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ABSTRACT The robust H∞ observer-based reference tracking control design of nonlinear stochastic
systems with external disturbance and measurement noise is always a very complicated and difficult problem
in the control field. It needs to solve a very difficult control-observer-coupled Hamilton Jacobi Isaacs
equation (HJIE) for nonlinear observer and controller in the design procedure. At present, there exists
no analytic and numerical way for solving this control-observer-coupled HJIE. A novel HJIE-embedded
deep learning approach is proposed as a co-design of deep learning algorithm and H∞ observer-based
tracking control scheme to directly solve the nonlinear partial differential control-observer-coupled HJIE
of H∞ observer-based reference tracking control design problem of nonlinear stochastic systems. In the
off-line training phase, state estimation error and tracking error are inputed to HJIE-embedded deep neural
network (DNN) to output the solution of HJIE. If not, the learning error of HJIE is fedback to train DNN
to solve HJIE for H∞ tracking control law, observer gain as well as the worst-case external disturbance and
measurement noise, which will be sent back to nonlinear stochastic system model to replace the external
disturbance and measurement noise and estimation error signal for next step training. The proposed DNN-
embedded H∞ observer-based reference tracking scheme can achieve the theoretical H∞ observer-based
reference tracking control strategy as the deep learning algorithm converges. If free of external disturbance
andmeasurement noise, the proposed DNN-basedH∞ observer-based reference tracking control scheme can
approach to the stochastically asymptotical state estimation and reference tracking simultaneously. Finally,
a design example of H∞ observer-based reference tracking control for quadrotor UAV system with external
disturbance and output measurement noise is provided to illustrate the design procedure and to validate the
state estimation and reference tracking performance simultaneously of the proposed HJIE-embedded H∞
DNN-based observer-based reference tracking control scheme of nonlinear stochastic systems.

INDEX TERMS Nonlinear stochastic system, nonlinear H∞ observer-based output feedback reference
tracking control, Hamilton-Jacobi Isaacs equation (HJIE), HJIE-embedded DNN-based observer-based
control scheme, Adam learning algorithm, quadrotor UAV.

I. INTRODUTCTION
Deep neural network (DNN) was inspired by biological neu-
ral systems as an information processing model [1]. Through
learning from big data, DNN enables us to perform tasks
for a large variety of applications. Recently, many power-
ful big data-driven methods have been developed based on
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DNN and exceptionally applied to speech recognition [2], [3],
translation of languages [3], [6] and image classifica-
tion [4], [5], etc. These works like speech recognition, lan-
guage translation and image classification are usually simple
to perform by human brain but are still difficult for man-
made machines. For the above applications, we need to train
DNN as best as possible in order to fit the above input/output
data pairs [7], [8]. Therefore, the big data-driven method
has been employed for the current training methodology of
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deep learning methods of DNN [9]. Once it has been trained,
DNN can respond to those never-observed data to make an
optimal recognition, translation or classification according to
its past trained knowledge [8], [9].

In the last few years, due to the development of hard-
ware to process a very large amount of data, DNN-based
learningmethods have been significantly improvedwith wide
applications, which require a very large amount of empirical
data to train for a specific optimal performance [7], [9].
At present, the traditional DNN-based deep learning method-
ologies always employ big data-driven approaches since they
need a very large amount of empirical data to train DNN for
the system knowledge and behavior [1], [9]. The shortage
of these traditional big data-driven deep learning methodolo-
gies always neglects the traditional system modelings and
a large amount of well-developed theoretical results. For
example, unlike speech recognition and image classification,
the stochastic nonlinear system models with external dis-
turbance and measurement noise have been constructed and
the corresponding theoretical robust H∞ state estimation and
observer-based output feedback control results of nonlinear
stochastic systems have been well developed. But an ana-
lytic or efficient method is still lack to solve them under
intense research in the field of system control for several
decades [10]–[14]. Therefore, it is more appealing to apply
the deep learning scheme to solve these complicated nonlin-
ear H∞ stochastic observer-based control design problems
other than the traditional big data-driven deep learning meth-
ods for speech recognition and image classification problem.
These theoretical results of robust H∞ state estimation and
observer-based output feedback control design of nonlinear
stochastic system under external disturbance and measure-
ment noise could be considered as expert knowledge in the
deep learning approaches, which can save much training
data and time in the DNN-based robust H∞ observer-based
control design of nonlinear stochastic system with external
disturbance and output measurement noise.

In the last decades, the robust H∞ control strategies have
been developed and widely applied to efficiently attenu-
ate the effect of external disturbance on the stabilization
performance of nonlinear dynamic systems with uncertain
external disturbances [11], [12], [14], [15]. However, the
robust H∞ control design of nonlinear dynamic system with
external disturbance needs to solve a very complicated non-
linear partial differential Hamilton Jacobi Isaacs Equation
(HJIE), which can not be efficiently solved analytically
and numerically at present [11], [14], [15]. Therefore, sev-
eral approximation methods have been proposed to inter-
polate some local linearized systems by fuzzy interpolation
method [16], [17], gain scheduling method [21], [22] and
global linearization [18]–[20] to approximate a nonlinear
dynamic system so that the HJIE could be approximated by
a set of local Riccati-like equations, which can be trans-
formed to a set of linear matrix inequalities (LMIs) [20].
Then these interpolation methods for the robust H∞ control
design problem of nonlinear dynamic system with external

disturbance can be transformed to the problem of how to
solve a set of LMIs with the help of LMI toolbox in Mat-
lab. The shortages of these interpolation methods are men-
tioned as follows: (i) In the process of transferring HJIE
to a set of LMIs, we have performed the operation of
inequality several times, leading to a very conservative result,
(ii) a specific quadratic Lyapunov function V (x(t)) =
xT (t)Px(t) for some P = PT > 0 is selected as the solution
of HJIE, which will limit the domain of the solution to HJIE
and lead to a conservative result, and (iii) the state feedback
control law will be the interpolation of N local control laws.
More computations are needed for control law, especially for
complex nonlinear system. Further, if the system state x(t)
is unavailable and to be estimated from output measurement,
then the complex interpolatory observer-based output feed-
back controller is needed to compute at every time instant for
the interpolatory observer-based output feedback control law.
Obviously, the computation loadings of these H∞ observer-
based output feedback control laws are heavy andwill prevent
their practical applications, especially for highly nonlinear
systems like quadrotor UAV systems [26].

