
Received March 24, 2022, accepted March 30, 2022, date of publication April 8, 2022, date of current version April 14, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3165157

MpFPC—A Parallelization Method
for Fast Packet Classification
YUZHU CHENG 1 AND QIUYING SHI 2
1School of Software, Changsha Social Work College, Changsha 410004, China
2School of Computer Science and Engineering, Central South University, Changsha 410083, China

Corresponding author: Yuzhu Cheng (vogue21ct@qq.com)

This work was supported in part by the Natural Science Foundation of Hunan Province under Grant 2022JJ60099, in part by the Research
Foundation of the Education Department of Hunan Province under Grant 21C1589, in part by the Doctoral Scientific Research Project of
Changsha Social Work College under Grant 2020JB32, and in part by the National Natural Science Foundation of China under Grant
61877059.

ABSTRACT Packet classification is the core technology of network layer and an important means to ensure
the security of network system. With the rapid development of network technology, higher requirements are
put forward for the speed of network packet classification. This paper improves the traditional single thread
package classification framework, A new parallelization method for fast packet classification (MpFPC)
based on distributed computing is proposed, the method adopts the packet classification idea based on
decision tree, but compared with the traditional algorithm, a rule mapping preprocessing process is added
before constructing the classification decision tree, which effectively removes the rule redundancy and
conflict, so as to avoid the rule replication problem of the traditional decision-tree-based method. In addition,
the method can group the rules and data packets at the same time, which improves the packet classification
efficiency. Experimental results show that MpFPCmethod has high classification efficiency and has obvious
speed advantage comparedwith Uscuts methodwith time complexity ofO(klogn). In addition, the test results
also show that the classification speed of MpFPC will increase with the increasing number of computing
nodes, which provides a new possible way to meet the classification wire-speed requirement.

INDEX TERMS Packet classification, cell space, decision tree, parallel computing.

I. INTRODUCTION
Packet classification is the core technology to Internet devices
and network services implementation, it searches for the
operation or task to be performed by the packet in a set
of rules, according to a series of information carried by
the specified packet (such as source address, destination
address, source port, destination port and protocol, etc.) [10].
With the development of a series of cutting-edge network
technologies, such as network function virtualization (NFV)
and software-defined network (SDN), the Internet carries
more and more application services, the scale of network
traffic, backbone network routing table and firewall access
control rules have increased explosively, which also puts for-
ward higher requirements for the packet classification ability
of network equipment [10]. With the continuous improve-
ment of network communication cable manufacturing tech-
nology and the increasing link bandwidth, the optical fiber

The associate editor coordinating the review of this manuscript and
approving it for publication was Victor S. Sheng.

transmission rate of the current universal interface has
reached or even exceeded 400Gbps [3]. In terms of 64 bytes
per packet, in order to achieve wire-speed requirement, it is
necessary to complete a packet classification within 1.28ns.
However, existing software packet classification algorithms
generally only have the ability to classify a particular dimen-
sion, especially the single dimensional classification and two
dimensional classification algorithms. Some algorithms can
be extended for the high dimensional classification, but it
cannot meet the requirements in the space complexity and
time complexity simultaneously.

Considering these requirements, we designed a novel par-
allelization method for fast packet classification (MpFPC)
based on distributed computing. The proposed method
has advantages of high efficiency without additional space
requirement, and it is suitable for a large amount of data,
especially for real-time packet classification which has the
requirement of high speed. Our work contributes a new par-
allelization method for fast packet classification to improve
the classification speed. The main innovations of this method

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 38379

https://orcid.org/0000-0001-8025-5000
https://orcid.org/0000-0001-6294-0936


Y. Cheng, Q. Shi: MpFPC—Parallelization Method for Fast Packet Classification

are as follows: Firstly, the decision tree is grouped into sev-
eral sub-decision trees for parallel packet classification, and
the improved grouping process can avoid the rule replica-
tion problem of the traditional decision-tree-based method;
Secondly, during classification, each data packet will be com-
pared according to the corresponding interval value of the
root node of the decision sub-tree. After finding the matching
interval, it will be distributed to the corresponding decision
subtree for classification. However, the packet that cannot
match any decision subtree can directly be given the classi-
fication decision of discard, which also improves the packet
classification efficiency to a certain extent.

The rest of this paper is organized as follows: the related
work is presented in Section 2; then we give the problem
description, and present the algorithms of classification deci-
sion tree constructing, rule grouping and distributed packet
classifying in Section 3. In Section 4, we give the classifi-
cation results of MpFPC method and Uscuts method, fol-
lowed by the comparison and analysis of experimental results.
Finally, the conclusion is drawn in Section 5.

II. RELATED WORK
Packet classification is a hard problem with high complexity.
From a geometric point of view, packet classification can be
treated as a point location problem, which has been proved
that the best bounds for locating a point are either O(logn)
time with O(nk ) space, or O((logn)k−1) time with O(n) space
for n non-overlapping hyper-rectangles in k-dimensional
space [4]. Therefore, the worst case mathematical complex-
ity of algorithmic packet classification is extremely high,
which makes it impractical to achieve a wire-speed require-
ment within the capabilities of current memory technology.
However, packet classification rules in real-life applications
have some inherent characteristics that can be exploited to
reduce the complexity.

A. HARDWARE-BASED METHODS
In industry, large routers and high-end classifiers use hard-
ware devices, such as ternary content addressable memory
(TCAM) [5], field programmable gate array (FPGA) [6]
and specialized network processor chips, to achieve high-
performance packet classification. The hardware-based clas-
sification method can carry out high-speed classification, but
it is expensive, consumes a lot of power, has low flexibility
and scalability [5]. Therefore, in academia, researchers are
more willing to seek solutions based on software for packet
classification [7].

