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ABSTRACT The advent of cloud-based super-computing platforms has given rise to a Data Science
(DS) boom. Many types of technological problems that were once considered prohibitively expensive
to tackle are now candidates for exploration. Machine Learning (ML) tools that were valued only in
academic environments are quickly being embraced by industrial giants and tiny startups alike. Coupled
with modern-day computing power, ML tools can be looked at as hammers that can deal with even the most
stubborn nails. ML tools have become so ubiquitous that the current industrial expectation is that they should
not only deliver accurate and intelligent solutions but also do so rapidly. In order to keep pace with these
requirements, a new enterprise, referred to as MLOps has blossomed in recent years. MLOps combines the
process of ML and DS with an agile software engineering technique to develop and deliver solutions in a
fast and iterative way. One of the key challenges to this is that ML and DS tools should be efficient and have
better usability characteristics than were traditionally offered. In this paper, we present a novel software
for Grammatical Evolution (GE) that meets both of these expectations. Our tool, GELAB, is a toolbox for
GE in Matlab which has numerous features that distinguish it from existing contemporary GE software.
Firstly, it is user-friendly and its development was aimed for use by non-specialists. Secondly, it is capable
of hybrid optimization, in which standard numerical optimization techniques can be added to GE. We have
shown experimentally that when hybridized with meta-heuristics GELAB has an overall better performance
as compared with standard GE.

INDEX TERMS Grammatical evolution, diversity, hybrid optimization.

I. INTRODUCTION
AIOps and MLOps are buzzwords that are popular in
the technological and innovative arenas. Leveraging from
DevOps practices, they modulate the typical activities of ML
engineers with a certain agile Software Engineering (SE)
technique, such as Scrum, continuous development, or lean
development. Additionally, just as in DevOps, ML practition-
ers are expected to work in conjunction with the operational
teams. The goal here is to expedite the developmental cycle of
software or ML. As a result, continuous delivery of software
or ML products ensues. Not only do the total developmental
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costs decrease, but the process of development also becomes
fast and flexible [1].

A typical ML practitioner, nonetheless, requires tools
nowadays with which they can work quickly and easily so
as to keep pace with the rest of the developmental and oper-
ational teams. Apart from that, they should have access to a
wide variety of ML algorithms in their toolbox.

A major field in ML is Evolutionary Computation (EC).
These algorithms mimic the natural evolutionary process
where the Darwinian paradigm of the survival of the fittest
applies. They start with a population of individuals created,
usually, at random, each of which is tested by a fitness func-
tion to assess its performance on the task at hand. Better
performing individuals survive to the next generation and are
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recombined with other good performing individuals using the
processes of crossover and mutation.

GE is an evolutionary algorithm invented at the University
of Limerick. The algorithm is widely used for different appli-
cations such as software testing [2], digital circuit design [3],
symbolic regression problems [4], and stock market rules
prediction [5] to name a few.

GE differs from most EC algorithms in that it can produce
compilable as well as interpretable computer code; because
of this, its early implementations were in C++. LibGE is
the first, and still widely used, implementation of GE in
C++ [6], although versions now exist in languages such
as Python. Although quite efficient to run and known for
producing accurate results, it could be prohibitive to use in
an MLOps context, primarily because it requires consider-
able pre-configuration and set-up. Furthermore, C++ has not
enjoyed the same support for ML algorithms that other lan-
guages have, making it difficult to integrate other techniques
with it.

We have implemented GE in Matlab. Referred to as a
Numerical Swiss Army Knife, Matlab is sometimes con-
sidered to be good at everything while best at nothing [7].
The reason it is believed to be good at almost everything is
the wide variety of proprietary as well as open-source third-
party toolboxes that are available in and for Matlab in a
large number of scientific domains and technical disciplines.
Along with this, Matlab maintains its own implementations
of various ML tools and optimization algorithms. This makes
Matlab a great framework ready for MLOps, rapid prototyp-
ing and development of ML algorithms.

Our main goal was to implement a system that has better
usability characteristics: a user-friendly system that would
save the ML practitioner having to go through the tedium
of installation, esoteric configurations, and daunting coding.
GELAB is plug-and-play and can be freely downloaded from
the Internet.1 Moreover, the implementation was based on the
simplest software engineering practices and a software design
that is easy to follow. While the built-in features are many,
a new scheme can be readily implemented and augmented
to work with the existing code. Gluing GELAB to existing
Matlab toolboxes is straightforward because most of the tool-
boxes are highly inter-operable. As a matter of fact, we have
already joined it with the global optimization toolbox of
Matlab to achieve the hybrid optimization capability reported
in this paper.