Recently, a DNN-based H∞ control scheme has been
proposed for the stabilization control design problem of
nonlinear time-varying dynamic systems with external dis-
turbance [27]. The HJIE of robust H∞ state feedback control
design problem can be directly solved by the DNN-based
learning algorithm so that the nonlinear H∞ state feedback
controller of nonlinear time-varying system can be obtained
without the interpolation of local linear controllers by the
conventional interpolation methods. However, in practical
applications, the state variables of nonlinear dynamic system
are not always all available and reference tracking control
design is more appealing. These state variables can be only
estimated from output measurement with the corruption
of measurement noise. In this situation, the H∞ observer-
based output feedback control is more suitable to treat the
robust reference tracking control of nonlinear dynamical
systems with external disturbance and measurement noise
in practical applications. Therefore, we need to solve a
control-observer-coupledHJIE for robustH∞ observer-based
output feedback reference tracking control design problem
of nonlinear stochastic systems under external disturbance
and measurement noise. To avoid solving the very compli-
cated control-observer-coupled HJIE for the H∞ observer-
based output feedback control design, T-S fuzzy
observer-based state feedback control was proposed to inter-
polate a set of N 2 local linear observer-based controllers to
achieve the robust H∞ estimation and control performance
by solving a set of N 2 control-observer-coupled LMIs by a
so-called two-step design procedure [16]. These local inter-
polation methods need much effort to solve the robust H∞
observer-based output feedback control problem. Further,
it needs much computational time to calculate N 2 local
observer-based output feedback control laws at every time
instant for nonlinear dynamic system with external distur-
bance and output measurement noise. Since output feedback
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tracking control is more useful to achieve a desired reference
tracking design in practical applications, it is more appealing
to design a robust H∞ Luenberger observer-based reference
tracking control design of nonlinear stochastic system with
output measurement under external disturbance and mea-
surement noise. Therefore, to avoid design complexity and
save computation loading in the above interpolation methods,
in this study, an HJIE-embedded DNN learning method is
proposed as a co-design of H∞ observer-based output feed-
back reference tracking control scheme and DNN learning
algorithm for the robust H∞ Luenberger observer-based ref-
erence tracking control design of nonlinear stochastic system
with output measurement under external disturbance and
measurement noise.

In this work, based on the augmented stochastic estimation
error dynamic system and time-varying reference tracking
error system, the minmax stochastic H∞ Nash game strat-
egy [15] is employed to minimize the worst-case effect of
external disturbance and measurement noise on the state
estimation error and reference tracking error. The robust
H∞ observer-based output feedback reference tracking con-
trol design problem of nonlinear stochastic systems needs

to solve ∂V (x̃(t),e(t),t)
∂[x̃T (t) eT (t) t]T of control-observer-coupled HJIE,

where V (x̃(t), e(t), t) is the Lyapunov function of the estima-
tion error x̃(t) of observer, the tracking error e(t) of controller,
and time t for the design of control law u∗(t) and observer
gain L∗(x̂(t)) of the robust H∞ observer-based output feed-
back reference tracking control design. The difficulties in the
design procedure of H∞ observer-based output feedback ref-
erence tracking control of nonlinear stochastic system com-
prise: (i) The separation principle of observer and controller
can not hold for nonlinear stochastic systems with external
disturbance and output measurement noise so that HJIE of
H∞ observer-based output feedback reference tracking con-
trol design is control-observer-coupled; (ii) the HJIE is also a
function of state x(t), which is unavailable in our nonlinear
stochastic system with output measurement. To overcome
this difficulty, both observer dynamic system model and esti-
mation error dynamic system model are needed to generate
x̂(t) and x̃(t), respectively, to provide x(t) = x̂(t) + x̃(t) for
solving HJIE as shown in Fig. 1; (iii) in the off-line train-
ing phase, external disturbance v(t) and measurement noise
n(t) are unavailable to generate output measurement y(t) by
nonlinear stochastic system model for observer to estimate
system state. In this study, the worst-case external disturbance
and measurement noise v∗(t) and n∗(t) of H∞ observer-
based reference tracking control strategy are employed to
replace v(t) and n(t), respectively, and are inputed to non-
linear stochastic system model with H∞ control law u∗(t) to
produce the measurement signal y(t) for the off-line training
as shown in Fig. 1; (iv) the most difficulty work is to solve
∂V (x̃(t),e(t),t)

∂[x̃T (t) eT (t) t]T from HJIE directly for H∞ control law u∗(t)
and observer gain L∗(x̂(t)). In this study, HJIE-emdedded
DNN is employed to efficiently approach to ∂V (x̃(t),e(t),t)

∂[x̃T (t) eT (t) t]T

via Adam learning algorithm [23]. We can prove that as the

learning error of the embedded HJIE by Adam learning algo-
rithm approaches to zero, the DNN with input x̃(t) and e(t)
will output ∂V (x̃(t),e(t),t)

∂[x̃T (t) eT (t) t]T , i.e., the HJIE-embedded DNN
observer-based reference tracking control scheme in Fig. 1
can approach to the H∞ observer-based output feedback ref-
erence tracking control design of nonlinear stochastic system
with external disturbance and measurement noise. We have
also proved that if the external disturbance and measurement
noise are of finite energy, the mean-square asymptotical esti-
mation to the true state (i.e., x̂(t) → x(t)) and the mean-
square asymptotical tracking ability to the desired target r(t)
(i.e., x(t)→ r(t)) are both guaranteed by the proposed HJIE-
embedded DNN observer-based reference tracking control
scheme too.

In this study, the theoretical control-observer-coupledHJIE
of H∞ observer-based output feedback reference tracking
control strategy could be employed as an expert knowledge
of DNN-based H∞ observer-based reference tracking con-
trol scheme. Based on the system models and embedded
control-observer-coupled HJIE to train DNN to approachH∞
observer-based reference tracking control strategy, we could
not only apply DNN learning scheme to approach to the
traditional complicatedH∞ nonlinear estimator-based output
feedback reference tracking control design but also signifi-
cantly reduce a larger amount of training data and training
time than the conventional deep learning approaches via big
data training.

The major contributions of this work are described as
follows:

1) A novel DNN-based robust H∞ observer-based ref-
erence tracking control scheme is proposed for non-
linear stochastic system with external disturbance and
output measurement noise. The off-line training pro-
cess of DNN can be accomplished by deep learn-

ing algorithm to approach to ∂V (x̃(t),e(t),t)
∂[x̃T (t) eT (t) t]T to solve

the control-observer-coupled HJIE for the H∞ con-
trol law, H∞ observer gain and the worst-case exter-
nal disturbance and measurement noise simultaneously
to achieve the H∞ observer-based output feedback
tracking control design of nonlinear stochastic sys-
tem with external disturbance and output measurement
noise.

2) We could show that the proposed DNN-based out-
put feedback tracking control scheme can approach
to the theoretical H∞ observer-based output feed-
back reference tracking control of nonlinear stochastic
system by Adam learning algorithm. We could also
prove that if the stochastic nonlinear system is with
finite-energy external disturbance and measurement
noise, the proposed DNN-based robust H∞ observer-
based output feedback tracking scheme will achieve
the mean-square asymptotical state estimation, asymp-
totical reference tracking and asymptotical stability of
closed loop nonlinear stochastic observer-based control
system simultaneously.
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3) By the proposed HJIE-embedded DNN H∞ observer-
based output feedback reference tracking control
scheme, the traditional nonlinear stochastic sys-
tem models and theoretical results of robust H∞
observer-based output feedback tracking control could
be employed to complement the traditional big
data-driven deep learning approaches with more wide
applications to nonlinear system control designs. Fur-
ther, since system model, observer model and tracking
error model are employed to help training DNN-based
H∞ observer-based output feedback reference tracking
control scheme, we can save much training data and
time than the conventional big data-driven deep learn-
ing approaches.