According to the existing research, packet classification
algorithms can be roughly divided into algorithms based
on dimension decomposition and algorithms based on space
division [8]. The algorithm based on space division usually
partitions the whole rule space into several subspaces, then
divides the rule set into several groups and puts them into
each subspace. This type of method can be further divided
into two main subcategories: tuple space-based method
[9]–[11] and decision tree-based method [12], [13].

B. DIMENSION-DECOMPOSITION-BASED METHODS
The algorithm based on dimension decomposition decom-
poses each rule into multiple dimensions in a certain
number of bytes or bits. Each dimension is searched sepa-
rately, and then combined to obtain the final search result,
representative classical algorithms include BV(Bit vector),
ABV(Aggregated bit vector), RFC(Recursive flow classifi-
cation) [14]–[16], etc. These methods are fast, but with the
increase of the size of the rule set, the space consumption
will increase exponentially in the worst case, and the space
consumption is high.

C. TUPLE-SPACE-SEARCH-BASED METHODS
The algorithm based on tuple space constructs a hash table for
each different prefix length, and the rule components with the
same prefix length are stored in the same hash table. When
classifying packets, all hash tables are accessed sequentially
until the longest matching prefix is found. Representative
algorithms include multi-dimensional packet classification
algorithms TSS(Tuple Space Search) [17], PartitionSort [18],
and TupleMerge [12], etc.

D. DECISION-TREE-BASED METHODS
The algorithm based on decision tree recursively decomposes
the multidimensional space where the rules are located in a
certain way, and establishes a decision tree. The root node
of the decision tree represents the whole multidimensional
space, and the non-root node represents the subspace. The
end condition of recursive decomposition is that the number
of rules associated with nodes is less than or equal to the
preset threshold . When receiving a packet, the method first
access the root node of the decision tree, and then decide
how to access the next node according to the space division.
Usually, the packet classification algorithm based on decision
tree will eventually access the leaf node. When accessing a
leaf node, the algorithm sequentially accesses at most rules
associated with the leaf node to determine the rule that the
packet canmatch. Representative classical algorithms include
Hicuts [19], HyperCuts [20], etc.

Generally speaking, the methods based on tuple space
have the problems of uneven subspace distribution and rule
replication, which affect the classification performance of the
methods to a certain extent. Although traversing the deci-
sion tree can achieve logarithmic time complexity, it need
to perform sequence matching within rules after finding the
leaf node of the decision tree. Obviously, the execution time
efficiency of sequence matching is linear with the number
of rules, which reduces the classification efficiency of the
method to a great extent. In addition, when dividing the
multidimensional space where the rule is located, a rule may
need to be copied to multiple rule groups, resulting in a large
amount of storage space for the method. Efficuts, SmartSplit
and other methods [21]–[23] have some improvements in the
depth of constructing decision tree compared with classical
methods, but they do not fundamentally solved the problem

38380 VOLUME 10, 2022



Y. Cheng, Q. Shi: MpFPC—Parallelization Method for Fast Packet Classification

of sequential matching after rule replication and matching
to leaf nodes. From the perspective of solving these two
problems, a decision tree packet classification method Uscuts
based on cell space division is proposed. The classification
time complexity of this method is O(klogn) [24]. However,
for the classification ofmassive data packets, its classification
speed may still become a bottleneck.

At present, compared with other classification methods
based on software, the method based on decision tree has
the most advantages in classification speed. Especially in
the data center network environment, there may be mas-
sive data packets to be classified instantaneously. At this
time, the classification speed is the most important. However,
by analyzing the current packet classification algorithm, there
is still a long distance from the wire-speed requirements,
which directly affects and limits the application scalability
of network devices in the new generation Internet. Consider-
ing that the industry mostly uses parallelization methods to
process massive data, if both the data packets and rules can
be grouped, the packet classification problemmay be handled
in a parallel manner. Based on this idea, this paper proposes
a new parallelization method for fast packet classification
based on distributed computing.

III. THE PROPOSED APPROACH
A. PROBLEM DESCRIPTION
According to the analysis of previous studies, the biggest
obstacle to the direct grouping of rules is that rules are
often entangled, and there are overlaps and conflicts between
rules [24]. Therefore, if the rules are divided into several
groups and the data packets are distributed to these groups
for classification, the classification results will generally be
inconsistent with that of the original rules. As shown in
Figure 1, the classification rule set contains nine rules, which
are divided into three rule groups Rg1, Rg2 and Rg3. Suppose
that packet e(5, 3) passes through policy R and matches
nine rules from top to bottom, it will first match r2, and its
classification result is discard; Accordingly, Rg1 and Rg2
can match packet e too, but their classification decisions are
different, namely discard and accept. However, there are no
rules in Rg3 can match the data packet e. It can be seen
that if there are conflicts in classification rules, the direct
division of rules will lead to ‘‘inconsistency’’ errors [25] in
classification decisions. Moreover, copying data packets to
each rule group for classification will increase the memory
consumption due to replication on the one hand, and the
‘‘incomplete’’ error [25] of the rule will occur because the
grouping rules cannot match the data packets on the other
hand.

Therefore, the first problem to be solved is how to deal
with the original classification rules so that the rules are
independent of each other, but the rule semantics remain
unchanged. The second problem is how to group these rules
and divide them equally to each parallel computing node, and
the semantics of the whole rules divided to each node must be

the same as that of the original rules. In addition, generally
speaking, if each node has the same computing power, the
more average the number of rules deployed to each node,
the higher the computing efficiency. Finally, the method also
needs to consider how to properly group the massive data
packets to be classified, and send the grouped data packets
to each computing node for classification based on decision
tree.