This paper describes GELAB, its various features and
thoroughly reports its results. The rest of this paper is orga-
nized as follows. In section II, we describe GE system.
GELAB is presented in section III. Section IV discusses
hybrid optimization, which is one of the core features of
GELAB, which is made possible because of our use of
Matlab. In Section V, we explain how we perform hybrid
optimization using GELAB. Section VI presents a thorough
analysis of the computational costs associated with running

1Gelab can be downloaded from: https://github.com/adilraja/GELAB

GELAB on a multi-core architecture. We also report on
aspects of population diversity in an Evolutionary Algorithm
(EA) and how it is computed and reported in GELAB in
Section VII. Section VIII presents an analysis of various
crossover operations that are implemented in GELAB. Sim-
ilarly, section IX shows various mutation operators that are
implemented in GELAB, followed by an analysis. Finally,
section X concludes the paper.

II. GRAMMATICAL EVOLUTION
GE is a variant of Genetic Programming (GP). The main goal
of the algorithm is to search a program space to find the best
program or function that can efficiently solve a user-specified
problem.

GE employs a grammar, usually specified in Backus Naur
Form (BNF), to map a binary or an integer coded string to
a program or a function. In GE, the string is referred to as
the genotype and the resulting computer program as the phe-
notype. This idea was inspired by genetics where a particular
genotype (that encodes the genetic code of an organism) leads
to a certain phenotype that characterizes the typical behavior
or appearance of an organism. A pictorial representation of
the analogy between genetics and GE is shown in Figure 1a.

In GE, this genotype to phenotype mapping is achieved
by utilizing the BNF grammar. Hence, grammar is at the
heart of any GE system and constitutes the major compo-
nent of the genotype/phenotype mapper. The mapping of an
integer-coded genome to a corresponding phenotype is shown
in Figure 2.
Genetic operators (selection, mutation, and crossover)

are applied on the binary/integer coded genotype string to
accomplish an evolutionary search process. The algorithm is
largely agnostic of the underlying programming language.
The induction of grammar also allows the introduction of
domain knowledge into program production rules. Hence,
GE has been proven to be useful in addressing a wide vari-
ety of computational problems from a myriad of problem
domains [8].

III. GELAB
GELAB is a Matlab version of GE that is based on libGE.
LibGE is a C++ library for GE that is implemented and
maintained by the Bio-computing and Developmental Sys-
tems (BDS) research group at the University of Limerick.
GELAB’s mapper, the piece of software that is responsible
for genotype to phenotype mapping, is implemented in Java
using an almost exact port of libGE.

LibGE, however, requires some background knowledge in
Computer Science, specifically computer programming, to be
able to work with it. By implementing a Matlab version of
GE, we hope it will be much easier for researchers from
different backgrounds to engage in scientific activities using
GE. One other advantage of GELAB is the ability to integrate
the toolbox with other toolboxes in Matlab, such as the image
processing, signal processing, or circuit design toolboxes,
to implement different GE applications.
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FIGURE 1. (a) Genotype to phenotype mapping in biological systems and
in GE (b) Conceptual diagram of GE’s mapping process.

GELAB has four salient features. This is to reduce compu-
tational and memory requirements and to make it easy for the
toolbox to solve a wider range of problems. The first feature
is the ability of GELAB to utilize the parallel computing tool-
box of Matlab to execute different runs of a GE experiment
in parallel on multi-core hardware architecture. GELAB can
also benefit from Matlab’s proprietary distributed computing

FIGURE 2. Mapping of the integer-coded genome to a corresponding
computer program using grammar.

center to run evolutionary experiments in a cluster or cloud
computing environment.

The second implemented feature is an integer-valued ver-
sion of the Compact Genetic Algorithm (cGA) [9]. One of
the main benefits of the cGA is that it emulates the evolution-
ary dynamics with reduced computational complexity and
reduces the requirement to have a large memory, enabling
it to scale to more complex problems. Being population-
based meta-heuristics, EAs are naturally resource hungry.
The amount of memory required to run an EA normally scales
with the population size of any experiment. A small memory
footprint, as in cGA, allows for the execution of experiments
with larger population sizes without ever scaling the required
memory requirements in proportion to the population size.
This feature of a cGA has been deemed particularly useful in
literature to run experiments that require a large population
sizes as well as to run experiments for memory-constrained
problems such as in the case of evolvable hardware [10].