The remainder of this study is organized as follows:
In section II, we will discuss the robust H∞ observer-based
output feedback tracking control design problem of nonlinear
stochastic system with external disturbance and measure-
ment noise. In section III, a novel control-observer-coupled
HJIE-embeddedH∞ DNN observer-based reference tracking
scheme is introduced to deal with output feedback reference
tracking control design problem of a nonlinear stochastic
system under external disturbance and measurement noise.
In section IV, a numerical simulation of UAV reference
tracking control design through output measurement is given
to illustrate the design procedure and validate the refer-
ence tracking performance. Finally, a conclusion is given
in section V.
Notation: AT denotes the transpose of vector or matrix

A; P = PT ≥ 0 denotes semi-positive definite matrix P;

∂V (x̃(t),e(t),t)
∂[x̃T (t) eT (t) t]T ,


∂V (x̃(t),e(t),t)

∂ x̃(t)
∂V (x̃(t),e(t),t)

∂e(t)
∂V (x̃(t),e(t),t)

∂t

; Rn denotes the set of

n-tuple real vectors; L2[0,∞) denotes a set of real functions
x(t) ∈ Rn with finite energy, i.e., x(t) ∈ L2[0,∞), if
‖x(t)‖2 = (E

∫
∞

0 xT (t)x(t) dt)
1
2 <∞; Ia denotes the identity

matrix with dimension a× a; diag{A,B} ,
[
A 0
0 B

]
.

II. PROBLEM DESCRIPTION
For decades,H∞ robust control designs have been the impor-
tant research topics for a broad spectrum of application areas
and impacts [10]–[15]. In practical applications, external dis-
turbances and measurement noises are always unavoidable
in real control systems; for example, the loadings and envi-
ronment interferences are considered as external disturbance,
and output measurement noises always occur when state vari-
ables are unavailable and we need to estimate state variables
from output measurement for state feedback control. During
past decades, robustH∞ observer-based output feedback con-
trol strategies have been developed for efficient attenuation
of uncertain external disturbance and measurement noise on
nonlinear quadratic stabilization and nonlinear state estima-
tion of nonlinear dynamic system from the minmax Nash
game point of view [16], [17]. In this section, we review the

robust H∞ observer-based reference tracking control design
of nonlinear stochastic system with external disturbance and
output measurement noise.

Consider the following nonlinear stochastic system with
external disturbance and output measurement

ẋ(t) = F(x(t))+ G(x(t))u(t)+ D(x(t))v(t), x(0) = x0
y(t) = C(x(t))+ n(t) (1)

where x(t) ∈ Rn is the state vector, x0 ∈ Rn denotes the
initial condition, u(t) ∈ Rm is the control input, y(t) ∈ Rl is
the measurement output, F(x(t)) ∈ Rn, G(x(t)) ∈ Rn×m,

C(x(t)) ∈ Rl and D(x(t)) ∈ Rn×k are system functions.
These system functions are assumed to satisfy with the Lips-
chitz continuity. v(t) ∈ Rk and n(t) ∈ Rl denote the random
external disturbance and measurement noise, respectively.
In the nonlinear stochastic system in (1), only output mea-
surement y(t) is available.

In this study, we want to control the state x(t) of nonlinear
stochastic system in (1) from output y(t) to track a desired
reference target r(t). Let us denote the reference tracking
error as e(t) = x(t)− r(t). Then the reference tracking error
dynamic can be described as follows:

ė(t) = ẋ(t)− ṙ(t)

= F(x(t))+ G(x(t))u(t)+ D(x(t))v(t)− ṙ(t)

= F(e(t)+ r(t))− ṙ(t)+ G(e(t)+ r(t))u(t)

+D(e(t)+ r(t))v(t) (2)

Let us denote

Fe(e(t), t) , F(e(t)+ r(t))− ṙ(t)

Ge(e(t), t) , G(e(t)+ r(t))

De(e(t), t) , D(e(t)+ r(t)) (3)

Then we get the reference tracking error time-varying
dynamic equation as

ė(t) = Fe(e(t), t)+ Ge(e(t), t)u(t)+ De(e(t), t)v(t) (4)

The design purpose of this study is to specify a robust
state feedback reference tracking control for the nonlinear
stochastic system in (1). However, the state x(t) in (1) is
unavailable. Therefore, the following Luenberger observer is
employed to estimate the state vector for observer-based out-
put feedback reference tracking control of nonlinear stochas-
tic system in (1)
·

x̂(t) = F(x̂(t))+ G(x̂(t))u(t)+ L(x̂(t))(y(t)− C(x̂(t)))

u(t) = K (x̂(t), e(t)) (5)

where L(x̂(t)) ∈ Rn×l denotes the observer gain and
K (x̂(t), e(t)) is the control gain based on the state estimate
x̂(t) and the tracking error e(t).
Based on the above analysis, the following H∞ observer-

based output feedback reference tracking control design
problem for the nonlinear stochastic system in (1) is how to
specify control gain K (x̂(t), e(t)) and observer gain L(x̂(t))
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FIGURE 1. The flow chart of the HJIE-embedded DNN-based H∞ observer-based output feedback reference tracking control scheme of
nonlinear stochastic system in (1) with external disturbance and measurement noise. Since the real random external disturbance v (t) and
measurement noise n(t) are unavailable in the off-line training phase, the worst-case external disturbance v∗(t) and measurement noise
n∗(t), which are generated by the output ∂V (x̃(t),e(t),t)

∂[x̃T (t)eT (t)]T
of DNN based on (13), are used to replace the real v (t) and n(t) to generate y (t) by

the the stochastic system model with control input u∗(t), which is also generated by the output ∂V (x̃(t),e(t),t)
∂[x̃T (t) eT (t)]T

of DNN based on (14). Then

y (t) is inputed to Luenberger observer in (5) to generate x̂(t) with observer gain L∗(x̂(t)) being generated by the output ∂V (x̃(t),e(t),t)
∂[x̃T (t) eT (t)]T

of

DNN based on (15). Further u∗(t), L∗(x̂(t)) and
[

v∗(t)
n∗(t)

]
, which are also generated by the ∂V (x̃(t),e(t),t)

∂[x̃T (t) eT (t)]T
of DNN, are also inputed to the

estimation error system in (7) to generate estimation error x̃(t). Then we can obtain the state x(t) = x̂(t)+ x̃(t) to obtain the tracking error by
e(t) = x(t)− r (t). Finally, the state estimation error x̃(t) and reference tracking error e(t) are both inputed to DNN to be expected to output
∂V (x̃(t),e(t),t)