FIGURE 1. An intuitive example of rules direct grouping.

Firstly, we briefly introduce the solutions to the above
problems, and then explain the specific steps of the method
in detail with examples. To solve the problem of how to make
the rules independent of each other while the semantics of the
rules unchanged, we put forward a solution based on multidi-
mensional matrix mapping (FDM) in our previous work [26].
The method can preprocess the original rules so that the
target rules have the same semantics as the original rules,
but the rules are independent of each other. The result of rule
mapping in this method is a series of independent cell spaces,
an example of mapping process is shown in Section 3.2. How
to divide all rules evenly into pre-deployed computing nodes
will be more complex. We need to comprehensively consider
the efficiency of the subsequent packet classification process,
and it is difficult to achieve absolute average in most cases.
Let the mean value equals to the total number of rules divided
by the number of computing nodes, we design a division
method based on greedy strategy. Each time we partition the
rules close to the mean value to the existing nodes until all
rules are divided. Finally, we consider how to distribute the
massive data packets to be classified to each computing node.

In this paper, we specify the distribution of massive data
packets according to the root node interval of the subtree
corresponding to each grouping rule, so as to avoid replica-
tion in the process of packet distribution. In addition, when
constructing the classification decision tree, because the rules
are non-conflict and redundancy-free after FDM mapping,
there is no rule replication in the decision tree, which not
only reduces the memory consumption, but also improves the
classification efficiency of the decision tree.

For ease of understanding, we will supplement the division
method based on greedy idea with Figure 2. Let the decision

VOLUME 10, 2022 38381



Y. Cheng, Q. Shi: MpFPC—Parallelization Method for Fast Packet Classification

tree T be composed of several subtrees in the F1 dimension.
As shown in Fig. 2, the decision tree T has six subtrees
corresponding to T1,T2, . . . ,T6 respectively. Suppose the
number of branches in each subtree (we define the path from
the root node to the leaf node of the subtree as a branch, and
the number of branches corresponds to the number of rules)
are {7, 5, 3, 4, 2, 4}, then the total number of rules is N =
7 + 5 + 3 + 4 + 2 + 4 = 25. Assuming that the number
of deployed parallel computing nodes n equals ‘4,’ then the
average number of rules to be divided by each node is N/n =
25/4 = 6.25. The partition method based on greedy idea is to
take the subtree with the number of rules as close as possible
to N/n and deploy it to the corresponding computing node,
while the subtree is not split. According to this method, all
rules in the subtree are divided into each computing node.

FIGURE 2. An decision tree T with six subtrees.

As shown in Fig. 3, subtree T1 contains seven rules and
T2 contains five rules. Obviously, compared with T1 + T2,
the number of rules contained in T1 is closer to the average
number of rules ‘6,’ that is, |7 − 6| < |(7 + 5) − 6|, so the
seven rules in T1 are divided into node1, similarly, the five
rules in T2 are divided into node2, and the seven rules in
T3 + T4 are divided into node3. Finally, all the remaining six
rules in T5 + T6 are divided into node4.

Next, we briefly explain the execution steps of the algo-
rithm. For the convenience of description, we use a small
example of 2-tuple rule set shown in Figure 5 for subsequent
discussions.

B. MpFPC ALGORITHM
The implementation process of the algorithm includes the fol-
lowing four steps: (1) Preprocessing the original rules, map-
ping the rules in the multidimensional matrix space through
the rule mapping method to form a series of independent
cell spaces; (2) In each dimension, the multidimensional
matrix space where the rules are located is divided in turn to
build a classification decision tree; (3) Based on the number
of deployed parallel computing nodes and the number of
branches in each subtree, the subtrees are distributed to each
computing node as evenly as possible; (4) According to the

FIGURE 3. Partitioning T into four computing nodes.

packet classification method based on decision tree, large-
scale data packets are distributed and classified in parallel.

The input of the algorithm is the nodes number n and the
original k-dimensional classification rules R, after the rule
preprocessing and decision tree constructing in the above
step 1 and step 2, several (k − 1)-level classification decision
subtrees are output. Step 3 shows how to distribute these sub-
trees to each computing node as evenly as possible. Finally,
step 4 describes the process of distributing and parallel clas-
sifying massive packets according to the distributed subtrees.
STEP 1: Rule Preprocessing
For the input classification rules R, the k-dimensional rules

are mapped to the k-dimensional matrix space in reverse
order by using the rule mapping method, and a series of
independent cell spaces are formed after mapping. Gener-
ally speaking, classification rules can be expressed in the
form of interval such as ‘‘F1 ∈ D(F1) ∧ F2 ∈ D(F2) ∧
. . . ∧ Fk ∈ D(Fk) → decision,’’ where Fi (1 ≤ i ≤ k)
represents the source address, destination address, source port
and destination port, etc., D(Fi) represents the correspond-
ing domain value interval, decision represents the decision
(accept or discard) of rules, and k is the dimension. Mk can
describe a k-dimensional matrix space. The coordinates of
each dimension are expressed by Fi, and the corresponding
coordinate interval is [0, D(Fi)], 1 ≤ i ≤ k . Fig. 4 defines a
two-dimensional matrix space, and the coordinate intervals
of both dimensions are [0, 9]. According to the idea of rule
mapping based on FDM design model, any rule with the form
of 〈F1 ∈ D(F1) ∧ F2 ∈ D(F2) ∧ . . . ∧ Fk ∈ D(Fk)〉 →
〈decision〉 can be mapped to k-dimensional matrix spaceMk.
In the mapping process, we use the cell space cs (correspond-
ing to a k-dimensional rectangle in the k-dimensional matrix
space) to represent the region that is finally decided to accept:
[(l1, l2, . . . , lk)(d1, d2, . . . , dk)], where li and di refer to the
minimum boundary value and range of the region in each
dimension respectively. According to reference [26], if the
number of rules is n, the time complexity of rule prepro-
cessing (corresponding to the rule mapping method in FDM
design model) is O(kn), where k refers to the rule dimension.