The third feature is a program or individual cache, which
allows the toolbox to maintain a pool of frequently occurring
individuals which have the same genotype in a cache along
with their phenotypes as well as evaluations. This feature
is added to the GELAB toolbox to reduce the computa-
tional time required to perform computationally expensive
genotype to phenotype mapping, as well as evaluation of an
individual on the problem data.

The fourth feature is the ability to evolve multi-tree pro-
grams. This allows GELAB to evolve Multiple Input Multi-
ple Output (MIMO) systems. These systems accept multiple
inputs and are expected to generate multiple outputs simulta-
neously. Notable examples are controllers for driverless cars
and Unmanned Aerial Vehicles (UAVs) [11].
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GELAB has been thoroughly tested, initially with a small
number of data sets, for more than two years. During this
period, the toolbox was observed and all software errors
were dealt with either in Java or Matlab. GELAB was ini-
tially tested against data related to speech quality estimation
[12], [13]. Apart from that, GELAB was also tested against
various well-known benchmark problems related to symbolic
regression [14]–[16].

IV. HYBRID OPTIMIZATION
Algorithms such as GP and GE are well known for their
ability to perform a structural search for a target program.
At the time they were invented this was almost a paradigm
shift as, traditionally, optimization generally meant to search
for the optimal set of values of a target computer program
or a mathematical model. This implies that either the right
structure of the target program or model is already known or
the burden of finding it rests with theML scientist. The advent
of GP and GE considerably lessened this problem. However,
this ability to innovate computer programs came at a price.
The job of finding the right coefficients was left to these
algorithms. The most usual way of finding the coefficients
while using these algorithms was to use random numbers as
possible values and they generally do not have the ability
to perform focused searches on specific coefficients, rather
sub-expressions must be generated to combine the various
initial random values into more useful numbers.

Clearly, this was a problem. One solution is to augment
each of these algorithms with a numerical optimization algo-
rithm. In such a scheme, GP or GE would search for the right
structure of the target program and the job of finding the
optimal values of the coefficients would now be outsourced to
some numerical optimization algorithm. Such a scheme has
occasionally been used with GP and it is termed hybrid opti-
mization. With GE, this scheme has rarely been employed,
although a few examples exist [17]–[19]. GE, nonetheless,
is also an ideal candidate for hybrid optimization. We readily
exploited this capability by integrating it with Matlab’s built-
in meta-heuristic algorithms for numerical optimization.

V. HYBRID OPTIMIZATION WITH GELAB
As described in the previous section, in this approach GE
is used for searching for the structure of the target mathe-
matical model and meta-heuristic or numerical optimization
algorithms are used to tune the constants (or coefficients)
of the mathematical model. In this work, GELAB was used
for evolving the structure of the target model and was inte-
grated with three meta-heuristic algorithms, namely Simu-
lated Annealing (SA) [20], Genetic Algorithm (GA) [21],
and Particle Swarm Optimization (PSO) [22]. Rather conve-
niently, all of these meta-heuristics belong to the proprietary
toolboxes of Matlab and GELAB has been integrated with
these algorithms.

Consider the following target expression:

y = −4.7+ (.52 ∗ cos(x)) (1)

In this equation, y is a function of the independent variable x.
In this example, GELAB is responsible for generating or
evolving the overall skeleton of the target expression includ-
ing any functions having a sinusoidal behavior. The optimum
values for the coefficients of the target expression are derived
by further tuning the coefficients of the derived models either
with SA, GA, or PSO. The best values discovered are stored
in an object that has both the genotypic and phenotypic details
of an individual. Every time a phenotype is used, these values
are used for the respective constants. It must be noted that the
genotype of an individual remains unaffected because of this
process, only the phenotype is affected.

A. A SCHEME TO DECREASE THE RUNNING TIME OF
GELAB
It is well known that hybrid optimization can be quite
resource-hungry. Optimizing every individual created with
GE, in every generation, with a meta-heuristic can require
substantial computing resources. As a result, this can require
tremendous computation time. The research community has
been cognizant of this in the past. As a solution, researchers
have often reverted to schemes in which a handful of indi-
viduals of the whole population are optimized with a meta-
heuristic. The decision about which individuals to optimize
can be based on certain practical considerations [21]. For
instance, one of the criteria could be to figure out first as
to which individuals could benefit most from hybrid opti-
mization. To this end, a small number of the fitness-wise best
individuals can be chosen for hybrid optimization at every
generation.

In our work, we introduced an eligibility scheme for hybrid
optimization that is based on the age of an individual. In our
scheme, as an individual is created, its fitness is evaluated
using Mean Squared Error (MSE). At this point, it is marked
as having an age of zero and keeps using MSE to measure its
fitness until it is one generation old. The age of an individual
is incremented by one at the point of fitness evaluation in
every subsequent generation.