∂[x̃T (t) eT (t) t ]T
after the proposed HJIE-embedded deep learning training by Adam learning algorithm in the off-line training phase. In the

on-line operation phase, the flow chart of HJIE-embedded DNN-based H∞ observer-based output feedback reference control scheme is
similar to the off-line training phase except the Adam learning algorithm being stopped and v∗(t) and n∗(t) being replaced by the real v (t)
and n(t), respectively.

in (5) such that the worst-case effect of external disturbance
v(t) and measurement noise n(t) on the estimation error and
reference tracking error must be minimized and below a
prescribed attenuation level ρ as follows [11], [15]:

min
K (x̂(t),e(t))
L(x̂(t))

max
v(t)∈L2[0,tf ]
n(t)∈L2[0,tf ]

E{
∫ tf
0 ((x(t)− x̂(t))TQ1

×(x(t)− x̂(t))+ eT (t)Q2e(t)
+uT (t)Ru(t))dt}

E{
∫ tf
0 (vT (t)v(t)+ nT (t)n(t))dt}

≤ ρ2

(6)

where E{·} denotes the expectation of {·}, tf denotes the
terminal time, the weighting matrices Q1 ∈ Rn×n,Q2 ∈

Rn×n and R ∈ Rm×m are specified by control designer
as the tradeoff among the estimation error, tracking error
and control effort. The physical meaning of (6) is that the
worst-case effect of external disturbance and measurement

noise on the state estimation error, reference tracking error
and control effort should be minimized by observer-based
control u(t) = K (x̂(t), e(t)) and observer gain L(x̂(t)) and
must be less than a prescribed level ρ simultaneously.

From (1) and (5), we could obtain the state estimation error
equation of x̃(t) = x(t)− x̂(t) as follows:

·

x̃(t) = F(x(t))− F(x̂(t))+ (G(x(t))− G(x̂(t)))u(t)

−L(x̂(t))(C(x(t))− C(x̂(t)))

+D(x(t))v(t)− L(x̂(t))n(t)

= F̃(x̃(t))+ G̃(x̃(t))u(t)− L(x̂(t))C̃(x̃(t))

+
[
D(x(t)) −L(x̂(t))

]
v̄(t) (7)

where F̃(x̃(t)) = F(x(t)) − F(x̂(t)), G̃(x̃(t)) = G(x(t)) −
G(x̂(t)) and C̃(x̃(t)) = C(x(t))− C(x̂(t)).

Then the H∞ observer-based output feedback reference
tracking control strategy in (6) could be reformulated
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as follows:

min
K (x̂(t),e(t))
L(x̂(t))

max
v(t)∈L2[0,tf ]
n(t)∈L2[0,tf ]

E{
∫ tf
0 (x̃(t)TQ1x̃(t)
+eT (t)Q2e(t)
+uT (t)Ru(t))dt}

E{
∫ tf
0 (vT (t)v(t)+ nT (t)n(t))dt}

≤ ρ2

or

min
K (x̂(t),e(t))
L(x̂(t))

max
v̄(t)∈L2[0,tf ]

E{
∫ tf
0 (x̄T (t)Q̄x̄(t)

+uT (t)Ru(t))dt}

E{
∫ tf
0 v̄T (t)v̄(t)dt}

≤ ρ2 (8)

where

x̄(t) = [ x̃T (t) eT (t) ]T

Q̄ = diag{Q1,Q2}

v̄(t) = [ vT (t) nT (t) ]T

In (8), to simplify the design procedure, the robust H∞
observer-based output feedback reference tracking control
strategy in (8) becomes the robust H∞ stabilization strategy
of the following augmented nonlinear stochastic time-varying
error system

·

x̄(t) =
[
F̃(x̃(t))− L(x̂(t))C̃(x̃(t))

Fe(e(t), t)

]
+

[
G̃(x̃(t))
Ge(e(t), t)

]
×u(t)+

[
D(x(t)) −L(x̂(t))
De(e(t), t) 0

]
v̄(t) (9)

In the robust H∞ stabilization strategy in (8), we assume
the initial conditions x̃(0) and e(0) are all 0. If x̃(0) 6= 0 and
e(0) 6= 0, the effect of initial energy V (x̃(0), e(0), 0) due to
the initial condition should be extracted as follows:

min
K (x̂(t),e(t))
L(x̂(t))

max
v̄(t)∈L2[0,tf ]

E{
∫ tf
0 (x̄T (t)Q̄x̄(t)

+uT (t)Ru(t))dt
−V (x̃(0), e(0), 0)}

E{
∫ tf
0 v̄T (t)v̄(t)dt}

≤ ρ2 (10)

where V (x̃(t), e(t), t) denotes the Lyapunov energy function
of the nonlinear augmented stochastic time-varying error sys-
tem in (9).

Based on the above analysis, the complex H∞ observer-
based reference tracking control design problem in (6), which
involves the nonlinear stochastic system in (1), tracking error
time-varying dynamic in (4) and observer-based output feed-
back in (5), becomes how to solve the minmax H∞ stabi-
lization design problem in (10) for the nonlinear augmented
stochastic time-varying error system in (9). This control
design problem reformulation will significantly simplify the
control design procedure in the sequel.

In (10), one player v̄(t) wants to maximize the payoff func-
tion while other players K (x̂(t), e(t)) and L(x̂(t)) try to min-
imize the payoff function. However, it is not easy to directly
solve the minmax game problem of the fractional payoff
function in (10) for the nonlinear stochastic augmented error
system in (9). The following indirect two-step method [11] is

employed to solve minmaxNash game problem in (10). Since
the selection of the player v̄(t) in the denominator of payoff
function in (10) is independent on K (x̂(t), e(t)) and L(x̂(t)),
the minmax game problem in (10) is equivalent to [11], [15]

min
K (x̂(t),e(t))
L(x̂(t))

max
v̄(t)∈L2[0,tf ]

E{
∫ tf

0
(x̄T (t))Q̄x̄(t))

+uT (t)Ru(t)− ρ2v̄T (t))v̄(t))dt}

≤ E{V (x̃(0), e(0), 0)} (11)

Then a two-step method is employed to solve the con-
strained minmax Nash quadratic game problem in (11), i.e.,
(i) in the first step, we need to solve the following minmax
Nash quadratic game problem at first

J = min
K (x̂(t),e(t))
L(x̂(t))

max
v̄(t)∈L2[0,tf ]

E{
∫ tf

0
(x̄T (t)Q̄x̄(t)

+uT (t)Ru(t)− ρ2v̄T (t)v̄(t))dt} (12)

then (ii) in the second step, we need to guarantee J ≤
E{V (x̃(0), e(0), 0)}.
Based on the above two-step indirect method, the robust