38382 VOLUME 10, 2022



Y. Cheng, Q. Shi: MpFPC—Parallelization Method for Fast Packet Classification

FIGURE 4. An intuitive mapping example.

FIGURE 5. An intuitive example of rules direct grouping.

FIGURE 6. An example of rules mapping.

Fig. 4 shows the result of mapping the rule ‘‘r : F1 ∈
[1, 7]∧ F2 ∈ [2, 6]→ accept.’’ to the two-dimensional matrix
spaceM2, at this time,M2 contains a cell space, expressed as
[(1, 2) (7, 5)].

Suppose the original classification strategy contains nine
rules, as shown in Fig. 5:
r1: F1 ∈ [0, 4] ∧ F2 ∈ [4, 6]→ discard,
r2: F1 ∈ [5, 7] ∧ F2 ∈ [3, 4]→ discard,
r3: F1 ∈ [2, 9] ∧ F2 ∈ [7, 8]→ accept,
r4: F1 ∈ [5, 7] ∧ F2 ∈ [3, 9]→ accept,
r5: F1 ∈ [4, 7] ∧ F2 ∈ [0, 2]→ accept,
r6: F1 ∈ [0, 9] ∧ F2 ∈ [0, 1]→ discard,
r7: F1 ∈ [0, 4] ∧ F2 ∈ [9, 9]→ discard,
r8: F1 ∈ [0, 1] ∧ F2 ∈ [0, 9]→ discard,
r9: F1 ∈ [0, 4] ∧ F2 ∈ [2, 9]→ accept.

FIGURE 7. An example of decision tree construction.

Taking the original classification strategy shown in
Fig. 5 as the input, the final mapping result can be obtained
through the mapping operation, as shown in Fig. 6. At this
time, the six cell spaces are:
cs1: [(2, 7) (8, 2)], cs2: [(5, 5) (3, 2)], cs3: [(5, 9) (3, 1)],
cs4: [(4, 0) (4, 3)], cs5: [(2, 2) (2, 2)], cs6: [(4, 3) (1, 1)].
STEP 2: Constructing Classification Decision Tree
The purpose of this step is to construct a classification

decision tree according to the cell space obtained by the rule
preprocessing process in Step 1 (as shown in Fig. 7).

Generally speaking, according to the definition of coordi-
nate projection interval P(u, v, Fi) of cell spaces u and v on a
given dimension Fi, the spatial relationship R(u, v, Fi) of any
two cell spaces u and v must satisfy one of the six relation-
ships {crossed, covered, included, disjunctive, adjacent and
equivalent} [24].
Definition 1: Let cell spaces
u = (l(u)1 , . . . , l(u)k )(d (u)1 , . . . , d (u)k ), v = (l(v)1 , . . . , l(v)k )

(d (v)1 , . . . , d (v)k ), if
(1) R(u, v,Fi) = ‘crossed,’
then P(u, v, Fi) = [l(u)i , l(v)i ], [l(v)i , l(u)i + d (u)i ], [l(u)i +

d (u)i , l(v)i + d
(v)
i ];

(2) R(u, v, Fi) = ‘covered,’
then P(u, v, Fi) = [l(u)i , l(v)i ], [l(v)i , l(v)i + d (v)i ], [l(v)i +

d (v)i , l(u)i + d
(u)
i ];

(3) R(u, v, Fi) = ‘included,’
then P(u, v, Fi) = [l(v)i , l(u)i ], [l(u)i , l(u)i + d (u)i ], [l(u)i +

d (u)i , l(v)i + d
(v)
i ];

(4) R(u, v, Fi) = ‘disjunctive,’
then P(u, v, Fi) = [l(u)i , l(u)i + d

(u)
i ], [l(v)i , l(v)i + d

(v)
i ];

(5) R(u, v, Fi) = ‘adjacent,’
then P(u, v, Fi) = [l(u)i , l(u)i + d

(u)
i ], [l(v)i , l(v)i + d

(v)
i ];

(6) R(u, v, Fi) = ‘equivalent,’
then P(u, v, Fi) = [l(u)i , l(u)i + d

(u)
i ].

Taking the two-dimensional case as an example, the
spatial relationship and coordinate projection interval of
two cell spaces u and v on dimension F1 are shown in
Fig. 8. Based on Definition 1, the coordinate projection
interval of n cell spaces on dimension F1 can be recorded

VOLUME 10, 2022 38383



Y. Cheng, Q. Shi: MpFPC—Parallelization Method for Fast Packet Classification

FIGURE 8. The spatial relations and the coordinate projection intervals of two cell spaces u and v in the
dimension F1.

as P(cs1, . . . , csN, F1). Next, we give the process steps
of constructing classification decision tree T, as shown
in Algorithm 1.