As the age of an individual reaches two generations, it is
marked as eligible for hybrid optimization. At this stage, it is
treated with the meta-heuristic with a certain small probabil-
ity. The individual remains eligible for hybrid optimization
until the time it is five generations old.

After this, the fitness function is changed to linear scaling,
(MSEs), for all the subsequent generations. Linear scaling is
defined according to equation 2 and it has been found to be
quite beneficial for symbolic regression in the past,

MSEs(y, t) = 1/n
n∑
i

(ti − (a+ byi))2 (2)

where y is a function of the input parameters (a mathematical
expression), yi represents the value produced by aGE individ-
ual, and ti represents the target value. a and b adjust the slope
and y-intercept of the evolved expression to minimize the
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FIGURE 3. BNF grammar.

squared error. They are computed according to equation (3).

a = t − by, b =
cov(t, y)
var(y)

(3)

Moreover, an individual is chosen next time for further
optimization with a meta-heuristic only if it showed improve-
ment the last time it was optimized. The reason for this
is to save on computation time. It is customary to run a
meta-heuristic on amodel multiple times due to the stochastic
nature of the algorithm. However, given the practical concern
of reducing computation time, we implemented this trade-off.
Only those individuals that showed an improvement in fitness
the last time theywere treatedwith it will be further optimized
by the meta-heuristic.

B. PERFORMANCE ANALYSIS OF GELAB
We ran GELAB on a number of well-known benchmark
polynomial problems from the domain of symbolic regres-
sion. These polynomials are shown in Table 1. These have
been used in past works such as those reported on in
[14]–[16], [23]. We also compared the results of GELAB
with GP. In order to conduct the GP experiments, we used
GPLab [24], a well-known GP toolbox for Matlab imple-
mented by Sara Silva.

In order to obtain data, we generated uniformly distributed
random variables in the range [−1.5, 1.5]. 100 data instances
were generated. The benchmark polynomials were executed
using this data to obtain the corresponding target values. Half
of the data instances were used for training and the remaining
half were set aside for testing.

The grammar shown in Figure 3 was used in all the experi-
ments: We have already used this grammar in [16]. The initial
population was made of 500 randomly generated individuals.
Tournament-based selection, along with Lexicographic Par-
simony Pressure (LPP) [25], was implemented. With LPP,
individuals are picked for mating using the traditional tour-
nament selection used in EC. However, if there is a tie in
fitness between two individuals, the one with a smaller tree
size is picked for competition. An elitist replacement criterion
was practiced. Adaptive crossover and mutation probabilities
were implemented with a selection of different operators.

Sensible initialization [26] was used to generate the initial
population of GE. Ramped half-and-half initialization was
used for GP. Each experiment was composed of 40 runs
and each run was 50 generations long. These configuration
parameters are shown in Table 2.

C. RESULTS
For each of the polynomials mentioned in Table 1, we per-
formed five experiments. Three of the experiments involved
either SA, GA, or PSO for hybrid optimization. The fourth
experiment involved GE and used MSE only as the fitness
function. The fifth experiment involved GP. This resulted in
a total of thirty experiments.

Figure 4 shows the results of the experiments. The x-axis
represents 50 generations throughout. The y-axis represents
normalized scores with respect to MSE. The scores are com-
puted according to equation 4.

score =
1

1+MSE
(4)

Each sampled point in the plots shows an average of over
40 independently conducted runs. The following equation is
used to compute the 95% confidence limits of the error bars:

X̄ ± 1.96
σ
√
n

(5)

where X̄ and σ are the mean and standard deviation of the
fitness scores respectively of n runs (n = 40 in our case).
It means that one can be 95% confident that the fitness scores
from all the runs lie within these error bars. Moreover, a lack
of overlap between any two of the modeled schemes means
that the corresponding populations are statistically different.

Figure 4 shows that various flavors of GE performed at
least as well as GP on 5 out of the 6 chosen benchmark
problems on test data. Only on one problem, Figure 4c, the
results of GE were significantly inferior to GP. Moreover,
on two problems, Figures 4a and 4f, all variants of GE per-
formed significantly better than GP. To this end, our results
are similar to those reported in [23].

VI. COMPUTATIONAL COST OF RUNNING GELAB
This section reflects on the resource consumption of GELAB.
Comparisons are made for various flavors of GE, with and
without hybridization with meta-heuristic algorithms.