H∞ observer-based output feedback reference tracking con-
trol strategy in (10) for the augmented time-varying stochastic
error system in (9) is solved by the following theorem.
Theorem 1: (a) For the nonlinear stochastic system in (1)

with external disturbance and output measurement noise,
suppose the Luenberger observer-based control law in (5)
is employed to achieve the robust H∞ observer-based out-
put feedback reference tracking control strategy in (6),
(10) or (11). Then the worst-case external disturbance
v∗(t) and measurement noise n∗(t) as well as H∞ control
gain K∗(x̂(t), e(t)) and observer gain L∗(x̂(t)) are given as
follows:

v̄∗(t) =
[
v∗(t)
n∗(t)

]
=

1
2ρ2

[
D(x(t)) −L∗(x̂(t))
De(e(t), t) 0

]T
×(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

) (13)

u∗(t) = K∗(x̂(t), e(t))

= −
1
2
R−1

[
G̃(x̃(t))
Ge(e(t), t)

]T
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

) (14)

L∗(x̂(t)) =
1
2

( ∂V (x̃(t),e(t),t)
∂ x̃(t) )∥∥∥ ∂V (x̃(t),e(t),t)∂ x̃(t)

∥∥∥2 C̃T (x̃(t)) (15)

where the Lyapunov function V (x̃(t), e(t), t) > 0 with
V (0, 0, t) = 0 is the solution of the following time-varying
HJIE

HJIE =
∂V (x̃(t), e(t), t)

∂t
+ x̄T (t)Q̄x̄(t)

−
1
4
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)T Ḡ(x̃(t), e(t), t)R−1

×ḠT (x̃(t), e(t), t)(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)
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+(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)T F̄(x̃(t), e(t), t)

+
1

4ρ2
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)T D̄(x̃(t), e(t), t)

×(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)−
1

16ρ2
C̃T (x̃(t))C̃(x̃(t)) = 0

(16)

where

∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

,

[
∂V (x̃(t),e(t),t)

∂ x̃(t)
∂V (x̃(t),e(t),t)

∂e(t)

]
Ḡ(x̃(t), e(t), t)

=

[
G̃(x̃(t))
Ge(e(t), t)

]
F̄(x̃(t), e(t), t)

=

[
F̃(x̃(t))
Fe(e(t), t)

]
D̄(x̃(t), e(t), t)

=

[
D(x(t))DT (x(t)) D(x(t))DTe (e(t), t)
De(e(t), t)DT (x(t)) De(e(t), t)DTe (e(t), t)

]
(b) In the nonlinear stochastic system in (1), if exter-
nal disturbance v(t) ∈ L2[0,∞) and measurement noise
n(t) ∈ L2[0,∞), then the asymptotical estimation and
tracking ability will be achieved by the proposed robust
H∞ observer-based output feedback control in (5) with con-
trol gain K∗(x̂(t), e(t)) and observer gain L∗(x̂(t)) in (a),
i.e., x̃(t) → 0 and e(t) → 0 as tf → ∞. Further, if r(t) ∈
L2[0,∞), then the mean-square asymptotical stability of the
closed loop system is also guaranteed.

Proof: See the Appendix A. �
From (16), all terms of HJIE contain the estimation error

x̃(t), system state x(t) and tracking error e(t) = x(t) − r(t),
i.e., HJIE in (16) is a control-observer-coupledHJIE. It is very
difficult to solve HJIE in (16) analytically or numerically,
especially, when x(t) is unavailable.
Remark 1: In general, for the H∞ observer-based out-

put feedback tracking control design, there are two-coupled
HJIEs to be solved, one for observer and another for
controller. However, when the state estimation error and
reference tracking error are simultaneously considered in
the H∞ observer-based output feedback reference tracking
performance in (6) or (8) and the state estimation
error equation and reference tracking error equation
are combined as the augmented nonlinear error system
in (9), we could obtain a control-observer-coupled HJIE
in (16) for H∞ observer-based output feedback track-
ing control strategy. This will simplify the design proce-
dure of DNN-based H∞ observer-based reference tracking
scheme.

In general, it is very difficult to solve the partial time-
varying nonlinear differential equation HJIE in (16) for

the H∞ observer-based reference tracking control design
of K∗(x̂(t), e(t)) in (14) and L∗(x̂(t)) in (15) for nonlin-
ear stochastic system in (1) with external disturbance and
measurement noise. In the last decades, several approxima-
tion methods like the global linearization method [18], [19],
T-S fuzzy interpolation method [16] and gain scheduling
method [21], [22], etc., have been used to interpolate N
local stochastic linearized systems to approximate the non-
linear system with output measurement in (1). Then a set
of N 2 local linear observer-based state feedback controllers
are interpolated to approximate the nonlinear observer-based
output feedback controller in (5). Based on these interpolation
approximation methods and with the choice of quadratic
Lyapunov function V (x̃(t), e(t), t) = x̄T (t)Px̄(t), the HJIE
in (16) will become a set ofN 2 control gains {Ki}Ni=1-observer
gains

{
Lj
}N
j=1-coupled Riccati-like equations, which could

be transformed to N 2 control gains-observer gains-coupled
bilinear matrix inequalities (BMIs) [16]. Finally, a two-step
method is used to solve these complex control gains-observer
gains-coupled BMIs. The shortages of these interpolation
methods are given as follows: In some practical nonlinear sys-
tems, in order to reduce the approximation error, there are a
large number of local control gains {Ki}Ni=1 and observer gains{
Lj
}N
j=1 to be solved from N 2 coupled BMIs. For example,

based on T-S fuzzy approximation method, there are {Ki}125i=1
and

{
Lj
}125
j=1 to be solved from 15625 Ki and Lj-coupled BMIs

in the quadrotor UAV H∞ observer-based tracking control
design [17]. It is a very complex design procedure to solve
these {Ki}125i=1 and

{
Lj
}125
j=1 from 15625 Ki and Lj-coupled

BMIs by the so-called two-step design procedure for robust
H∞ fuzzy observer-based quadrotor UAV tracking design
problem. Further, we need to compute the following T-S
fuzzy observer-based state feedback control u(t) at every time
instant [17]

·

x̂(t) =
125∑
i=1

125∑
j=1

hi(x̂(t))hj(x̂(t))(Aix̂(t)− Biu(t))

+Li(y(t)− Cj(x̂(t)))

u(t) =
125∑
i=1

hi(x̂(t))Kix̂(t) (17)

where hi(x̂(t)), i = 1, . . . , 125 are the complicated fuzzy
interpolation bases. Moreover, the selection of quadratic
Lyapunov solution V (x̃(t), e(t), t) = x̄T (t)Px̄(t) for HJIE
in (16) is very conservative, which will limit the solution of
nonlinear V (x̃(t), e(t), t) in (16).