Algorithm 1 Constructing Classification Decision Tree
Input: n cell spaces us1∼usn.
Output: the classification decision tree T .
Begin
1. while (t ≤ k) {
2. T ← P(cs1, . . . , csn, F1);
//add P(cs1, . . . , csn, F1) as the child nodes of root to T

in turn to form a subtree
3. t ++;
4. find all the cell spaces associated with the subspace
corresponding to the root node of Ti(i := 1 to n) (recorded
as {cs});
5. seek the coordinate projection interval P({cs}, Ft) of
{cs} on dimension Ft;
6. Ti←P({cs}, Ft); //add P({cs}, Ft) as a child node to T
7. }
8. return T ;
End

Taking Fig. 7 as an example, in the initial case, T is a one-
level decision tree, including only the root node root. Six
cell spaces (cs1∼cs6) in the two-dimensional matrix space
form four coordinate projection intervals {[2, 3], [4, 4], [5, 7],
[8, 9]} on the F1 dimension. The root node {a} of the sub-
tree T1 corresponds to the interval [2, 3], and all the associ-
ated cell spaces cs1 and cs5 form two coordinate projection
intervals [2, 3] and [7, 8] in the F2 dimension. Two projection
intervals are respectively added to the subtree T1 as the child

nodes {e, f } of the root node {a}. Similarly, the projection
intervals [0, 3] and [7, 8] are added to the subtree T2 as child
nodes {g, h}. Projection intervals [0, 2] and [5, 9] are added
to the subtree T3 as child nodes {i, j}; The projection interval
[7, 8] is added to the subtree T4 as a child node {k}, and finally
the decision tree T is formed, as shown in Fig. 7.

It can be seen from Fig. 7 that the decision tree T is com-
posed of four subtrees, and the corresponding interval of each
subtree root presents an increasing relationship. Similarly, the
corresponding interval of each leaf node in the subtree are
also increases. The analysis shows that the branches formed
from the root node of T to each leaf node are independent of
each other, so these branches corresponding to the rules can
be directly divided and grouped. It should be pointed out that
in order to facilitate the subsequent data packets to be divided
into each group, we regard each subtree as a whole and do not
cut the subtree.
STEP 3: Dividing the Decision Subtree into Computing

Nodes
Suppose there are n parallel computing nodes, this step

aims to divide all subtrees obtained in step 2 into these n nodes
approximate evenly according to the number of branches.
Assuming that the decision tree T hasm subtrees, the number
of branch in each subtree is l1, l2, . . . , lm respectively, let
L = l1 + l2 + . . .+ lm, then the division principle is to make
the number of branches divided by each node as close to L/n
as possible.

In the sequence {l1, l2, . . . , lm}, the first t + 1 values are
successively taken from l1; if

|

t∑
i=1

(li)−
L
n
| ≤ |

t+1∑
i=1

(li)−
L
n
| (1)

38384 VOLUME 10, 2022



Y. Cheng, Q. Shi: MpFPC—Parallelization Method for Fast Packet Classification

FIGURE 9. An example of decision subtree grouping.

the first t subtrees corresponding to l1, . . . , lt are taken and
divided into the first computing node; Continue starting from
lt+1, take several subtrees and divide them into the second
computing node according to the same method as above.
Finally, divide all the remaining subtrees into the last comput-
ing node. The specific subtree grouping process is described
in Algorithm 2.

Intuitively, Algorithm 2 divides all subtrees of decision
tree T into groups according to the number of pre-deployed
computing nodes and the number of branches in each subtree.
The principle of division is that the number of branches in
each group is as identical as possible. When classifying data
packets, first determine whether the value of the data packet
in the corresponding dimension matches the corresponding
interval of the subtree root node. If so, send the data packet to
the computing node corresponding to the subtree for further
classification processing; if any interval cannot be matched,
the packet decision is directly determined as discard.

As shown in Figure 9, the decision tree T has four sub-
trees T1∼T4, and the number of corresponding branches in
each subtree is {2, 2, 2, 1} respectively, the total number of
branches can be calculated as ‘7.’ Assuming that the number
of computing nodes is ‘3,’ we divide the seven branches into
three computing nodes as evenly as possible, then the number
of branches in each node is approximately 7/3 ≈ 2.33.

The corresponding four interval values of each subtree root
node are arranged as {[2, 3], [4, 4], [5, 7], [8, 9]} from small
to large, and the corresponding branch number sequence is
{l1, l2, l3, l4} = {2, 2, 2, 1}, starting from l1 = 2. Because
|2 − 2.33| < |2 + 2 − 2.33|, the first subtree is taken and
divided into the first computing node; Continue to consider
the second number in the sequence, similarly, divide [4, 4]
into the second node. At this time, there is only one node left,

Algorithm 2 Grouping Decision Subtree
Input: the number of branches of m subtrees in decision
tree T, denoted as l1, l2, . . . , lm.
Output: the grouping result of subtrees (n groups, denoted
as Group(1) . . . Group(n)).
Begin
1. s = 1, k = 1;
2. L = l1 + l2 + . . .+ lm;
3. for (t := 0 to m− k) do{

4. if (|
k+t∑
i=k

(li)−L/n| ≤ |
k+t+1∑
i=k

(li)− L/n|) do{

5. Group(s)← Merge(lk, . . . , lk+t);
//take t subtrees and divide them into computing nodes

6. s++;
7. k+ = (t + 1);
8. if (s >= n-1) do{
//divide all remaining subtrees into the last computing

node
9. Group(n)←Merge(lk, . . . , lm);
10. break;
11. } else continue;
12. } else continue;
13.}
14. return Group(1)∼Group(n).
End

all the remaining two intervals {[5, 7], [8, 9]} are divided into
the third node.
STEP 4: Classifying Packets in Parallel
Different from the traditional packet classification method

based on decision tree, this method first divides the packets to
be classified according to the corresponding interval value of

VOLUME 10, 2022 38385



Y. Cheng, Q. Shi: MpFPC—Parallelization Method for Fast Packet Classification

each subtree root node, which is approximately equivalent to
reducing the packet classification scale to 1/n of the original
one (n is the number of deployed computing nodes); After the
data packets are divided into parallel computing nodes, they
are classified according to the subtree (decision tree) divided
in advance. According to the division process in step 3, the
scale of the classification decision tree in each node is also
approximately reduced to 1/n of T .
As far as data packet classification based on decision

tree is concerned, its essence is a query operation. For the
decision tree or any of its subtrees, the interval coordinate
values corresponding to the child nodes of the root node
are strictly increasing, so the binary search method can be
directly applied in the process of classification. As shown in
Fig. 10, the root node of the decision tree T has four child
nodes, and the corresponding interval coordinate values are
[2, 3], [4, 4], [5, 7] and [8, 9] respectively, satisfying the strict
increasing relationship.