The computational time of an EAs is a well-known prac-
tical concern. In this section, we discuss experiments we
ran on GELAB comparing the resource consumption of
GELAB with a C++ implementation of GE. We also have
some insights into the effects of hybridization on resource
consumption.

In our experimental setup, we use four different configu-
rations i.e., GELAB hybridized with SA, GA, or PSO, and
GELAB running without hybridization. Moreover, we also
compared the results of running GE using the legacy libGE
system. The hardware on which we ran GELAB had an Intel
Xeon Gold 6138 CPU@ 2.00GHz with 40 cores and 128GB
of RAM.
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TABLE 1. Benchmark polynomials.

FIGURE 4. Mean of test fitness score along with error bars for each generation.

TABLE 2. GE experimental setup.

Figure 5 shows the average of the cumulative time it takes
the algorithm to evolve a certain number of generations.
The first two polynomials in Table 1 take a similar order
of time to complete 50 generations of evolution as shown
in Figures 5a and 5b. However, the remaining polynomials
in Table 1 took a longer duration as shown in Figure 5c-5f.
The time increase is due to the increase in complexity of

respective polynomials in terms of an increasing number of
variables, constants or arithmetic operators. This experiment
reflects the computational efficiency of GE hybridized with
several meta-heuristics. We observe in Figure 5 that on aver-
age, libGE consumes less time to complete one run than
any variant of GELAB shown. This is mainly due to libGE
running as a sequential algorithm and the way it uses the
core architecture of the computer used. A nice discussion
and experimental details are presented in [14]. GELAB is
extremely easy to parallelize using the parallel computing
toolbox of Matlab. As a matter of fact, the way it has been
implemented already, it runs in the parallel computing mode.
So the results achieved in terms of computation time simply
add to the cornucopia of features GELAB offers.

VII. POPULATION DIVERSITY IN GELAB
Population diversity is a very important aspect of any evolu-
tionary system. A population with a diverse set of individuals
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FIGURE 5. Mean cumulative time for the completion of each evolutionary run.

FIGURE 6. The average time taken by the algorithm to evolve a generation of GE programs.

has a better capability of generating a variety of offspring.
In EA, a higher population diversity means the algorithm
has a better ability to explore the search space. A diverse

population increases the possibility of finding the globally
optimal solution without the population getting stuck at some
locally optimal point. This section gives some analysis of
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diversity using GELAB. We also observe the effect of hybrid
optimization on diversity.

Our experimental setup for this analysis was similar to the
ones reported above. In particular, we tried three flavors of
GE hybridized with either SA, GA, or PSO. Moreover, there
was one experiment per polynomial in which bare GE was
used.

A. RESULTS
Figure 7 shows the error bars associated with diversity in
terms of the standard deviation of the fitness of the best indi-
viduals over the whole population. The figure is a retrospec-
tive viewpoint as the variation in diversity is shown across
all the generations of a run. It can be noted that although the
system maintains high diversity in the beginning, diversity
abruptly decreases as evolution proceeds. Diversity becomes
steady after the first few generations’ rapid fall. This same
pattern is observed in all experiments, so rather than showing
individual graphs for all of them, we instead show just a
single graph for benchmark Keijzer1 in Figure 7a. Diversity
in Figure 7b is reported in terms of the proportion of dis-
similar individuals present in the population during evolution
at any given evolutionary step. Dissimilarity is computed in
terms of the uniqueness of fitness. This is to say that two
individuals are considered dissimilar if their fitness values
differ from each other. To this end, to compute dissimilarity
the number of individuals that have unique fitness values is
counted. This number is divided by the size of the whole
population to give the measure. Again, the obtained results
on all six benchmarks are identical. Hence, we omit to present
all of them. However, we present the result of Keijzer1 for
reference purposes.

VIII. CROSSOVER OPERATORS
Much of the beauty and emergent behavior of an EA lies in
the way chromosomes of pairs of individuals are recombined
and crossed-over to form new offspring. It is mainly due to
crossover that the offspring retain certain similarities with
their parents. At the same time, crossover is also responsible
for the difference in the genotype of the children with respect
to their parents. GE being an EA cannot remain oblivious
from crossover and its effects. Considerable literature has
been written about crossover in GE. However, not much has
been written about employing multiple crossover operators
at the same time in a single GE system. In this section,
we propose a novel scheme in which a GE system is provided
with numerous crossover and recombination operators. The
system can choose a suitable operator for recombining a pair
of parent individuals to form new offspring. The choice is
made by the system in a stochastic sense that depends on the
probability of a certain operator to be chosen. The probabil-
ity of each operator is updated at every generation during
evolution. The update is performed by taking into account
the utility of that operator in creating the child population.
Moreover, the update also takes into account the fitness of
the individuals. Our results are interesting in the sense that

FIGURE 7. Diversity history, along with error bars in terms of the
(a) proportion of dissimilar individuals in the whole population,
(b) standard deviation of the best fitness over the whole population.

they tell us about which operators played a greater role in
evolution, and were subsequently chosen by the GE system.