In the above minmax H∞ observer-based output feed-
back reference tracking control design problem of non-
linear stochastic system in (1), the main difficulty lies

in how to solve the two partial differential ∂V (x̃(t),e(t),t)
∂t

and ∂V (x̃(t),e(t),t)
∂[x̃T (t) eT (t)]T from HJIE in (16) for u∗(t) in (14) and

L∗(x̂(t)) in (15). In this study, an HJIE-embedded deep
learning approach in Fig. 1 and Fig. 2 will be proposed
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FIGURE 2. The architecture of the HJIE-embedded DNN is to be trained by
Adam learning algorithm to solve HJIE = 0 in (19) in the off-line training
phase. After Adam learning algorithm approaches to 0, the

HJIE-embedded DNN with input
[

x̃(t)
e(t)

]
can output ∂V (x̃(t),e(t),t)

∂[x̃T (t) eT (t)]T
to

generate the robust H∞ control u∗(t) in (14), H∞ observer gain L∗(x̂(t))

in (15) and worst-case
[

v∗(t)
n∗(t)

]
in (13) simultaneously. Then Luenberger

observer in (5) can generate x̂(t) and the estimation error equation in (7)
can generate x̃(t), so that x(t) = x̂(t)+ x̃(t) can be obtained for tracking
error e(t) = x(t)− r (t). Finally, x̃(t) and e(t) are fedback as input to DNN
to begin another cycle of Adam learning process based on the error
ε(θ(t)) of HJIEε in (20).

to directly solve control-observer-coupled HJIE in (16) for
the H∞ observer-based output feedback reference track-
ing control design problem of nonlinear stochastic system
with external disturbance and output measurement noise
in (1).

III. HJIE-EMBEDDED DNN-BASED H∞ OBSERVER-BASED
OUTPUT FEEDBACK REFERENCE TRACKING CONTROL
DESIGN OF NONLINEAR STOCHASTIC SYSTEMS
For the nonlinear stochastic system with random external
disturbance and output measurement noise in (1), in this
study, the minmax H∞ observer-based output feedback ref-
erence tracking control strategy in (6) is employed by the
observer-based output feedback control in (5) to minimize
the worst-case effect of external disturbance v∗(t) and mea-
surement noise n∗(t) on the state estimation error x̃(t) and
reference tracking error e(t) as well as control effort u(t)
from the energy perspective. From Theorem 1, we need to
solve the very complicated time-varying partial differential

HJIE in (16) for ∂V (x̃(t),e(t),t)
∂t and ∂V (x̃(t),e(t),t)

∂[x̃T (t) eT (t)]T to obtain
K∗(x̂(t), e(t)) in (14) and L∗(x̂(t)) in (15) for nonlinear
observer-based output feedback control law in (5) and v̄∗(t)
in (13) for the worst-case external disturbance and measure-
ment noise. In this study, in order to avoid the above com-
plex approximation methods of interpolation through local
linearization schemes, we employ an HJIE-embedded DNN

to approach ∂V (x̃(t),e(t),t)
∂t and ∂V (x̃(t),e(t),t)

∂[x̃T (t) eT (t)]T directly instead of

V (x̃(t), e(t), t) in the conventional methods [14]. The reason
is that even V (x̃(t), e(t), t) is solved [14], it is still very
difficult to calculate ∂V (x̃(t),e(t),t)

∂[x̃T (t) eT (t)]T for u∗(t) in (14), L∗(x̂(t))

in (15) and v̄∗(t) in (13) in the real-time H∞ observer-based
output feedback tracking process.

For the convenience of design, let us denote

∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

,


∂V (x̃(t),e(t),t)

∂ x̃(t)
∂V (x̃(t),e(t),t)

∂e(t)
∂V (x̃(t),e(t),t)

∂t

 (18)

Then HJIE in (16) can be rewritten as

HJIE = x̄T (t)Q̄x̄(t)−
1
4
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)T

×

[
Ḡ(x̃(t), e(t), t)

0

]
R−1

[
Ḡ(x̃(t), e(t), t)

0

]T
×(

∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)+ (
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)T

×

[
F̄(x̃(t), e(t), t)

1

]
+

1
4ρ2

(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)T

×

[
D̄(x̃(t), e(t), t) 0

0 0

]
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)

−
1

16ρ2
C̃T (x̃(t))C̃(x̃(t)) = 0 (19)

Recently neural network is considered as an universal
approximator to any complex function after an efficient deep
learning approach [23], [24], [28]. Therefore, in this study,
DNN is employed with deep learning approach to solve
∂V (x̃(t),e(t),t)

∂[x̃T (t) eT (t) t]T from HJIE in (19) for the H∞ control law

u∗(t) = K∗(x̂(t), e(t)) in (14), the worst-case external dis-

turbance and measurement noise
[
v∗(t)
n∗(t)

]
in (13) and H∞

observer gain L∗(x̂(t)) in (15) as shown in Fig. 1.
In the off-line training phase, since the external disturbance

v(t) and measurement noise n(t) are unavailable for the non-
linear stochastic system in (1), the worst-case external distur-
bance v∗(t) and measurement noise n∗(t) generated by (13)
are employed to replace v(t) and n(t) to generate y(t) by
nonlinear systemmodel with theH∞ control law u∗(t) in (14),
which does not affect the performance of H∞ observer-
based reference tracking control strategy in (6) because it
is designed based on the worst-case v∗(t) and n∗(t) in (6).
Since state variable x(t) of HJIE in (19) is unavailable too,
we need nonlinear Luenberger observer in (5) to generate
x̂(t) and state estimation error equation in (7) to generate
estimation error x̃(t) so that system state x(t) can be obtained
by x(t) = x̂(t)+ x̃(t) for F(x(t)),G(x(t)),C(x(t)) andD(x(t))
in (19), and therefore the tracking error e(t) can be obtained
by e(t) = x(t)− r(t) for Fe(e(t), t),Ge(e(t), t) andDe(e(t), t)
in (19) too. Then x̃(t) and e(t) are inputed to DNN to expect
generating ∂V (x̃(t),e(t),t)

∂[x̃T (t) eT (t) t]T after deep learning scheme via the

HJIE-embedded Adam learning algorithm. In this study, the
output ∂V (x̃(t),e(t),t)

∂[x̃T (t) eT (t) t]T of DNN will be sent to the embedded
HJIE to check the value of HJIE in (19). If the DNN output
approaches to the expected ∂V (x̃(t),e(t),t)

∂[x̃T (t) eT (t) t]T of HJIE after the

training of deep learning scheme, then HJIE in (19) will
approach to 0 too. If not, DNN will output ( ∂V (x̃(t),e(t),t)

∂[x̃T (t) eT (t) t]T )ε

39896 VOLUME 10, 2022



B.-S. Chen, P.-H. Wu: Robust H∞ Observer-Based Reference Tracking Control Design of Nonlinear Stochastic Systems

which leads to the following result of HJIE

HJIEε = x̄T (t)Q̄x̄(t)−
1
4
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)Tε