Consider a k-tuple packet P:(e1, e2, . . . , ek). When clas-
sifying it, start from the root node of the decision tree, and
first bisearch on all the child nodes of the root node to judge
whether the first metadata e1 of the packet is included in the
corresponding interval of a certain node. If any interval can
not be matched, it can be determined directly that packet P
cannot match any rule, and the packet decision is recorded as
discard. Otherwise, continue searching on the subtree within
the node. If each tuple ei(i := 1 to k) of packet Pmatches the
corresponding interval of each layer node of a subtree branch,
it can be determined that the packet P matches the subtree,
and the decision of P is accept.

The classification process is shown in Figure 10. Firstly,
the method groups the data packets and divides them into
corresponding computing nodes according to the value of the
first dimension of the data packets. Then, at each computing
node, the packet decision is determined based on the decision
tree method. Taking the packet to be classified E = {p1, p2,
p3, p4, p5, p6}= {(2, 5), (1, 8), (4, 7), (6, 3), (2, 8), (8, 8)} as
an example, first, determine the value e1 of the first dimension
of the packet, and compared it with the interval value of the
child node of the root. It can be seen that p2:(1, 8) cannot
match any interval value, which means that p2 cannot match
any rule in the decision tree, so it can be directly determined
that the packet p2 decision is discard. In addition, p1 and p5
can be divided into the first node; p3 is divided into the second
node; p4 and p6 are divided into the third node.

Continue the packet classification based on decision tree
at each node: in the subtree corresponding to the first node,
because the second dimension of p1:(2, 5) is ‘5,’ it cannot
match any interval [2, 3] or [7, 8] corresponding to the two
child nodes, so it can be determined that the classification
decision of p1 is discard, While the second dimension of
p5:(2, 8) is ‘8,’ which matches the interval [7, 8], so the deci-
sion of p5 can be determined as accept. Similarly, the other
packets can be classified at the second and third nodes, the
decision of p3:(4, 7), p4:(6, 3) and p6:(8, 8) is accept, discard
and accept respectively. Here, it should be noted that, because

the interval value of each child node is strictly increas-
ing, the bisearch method can be used in packet matching,
and the specific process of packet classification is described
in Algorithm 3.

Algorithm 3 Classifying Packets in Parallel
Input: the packet P:(e1, e2, . . . , ek), the decision tree T .
Output: the packet decision (‘accept’ or ‘discard’).
Begin
/∗ bisearch on all the child nodes of the root to judge
whether e1 is included in the interval of the sth subtree
Child(root, s). If it is true, send P to the computing node
where the sub-tree is located; otherwise, determine that the
decision of P is discard. ∗/
1. if (Bisearch (root, e1) == true) do{
2. send P to the computing node where the sub-tree
Child(root, s) located;
3. } else P→ discard;
4. break;
/∗ at the computing node where the packet P located, start
from the second dimension and search for ei on the sub-
tree Child(root, s) (denoted as root_s). if ei is included in
the interval of the t th sub-tree of root_s, continue to search
for ei+1 on the sub-tree Child(root_s, t). ∗/
5. for (i := 2 to k) do{
6. if (Bisearch (root_s, ei) == true) do{
7. root = Child(root_s, t);
8. continue;
9. if (i ≥ k)
10. P→ accept.
11. } else
12. P→ discard;
13. break;
14.}
End

IV. EXPERIMENTAL RESULTS AND ANALYSIS
The proposed algorithms were implemented in Java JDK 1.7,
our experiments were carried out on a desktop PC run-
ning Windows 10 with 16G memory and Intel(R) Core(TM)
i7-10510U Processor of 1.80 GHz. In order to realize the
distributed processing of packet classification,we built a
Hadoop platform with a master and eight slave nodes. The
implementation of the algorithm includes the following steps:
Firstly, the rules are mapped by FDM [26] to generate inde-
pendent cell spaces in multi-dimensional space; Then, the
classification decision tree is constructed based on the spatial
relationship of cell spaces, and the decision tree is divided
and deployed to each computing node as evenly as possible
according to the number of nodes; When classifying data
packets, we first group the data packets according to the
root node interval coordinate values of the subtree of each
node, and then distribute them to each computing node for
classification. The classification results of all data packets are
directly output in each computing node.

38386 VOLUME 10, 2022



Y. Cheng, Q. Shi: MpFPC—Parallelization Method for Fast Packet Classification

FIGURE 10. An example of parallel packet classification.

It should be pointed out that the FDM mapping of rules
and the construction of decision tree can be carried out
offline in advance. After each classification decision subtree
is deployed to the computing node, the data packets can be
classified in a distributed manner. Therefore, this method
can be used for the parallel classification of large-scale data
packets.

To verify the efficiency of classification method MpFPC,
we choose three classification rules of different number
(100, 1000 and 10000 rules respectively) and four data sets
of different sizes (10KB, 1MB, 100MB and 200MB respec-
tively) to test the time that required to classify data packets
with MpFPC and Uscuts [24]. The test results are shown in
Table 1, Table 2 and Table 3 respectively.