A. LITERATURE SURVEY OF CROSSOVER IN GE
Based on various theoretical and practical concepts, consider-
able work has been reported in the past to create newer tech-
niques for adapting genetic operator probabilities. Schemes
for adaptive crossover probabilities have been implemented
in a wide range of EAs. For example, [27] proposed a method
for adapting operator probabilities at run-time. A variant of
their method is implemented in GPLAB, the tool we used to
run our GP experiments.

Serpell [28] examined a method for adapting the choice
of the operator during run-time along with various meth-
ods for adapting the rate at which the chosen operator is
applied. Another work [29] describes a GA hybrid operator
probability adaptation for minimum cost routing using an
object-oriented representation of networks.
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In a recent similar work [30], a multi-operator GA is used
for finding a minimum cost spanning tree for a generalized
MinimumSpanning Tree (MST) problem. In [31], the authors
propose a novel scheme for adapting crossover and mutation
probabilities in a GA using a clustering technique.

An adaptive probability of crossover and mutation in [32]
is used to sustain the convergence capacity of a GA while
maintaining the population. The proposed approach regulates
the crossover and mutation probabilities in accordance with
the fitness scores of the solutions. In [33], Harper et al.
introduced a self-selecting crossover mechanism, while [34]
introduced a statistical mechanism for updating crossover
probabilities in GAs. Their system uses the statistical infor-
mation in the alleles to use them in crossover. A comparison
of an adaptive GA and a standard GA for the optimization of
several multi-modal functions is presented in [32].

B. TYPES OF CROSSOVER OPERATORS IMPLEMENTED
In this section, we briefly describe the various crossover
operators that we implemented in GELAB.

1) SINGLE POINT CROSSOVER
This is possibly the most primitive crossover operator that
is used in EAs. In this crossover scheme, two genomes are
chosen initially through an appropriate selection mechanism.
After that, a single integral index that is lower than the lengths
of both the genomes is randomly generated. The segments of
both genomes beyond this index are swapped to create two
new offspring individuals.

2) VARIABLE POINT CROSSOVER
In this scheme, two integer indices are randomly generated
for each of the two genomes. The numbers are bound to be
lower than the lengths of each of the respective genomes.
Genome segments beyond these points are swapped to create
two new offspring individuals.

3) LHS REPLACEMENT CROSSOVER
This is an implementation of the LHS Replacement
Crossover, also known as subtree crossover, as described
in [35]. In this, two subtrees of the same type are chosen
randomly on both of the parents. Genome segments corre-
sponding with these subtrees are eventually swapped. This is
a structure-preserving crossover operator and it is known to
perform crossover in GE without disruption.

4) WEAVE OPERATOR
We also introduce a novel recombination operator that uses a
linear combination of the integral genome. In this, we initially
take the genomes of two selected individuals. If the lengths
of both the genomes are unequal, they are made equal first.
This is done by piggybacking the smaller genome with genes
containing zeros. After that, the first child genome is created
by adding the two-parent genomes. Next, the second child
genome is created by subtracting the values of genes of one
genome from the respective genes of the other. The absolute

FIGURE 8. Generation-by-generation variation of single-point crossover.

values of the result are used as the genome for the second
child.

5) TIGHT WEAVE OPERATOR
We also investigate a slight variant on the weave operator.
This is another novel operator that is similar to the weave
operator as described above. The only difference is that the
first child individual is created by adding to the values of
the genes of the first parent’s genome randomly perturbed
values of the genes of the second parent’s genome. Similarly,
the second individual is created by adding to the genes of
the second parent randomly perturbed values of the genes
of the first parent’s genome. We call this the tight weave
operator.

6) NO CROSSOVER
As the name suggests, no crossover is performed by this
operator. To this end, two individuals are chosen through a
selectionmechanism and they are used to create two offspring
individuals as such i.e. without any alteration.

C. RESULTS
The experimental setup for this study was the same as those
reported in the previous sections. The experimental results
are shown in Figures 8– 13. Figure 8 shows the variation
of single point crossover probability with error bars across
50 generations of the experiment. The default value for
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FIGURE 9. Generation-by-generation variation of variable-point crossover.