×

[
Ḡ(x̃(t), e(t), t)

0

]
R−1

[
Ḡ(x̃(t), e(t), t)

0

]T
×(

∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)ε + (
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)Tε

×

[
F̄(x̃(t), e(t), t)

1

]
+

1
4ρ2

(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)Tε

×

[
D̄(x̃(t), e(t), t) 0

0 0

]
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)ε

−
1

16ρ2
C̃T (x̃(t))C̃(x̃(t)) = ε(θ (t)) (20)

Then ε(θ (t)) will be fedback to train the weighting param-
eters of neurons in DNN as shown in Fig. 2 until the output of
DNN approaches to ∂V (x̃(t),e(t),t)

∂[x̃T (t) eT (t) t]T as shown in the flow chart

of Fig. 1. At the same time, the output ∂V (x̃(t),e(t),t)
∂[x̃T (t) eT (t)]T of DNN

is multiplied by − 1
2R
−1ḠT (x̃(t), e(t), t) to generate the H∞

control u∗(t) in (14) and by 1
2ρ2

[
D(x(t)) −L∗(x̂(t))
De(e(t), t) 0

]T
to generate v̄∗(t) in (13). Further, the output ∂V (x̃(t),e(t),t)

∂ x̃(t) is

also used to produce 1
2

(
∂V (x̃(t),e(t),t)

∂ x̃(t)

)
∥∥∥ ∂V (x̃(t),e(t),t)∂ x̃(t)

∥∥∥2 C̃T (x̃(t)) forH∞ observer

gain L∗(x̂(t)) in (15). These information ofH∞ control u∗(t),
H∞ observer gain L∗(x̂(t)) and the worst-case v̄∗(t) are sent to
nonlinear systemmodel to generate y(t), Luenberger observer
in (5) to generate x̂(t) and the estimation error equation in (7)
to generate x̃(t) and then generate x(t) = x̂(t)+ x̃(t) to obtain
e(t) = x(t) − r(t). Finally, x̃(t) and e(t) are inputed to DNN
for training and x̃(t), e(t) and x(t) are also sent to HJIE to cal-
culate its value ε(θ (t)) for deep learning training as shown in
the flow chart of Fig. 1 in the off-line training phase of HJIE-
embedded DNN-based H∞ observer-based output feedback
tracking control scheme of nonlinear stochastic system with
external disturbance and measurement noise in (1).

After the off-line training phase with ε(θ (t)) = 0,
DNN can output ∂V (x̃(t),e(t),t)

∂[x̃T (t) eT (t) t]T . Then the proposed HJIE-
embedded DNN-based H∞ observer-based reference track-
ing control scheme is shifted to the on-line operation phase
as shown in Fig. 1. In the on-line operation phase, the output
y(t) of nonlinear stochastic system is generated by the robust
H∞ observer-based state feedback control u∗(t) in (14) and

real v(t) and n(t). Therefore, we do not need ∂V (x̃(t),e(t),t)
∂[x̃T (t) eT (t)]T

of DNN output to generate v̄∗(t) by (13) in the on-line
operation phase. The remainder procedure is similar to the
off-line training phase. In the on-line operation phase, gener-
ally, we do not need to train DNN again. However, in some
situation, if ε(θ (t)) > δ for a specified small value δ, we
could also start on Adam learning algorithmwithout affecting
the operation procedure of DNN-based H∞ observer-based
reference tracking control scheme in the on-line operation
phase.

The architecture of HJIE-embedded DNN in the proposed
robustH∞ observer-based output feedback reference tracking
control scheme consists of input layer, multiple hidden layers,
HJIE layer and output layer as shown in Fig. 2. The estimation
error x̃(t) and reference tracking error e(t) are inputed to
DNN. Input layer consists of 2n nodes, n nodes for x̃(t) and
another n nodes for e(t). There are 2n + 1 nodes in output
layer, n nodes for outputing ∂V (x̃(t),e(t),t)

∂ x̃(t) , another n nodes for
∂V (x̃(t),e(t),t)

∂e(t) and one node for ∂V (x̃(t),e(t),t)
∂t .

The neurons of DNN are with LeakyReLU σ (x) as the
activation function of x in hidden layers. LeakyReLU is not
equal to zero but a constant gradient as input is negative,
and is the same as ReLU while input is positive [23]. This
way can keep the advantage of ReLU and avoid the problem
of dead ReLU when input is negative, i.e., the operation of
LeakyReLU is given as follows:

σ (x(t)) =

{
a1x(t), if x(t) > 0
a2x(t), if x(t) ≤ 0

where a1 and a2 are some constant with a1, a2 ∈ (0, 1).
The error ε(θ (t)) of HJIE in (20) will be fedback to DNN to

train the weighting parameters and biases of neurons in DNN
via the following Adam learning algorithm byminimizing the
objective function ε2(θs(t)) [23], [24],

θs(t) = θs−1(t)−
l√

ṽs(t)+ ζ
m̃s(t), s = 1, · · · , S (21)

where θs(t) is the weighting parameter vector of the sth
training iteration at time t , which is to be trained to let DNN
output ( ∂V (x̃(t),e(t),t)

∂[x̃T (t) eT (t) t]T )ε at time t . l is the learning rate or

stepsize and S is the number of training time steps at each
time t . ζ is a small number to prevent the denominator from
being 0. m̃s(t) and ṽs(t) are bias-corrected estimators defined
as follows [23]:

m̃s(t) =
ms(t)
1− µs1

, ṽs(t) =
vs(t)

1− µs2
(22)

where

ms(t) = µ1ms−1(t)+ (1− µ1)gs(t)

vs(t) = µ2vs−1(t)+ (1− µ2)g2s (t) (23)

where gs(t) = ∂
∂θs(t)

√
1
B

∑B
ε2(θs(t)) is the gradient vector

of root mean square (RMS) error, i.e., the partial derivative
of objective function at time step s at time t. B denotes
the batch size. µ1, µ2 ∈ [0, 1] in (23) are the degree of
the previous influence on the current direction to be spec-
ified by designer, which can be considered as the concept
of momentum to avoid being trapped by a local minimum
and speed up the learning process [23], [24]. Based on the
bias-corrected estimators in (22) and (23), if the direction
of current gradient gs(t) is the same as the accumulated
gradient, then the gradient will be strengthened, otherwise,
the gradient will be weakened. µs1 and µs2 denote the sth
power of µ1 and µ2, respectively. ms(t) and vs(t) in (23) are
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the moving average of gradient and squared gradient of gs(t)
at time t, respectively. With ṽs(t) in (21), we can take the
advantage of the adaptive learning rate, i.e., it should be larger
at the beginning and then smaller near the minimum. The
Adam learning algorithm in (21)-(23) can combine both the
advantages of the above momentum and RMSProp [23], [24]
and is found to be an efficient parameter-specific adaptive
learning method. Due to its easy implementation and great
performance, Adam learning algorithm is one of the most
popular optimizer being uesd recently and will be employed
to train HJIE-embedded DNN to output ∂V (x̃(t),e(t),t)

∂[x̃T (t) eT (t) t]T for
solving HJIE = 0 in (19) and generating H∞ observer gain
L∗(x̂(t)), H∞ control u∗(t) and the worst-case v̄∗(t) in (15),
(14) and (13), respectively, for the HJIE-embedded DNN-
basedH∞ observer-based output feedback reference tracking
control scheme in Fig. 1.
Remark 2: The convergence of weighting parameter vec-

tor θs(t) of Adam learning algorithm in (21)-(23) has been
proven in [23]. If the number of hidden neurons and time steps
S are large enough, the updating weighting parameter vector
θs(t) of DNN by Adam learning algorithm could converge to a
globally optimal θ∗s (t) at a linear convergence rate as s→∞
in (21 )-(23).