Take Table 1 as an example, when the rule number is
100 and the packet size is 100MB, the classification speed and
average value of each node are mapped to Figure 11. It can
be seen that the classification time on each node fluctuates
slightly up and down near the average value, which also
shows that the algorithm has good performance in dividing
the decision tree as evenly as possible according to the num-
ber of nodes, this performance is important to improve the
classification efficiency of the algorithm.

Next, taking the number of classification rules as the
abscissa and the packet classification speed as the ordinate,
the MpFPC and Uscuts methods are used to classify the
packet of four different sizes when the rules number is
100 and 10000 respectively, and the classification time is
mapped in Fig. 12 and Fig. 13. It can be seen that with the
increase of packet size, the classification speed advantage of
MpFPC over Uscuts becomes more obvious. For example,
when the packet is 100MB, the classification time of MpFPC
algorithm is about 1/3 of that of Uscuts algorithm.

FIGURE 11. Classification time and average value at each node.

FIGURE 12. Classification time when rule size is 100.

In order to further test the relationship between MpFPC
method performance and the number of nodes, we compare
the classification speed when the rule number is 1000 and

VOLUME 10, 2022 38387



Y. Cheng, Q. Shi: MpFPC—Parallelization Method for Fast Packet Classification

TABLE 1. Packets classification time when rule size is 100.

TABLE 2. Packets classification time when rule size is 1000.

TABLE 3. Packets classification time when rule size is 10000.

TABLE 4. Packets classification time (ms) with 3 nodes.

TABLE 5. Packets classification time (ms) with 5 nodes.

the packet size is 100MB and 200MB in the case of three
computing nodes, five computing nodes and eight computing
nodes respectively. The classification speeds are shown in
Table 4, Table 5 and Table 6.

For the sake of intuition, we comprehensively compare the
classification speeds of Uscuts method and MpFPC method

in three node cases and map them to Fig. 14. As shown in
the figure, compared with Uscuts, the classification speed
of MpFPC is significantly improved, and as the number of
nodes increases, the classification speed of MpFPC method
also increases. For example, when the packet to be classified
is 200MB, the time required to classify using Uscuts method

38388 VOLUME 10, 2022



Y. Cheng, Q. Shi: MpFPC—Parallelization Method for Fast Packet Classification

TABLE 6. Packets classification time (ms) with 8 nodes.

FIGURE 13. Classification time when rule size is 10000.

FIGURE 14. Classification time of Uscuts method and MpFPC method in
different node cases.

is about 3000ms; while the average time required to classify
using MpFPC method are 1762ms at three nodes, 1408ms at
five nodes and only about 1000ms at eight nodes. Therefore,
by adding the number and improving the computing perfor-
mance of nodes, it is expected to further improve the packet
classification speed and meet the wire-speed requirement.

V. CONCLUSION
With the development of network applications, higher
requirements are put forward for the speed of network packet
classification. In this paper, the traditional single thread
packet classification framework is improved, and the parallel

method of distributed computing is used to classify data
packets based on decision tree. The algorithm proposed in
this paper has two innovations: firstly, the decision tree is
divided into several sub-decision trees for distributed packet
classification, and the mapping method FDM based on multi-
dimensional matrix is adopted before constructing the deci-
sion tree to remove rule conflict and redundancy, so as to
avoid the rule replication problem of the traditional decision
tree method; Secondly, during packet classification, each
packet is compared according to the corresponding interval
value of the root node of the decision subtree. After finding
the matching interval, it is distributed to the corresponding
decision subtree for classification, which realizes the dis-
tributed processing of packets and further improves the effi-
ciency of packet classification. The experimental results also
show that the classification speed of MpFPC is faster than
that of Uscuts, and the advantage of classification speed is
more obvious with the increase of packet size. In addition, the
experimental results also show that the classification speed
will increase with the addition of the nodes number, which
provides a new possible way to meet the classification wire-
speed requirement in the new generation network.

The design method discussed in this paper is not only
limited to packet classification, but also can be extended
to other applications, such as OpenFlow switch, Firewall,
Security gateway, and so on. With the continuous updating of
network applications, in our next work, we will provide new
methods according to the OpenFlow requirements of high
speed and fast update classification.

REFERENCES
[1] Y. Qi, L. Xu, B. Yang, Y. Xue, and J. Li, ‘‘Packet classification algorithms:

From theory to practice,’’ in Proc. 28th Conf. Comput. Commun. (INFO-
COM), Apr. 2009, pp. 648–656.

[2] S. Greenberg, T. Sheps, D. A. Leon, and Y. Ben-Shimol, ‘‘Packet classi-
fication using GPU and one-level entropy-based hashing,’’ IEEE Access,
vol. 8, pp. 80610–80623, 2020.

[3] (2017). Force I.P.T. 400 Gigabits Per 12Second Ethernet Standard.
[Online]. Available: http://www.ieee802.org/3/bs

[4] M. H. Overmars and F. A. van der Stappen, ‘‘Range searching and point
location among fat objects,’’ J. Algorithms, vol. 21, no. 3, pp. 629–656,
Nov. 1996.

[5] A. X. Liu, C. R. Meiners, and E. Torng, ‘‘Packet classification using binary
content addressable memory,’’ IEEE/ACM Trans. Netw., vol. 24, no. 3,
pp. 1295–1307, Jun. 2016.

[6] C. Li et al., ‘‘Memory optimization for bit-vector-based packet classifica-
tion on FPGA,’’ Electron, vol. 8, no. 10, pp. 1–16, 2019.

[7] P. He, G. Xie, and L. Mathy, ‘‘Meta-algorithms for software-based packet
classification,’’ in Proc. IEEE ICNP, Oct. 2014, pp. 308–319.