TABLE 3. Default probabilities of various crossover and recombination
operators.

single point crossover probability used in this experiment is
0.1, which is used while initiating the very first generation
of the evolution. Followed by a steep rise, the crossover
probability is steady across the first few generations, but
varies with further evolution. It is worth mentioning that the
default crossover probability used in this experiment differs
for different crossover operators, as mentioned in Table 3.
The result in Figure 8f is significantly different than that of

other benchmarks where the probability declines in a linear
fashion at the beginning of the evolutionary runs, but follows
a trend similar to the other experiments as evolution proceeds.

Figure 9 shows the error bar associated with the
variable-point crossover parameters against 50 generations
of evolution. Initially, the crossover probability is steady for
the first few generations (Figure 9a-9e) of the evolution, and
drops as the evolution proceeds, except in Figure 9f where

FIGURE 10. Generation-by-generation variation of subtree crossover.

the variable-point crossover probability observes a rapid fall
in the first few generations. Note that the default crossover
probability used in this experiment is 0.2.

Figure 10 shows the probability of the LHS Replacement
crossover operator, with error bar, across all the generations
of a run. The findings are different than other experimental
results but not surprising as we believe this to be due to the
structure-preserving nature of the LHS replacement crossover
operator. Although the probability of the subtree crossover
operator falls to 0 or ≈ 0 from the default probability (0.2)
after the very first generation of the evolution, it adopts a
steady value. The maximum probability of the LHS Replace-
ment crossover is maintained in such a way that it does
not exceed the default probability of crossover (i.e. always
remains ≤ 0.2.)

The experimental results of the proposed weave operator
are presented in Figure 11. The axis representations are sim-
ilar to what has been used in the previous results. Unlike
the variation observed for crossover operators used in the
previous experiments, the variation of the weave operator is
surprisingly different. The drop in the crossover operator is
not as much for the first few generations of the evolution and
rises back to approximately default probability with further
evolution.

A similar pattern can be observed for the first few gen-
erations of experiments using the tight weave operator in
Figure 12. The rise in the crossover probability in the latter
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FIGURE 11. Generation-by-generation variation of weave operator.

FIGURE 12. Generation-by-generation variation of tight weave operator.

phase is not as high as observed using the weave operator in
Figure 11. A generation-wise variation of the No Crossover
is shown in Figure 13.

FIGURE 13. Generation-by-generation variation of no crossover.

D. ON ADAPTING OPERATOR PROBABILITIES
In the first generation, we ensure that all individuals in the
initial population are unique. As an individual is created it
is marked that it was created using no crossover and no
mutation.

Before the creation of the initial population, the evolu-
tionary system is passed a set of parameters that have initial
probabilities of each of the aforementioned crossover and
recombination operators. The default probabilities of each
of the crossover operators are mentioned in Table 3, and for
each, the mutation operator is 0.2. It is worth noting that all of
the probability values sum up to ‘‘1’’ for each group of oper-
ators (i.e. they sum up to ‘‘1’’ for all the crossover operators
and they sum up to ‘‘1’’ for all the mutation operators).

After this, the evolution proceeds, and the next gener-
ation is created using the default probabilities. From this
point onward, once a new generation has been created, the
probabilities for different operators are updated using either
equation 6 or 7 depending on whether the fitness criterion is
based on lower is better or higher is better.

Pgoi =
1−

∑N
j=1 fitnessgoij

Fp∑
PMk=1

(6)

Pgoi =

∑N
i=1 fitnessgoi

Fp
(7)
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FIGURE 14. Generation by generation variation of point mutation.

where Pgoi is the probability of the ith genetic operator
(crossover or recombination). fitnessgoij is the fitness of the
jth individual of the population that was also created with
the ith genetic operator. Fp is the sum of fitness values of the
whole population. Pk is the proportion given in equation 8 if
lower is better or equation 9 otherwise.

Pk = 1−

∑N
j=1 fitnessgoij

Fp
(8)

Pk =

∑N
j=1 fitnessgoij

Fp
(9)

IX. MUTATION OPERATORS
In this work, we chose four different mutation operators.
Along with that, we also had the option of having nomutation
once an individual has been chosen. In what follows, brief
descriptions of the various mutation operators are given.

A. TYPES OF MUTATION OPERATORS
1) POINT MUTATION
This is a primitive mutation operator. In this, a random num-
ber is generated that lies within a certain range (ranging
between 0 and 50 in our case). After this, a random index
is chosen on the genome. The random number generated is
added to the value of the gene at this index.

FIGURE 15. Generation by generation variation of few points mutation.

