver side. By exploiting a
robust object-wise matching procedure, the proposed system

is proved to achieve significant bit-rate reduction up to 30%
for high SNRs > 10dB while maintaining a good multi-view
matching accuracy close to the performance where no quan-
tization and coding is performed (F-score = 0.955). The
study also showed that, for applications based on feature-
wise matching we can still achieve similar bit-rate savings
at the price of a deteriorated matching accuracy (60.644).
As a proof-of-concept, we tested the proposed system on a
small network composed of two cameras, while extensions to
denser networks with higher number of cameras are left to
future work.
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