[8] W. Li and X. Li, ‘‘HybridCuts: A scheme combining decomposition and
cutting for packet classification,’’ in Proc. IEEE 21st Annu. Symp. High-
Performance Interconnects, Aug. 2013, pp. 41–48.

VOLUME 10, 2022 38389



Y. Cheng, Q. Shi: MpFPC—Parallelization Method for Fast Packet Classification

[9] J. Daly et al., ‘‘TupleMerge: Fast software packet processing for online
packet classification,’’ IEEE/ACM Trans. Netw., vol. 27, no. 4, pp. 1–15,
Aug. 2019.

[10] W. Li, T. Yang, O. Rottenstreich, X. Li, G. Xie, H. Li, B. Vamanan,
D. Li, and H. Lin, ‘‘Tuple space assisted packet classification with high
performance on both search and update,’’ IEEE J. Sel. Areas Commun.,
vol. 38, no. 7, pp. 1555–1569, Jul. 2020.

[11] C. Zhang and G. Xie, ‘‘MultilayerTuple: A general, scalable and high-
performance packet classification algorithm for software defined network
system,’’ in Proc. IEEE IFIP Netw., Espoo Helsinki, Finland, Jun. 2021,
pp. 1–9.

[12] J. Fong, X. Wang, Y. Qi, J. Li, and W. Jiang, ‘‘ParaSplit: A scalable
architecture on FPGA for terabit packet classification,’’ in Proc. IEEE 20th
Annu. Symp. High-Performance Interconnects, Santa Clara, CA, USA,
Aug. 2012, pp. 1–8.

[13] W. Li, X. Li, H. Li, and G. Xie, ‘‘CutSplit: A decision-tree combining
cutting and splitting for scalable packet classification,’’ in Proc. IEEE
Conf. Comput. Commun. (INFOCOM), Honolulu, HI, USA, Apr. 2018,
pp. 2645–2653.

[14] T. V. Lakshman and D. Stiliadis, ‘‘High-speed policy-based packet for-
warding using efficient multi-dimensional range matching,’’ ACM SIG-
COMM Comput. Commun. Rev., vol. 28, no. 4, pp. 203–214, Oct. 1998.

[15] P. Gupta and N. McKeown, ‘‘Packet classification on multiple fields,’’
ACM SIGCOMM Comput. Commun. Rev., vol. 29, no. 4, pp. 147–160,
Oct. 1999.

[16] U. Trivedi andM. L. Jangir, ‘‘An optimized RFC algorithm with incremen-
tal update,’’ in Proc. ICACCI, New Delhi, India, Sep. 2014, pp. 120–127.

[17] V. Srinivasan, S. Suri, and G. Varghese, ‘‘Packet classification using tuple
space search,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 29, no. 4,
pp. 135–146, Oct. 1999.

[18] S. Yingchareonthawornchai, J. Daly, A. X. Liu, and E. Torng, ‘‘A sorted-
partitioning approach to fast and scalable dynamic packet classification,’’
IEEE/ACM Trans. Netw., vol. 26, no. 4, pp. 1907–1920, Aug. 2018.

[19] P. Gupta and N. Mckeown, ‘‘Packet classification using hierarchical intel-
ligent cuttings,’’ in Proc. Hot Interconnects, 1999, pp. 34–41.

[20] S. Singh et al., ‘‘Packet classification using multidimensional cutting,’’
Comput. Commun. Rev., vol. 33, no. 4, pp. 213–224, 2003.

[21] B. Vamanan, G. Voskuilen, and T. N. Vijaykumar, ‘‘EffiCuts: Optimiz-
ing packet classification for memory and throughput,’’ in Proc. ACM
SIGCOMM Conf. SIGCOMM (SIGCOMM), New Delhi, India, 2010,
pp. 207–218.

[22] Y. F. Li, J. Wang, X. Chen, and J. Wu, ‘‘SplitTrie: A fast update packet
classification algorithm with trie splitting,’’ Electronics, vol. 11, no. 2,
pp. 1–13, 2022.

[23] M. Abbasi, S. V. Fazel, and M. Rafiee, ‘‘MBitCuts: Optimal bit-level
cutting in geometric space packet classification,’’ J. Supercomput., vol. 76,
no. 4, pp. 3105–3128, Apr. 2020.

[24] Y. Cheng et al., ‘‘A fast firewall packet classification algorithm using unit
space partitions,’’ Adv. Eng. Sci., vol. 50, no. 4, pp. 144–152, 2018.

[25] A. X. Liu and M. G. Gouda, ‘‘Diverse firewall design,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 19, no. 9, pp. 1237–1251, Sep. 2008.

[26] Y. Cheng, W. Wang, G. Min, and J. Wang, ‘‘A new approach to designing
firewall based on multidimensional matrix,’’ Concurrency Comput., Pract.
Exper., vol. 27, no. 12, pp. 3075–3088, Aug. 2015.

YUZHU CHENG received the B.S. degree from
the Hunan University of Science and Technology,
in 2002, the M.S. degree in software engineering
from Hunan University, in 2005, and the Ph.D.
degree in computer science and technology from
Central South University, in 2018. He joined
Changsha Social Work College, in 2006, where
he is currently an Associate Professor. He is the
author of three books and has published more than
30 articles in refereed journals and conference pro-

ceedings. His research interests include natural language processing, pattern
recognition, and network security.

QIUYING SHI received the B.S. degree from
Hunan Normal University and the M.S. degree
in computer science and technology from Central
South University. Her research interests include
cyber security and pattern recognition.

38390 VOLUME 10, 2022