2) FEW POINTS MUTATION (FPM)
A few indices (points) of the genome are randomly chosen.
The number of indices is also chosen randomly. The values
of genes at these indices are mutated as follows.

Random numbers equal to the number of indices are gen-
erated within a certain range (between 0 and 50 in our case).
These random numbers are added to the values of genes that
were chosen for mutation. One random number is added per
gene.

3) FIXED BOUNDS MUTATION (FBM)
In this scheme, random numbers equal to the length of the
genome are generated within a certain range. The range here
is again between 0 and 50. The newly generated perturbation
vector is added to the respective values of the genes in the
genome.

4) SUBTREE MUTATION
This involves an implementation of the LHS Replacement
Crossover as described in [35]. In this scheme, a new indi-
vidual is created using the initialization given in Table 2.
After this, LHS replacement crossover is performed between
the target individual to be mutated and the newly created
individual. The child individual that receives the subtree from
the newly created individual is chosen as the mutated indi-
vidual. The other individual that is created as a result of LHS
replacement crossover is littered.
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FIGURE 16. Generation by generation variation of fixed bounds mutation.

FIGURE 17. Generation by generation variation of subtree mutation.

5) NO MUTATION
As the name suggests, no mutation is performed by this oper-
ator. To this end, an individual is chosen first. It is passed as

FIGURE 18. Generation by generation variation of no mutation.

such to the next generation. Each of these mutation operators
had a default initial probability of 0.2.

B. RESULTS
The experimental setup in this study was the same as the
one used in the previous experiments. Figure 14 shows the
error bars associated with point mutation probability over
50 generations of evolution. A rapid increase in the operator’s
probability is observed which gradually decreases for the first
few generations of the evolution and becomes almost steady
as evolution proceeds.

A similar pattern is observed in the results of experiments
using FPM operator in Figure 15, and FBM operator in
Figure 16. Unlike the case of point mutation, the mutation
probability didn’t drop below the default value using FPM or
FBM for all the six benchmark problems. Note that, in con-
trast to the experiments involving crossover operators where
different probability was used for different crossover opera-
tors, an initial mutation probability of 0.2 is used for all of the
five mutation operators.

Figure 17 shows the error bars associated with the subtree
mutation probability throughout the 50 generations. Unlike
the other mutation operators used in this paper, the subtree
mutation operator is unique in terms of the variation of its
probability. The mutation probability drops to 0 after the first
generation and increases gradually as the evolution proceeds.
Its variation has a different trend than the variation of the other
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mutation operators used. Remember such a case from LHS
replacement crossover experiment? We believe this is due to
the crossover scheme involved in the subtree mutation.

A generation-wise probability of the no mutation operator
is presented in Figure 18. Various flavors of GE performed
similarly well with different mutation operators.

X. CONCLUSION
In this paper, we have proposed a novel toolbox for GE in
MATLAB. We call it GELAB. It presents an easier way to
use GE in research and development, and specifically in an
MLOps context. It is far easier to use than libGE and numer-
ous contemporary implementations of GE. The user only has
the onus of specifying the data and setting a few parameters
for which the algorithm should be run. The user is prompted
at every stage before the algorithm starts running to configure
various parameters or default values are used. Curious users
can also alter the code and add their own modules to the
code. Moreover, it is also easy to integrate it with third-party
software. We have bench-marked GELAB for many months
before committing the most recent stable release.

In this paper, we also presented a novel approach to
hybridize GE with other meta-heuristic algorithms. In par-
ticular, SA, GA and PSO are used as different options for
hybridizing. The effectiveness of the proposed toolbox and
the hybrid optimization were tested on a set of bench-
mark problems and the results were encouraging. Moreover,
it proved to be easy to understand and implement along
with the flexibility of tweaking the code for effective execu-
tions of different problems. During the hybrid optimization,
four well-known crossover operators were used individually,
along with the two crossover operators newly proposed in
this paper. In addition to that, we incorporated five different
mutation operators that are popularly used in the literature to
test the tool. Rigorous experiments involving various meta-
heuristic algorithms, crossover, and mutation operators on
a set of diverse benchmark problems performed similarly
well; which indicates GELAB is a capable candidate to solve
optimization problems.

In terms of the diverse variety of crossover and mutation
operators and their probabilistic adaption, we would like to
assert that we aim to take up this project quite aggressively
in the future. In our view, this is an extremely important
avenue in the design and improvement of EAs as it has
been shown in the literature also. We aim to run GELAB
on more challenging problems that test the limits of these
evolutionary operators. We aspire to employ GELAB in a
variety of problem domains and thoroughly benchmark the
system.
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