During the off-line training process of HJIE-embedded
DNN through the above Adam learning algorithm
in (21)-(23) in Fig. 1, the output ( ∂V (x̃(t),e(t),t)

∂[x̃T (t) eT (t) t]T )ε of DNN

is sent to HJIEε in (20) to calculate its error ε(θs(t)) at the sth
training step of Adam learning algorithm at time t in (21)-(23)
as follows:

HJIEε = x̄T (t)Q̄x̄(t)−
1
4
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)Tε

×

[
Ḡ(x̃(t), e(t), t)

0

]
R−1

[
Ḡ(x̃(t), e(t), t)

0

]T
×(

∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)ε + (
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)Tε

×

[
F̄(x̃(t), e(t), t)

1

]
+

1
4ρ2

(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)Tε

×

[
D̄(x̃(t), e(t), t) 0

0 0

]
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)ε

−
1

16ρ2
C̃T (x̃(t))C̃(x̃(t)) = ε(θs(t)) (24)

The error ε(θs(t)) of HJIE will be fedback to train DNN
iteratively by Adam learning algorithm to expectantly output
the precise ∂V (x̃(t),e(t),t)

∂[x̃T (t) eT (t) t]T for the H∞ control law u∗(t) =

−
1
2R
−1ḠT (x̃(t), e(t), t) ∂V (x̃(t),e(t),t)

∂[x̃T (t) eT (t)]T , the H∞ observer gain

L∗(x̂(t)) = 1
2

(
∂V (x̃(t),e(t),t)

∂ x̃(t)

)
∥∥∥ ∂V (x̃(t),e(t),t)∂ x̃(t)

∥∥∥2 C̃T (x̃(t)) and the worst-case

external disturbance and measurement noise
[
v∗(t)
n∗(t)

]
=

1
2ρ2

[
D(x(t)) −L∗(x̂(t))
De(e(t), t) 0

]T
×

∂V (x̃(t),e(t),t)
∂[x̃T (t) eT (t)]T as the error

ε(θs(t))→ 0.

In the following theorem, we will prove that as the error
ε(θs(t)) in (24) approaches to 0 by the Adam learning algo-
rithm in (21)-(23), the output ( ∂V (x̃(t),e(t),t)

∂[x̃T (t) eT (t) t]T )ε in (24) can

approach to ∂V (x̃(t),e(t),t)
∂[x̃T (t) eT (t) t]T in (16).

Theorem 2: If ε(θs(t)) in (24) approaches to 0 by Adam
learning algorithm in (21)-(23), then ( ∂V (x̃(t),e(t),t)

∂[x̃T (t) eT (t) t]T )ε
in (24) will approach to ∂V (x̃(t),e(t),t)

∂[x̃T (t) eT (t) t]T in (16). In this sit-

uation, (a) the HJIE-embedded DNN-based robust observer-
based output feedback reference tracking scheme in Fig. 1
will approach to the theoretical H∞ observer-based output
feedback reference tracking control design (13)-(15) in The-
orem 1. (b) If v(t), n(t) and r(t) ∈ L2[0,∞), the mean-square
asymptotical estimation tracking and stability of closed loop
system is also guaranteed, i.e., x̃(t)→ 0, e(t)→ 0, u(t)→
0, x(t)→ 0 as tf →∞ in the mean-square sense.

Proof: See Appendix B. �
From Theorem 2, it can be seen that the proposed

HJIE-embeddedDNN-based robust observer-based reference
tracking scheme by Adam learning algorithm in Fig. 1
can approach to the theoretical H∞ observer-based output
feedback reference tracking control design in Theorem 1(a)
when ε(θs(t)) of HJIE approaches to zero after the deep
learning process of Adam learning algorithm in (21 )-(23).
In Theorem 1(b), if the nonlinear stochastic system in
(1) is with v(t) and n(t) ∈ L2(0,∞), then the minmax
H∞ observer-based output feedback reference tracking con-
trol could achieve the asymptotical estimation and refer-
ence tracking ability, i.e., x̃(t) → 0 and e(t) → 0 as
t → ∞. Therefore, as ε(θs(t)) → 0, the proposed
HJIE-embedded DNN-based robust observer-based output
feedback control scheme in Fig. 1 can also achieve the asymp-
totical estimation and reference tracking ability of nonlinear
stochastic system in (1) v(t) and n(t) ∈ L2(0,∞).
Remark 3: In the off-line training phase, we input the

estimation error x̃(t) and the reference tracking error e(t)
into HJIE-embedded DNN as shown in Fig. 1. Accord-
ing to Theorem 2, we can train HJIE-embedded DNN
to output ∂V (x̃(t),e(t),t)

∂[x̃T (t) eT (t) t]T to generate H∞ control u∗(t)
and H∞ observer gain L∗(x̂(t)) if ε(θs(t)) calculated by
HJIEε approaches to 0. However, in practical applications,
we always stop the off-line training phase in Fig. 1 and shift
to on-line operation phase if |ε(θs(t))| ≤ δ for a prescribed
small value δ or the number of training time steps approaches
to a specified number S in (21). In this study, the number of
training time steps S = 30 is given in the following design
example.
Remark 4: In the on-line operation phase as shown in

Fig. 1, based on the training weighting parameters θs(t) of
DNN in the off-line training phase, y(t) can be generated by
real physical system of (1 ) with real external disturbance
v(t) and measurement noise n(t) through H∞ observer-based
output feedback control u∗(t). We input x̃(t) and e(t) intoDNN
to generate ∂V (x̃(t),e(t),t)

∂[x̃T (t) eT (t) t]T to produce u
∗(t) and L∗(x̂(t)) for

the robust H∞ observer-based reference tracking control of

39898 VOLUME 10, 2022



B.-S. Chen, P.-H. Wu: Robust H∞ Observer-Based Reference Tracking Control Design of Nonlinear Stochastic Systems

FIGURE 3. The flow chart of the HJIE-embedded DNN-based H∞ observer-based reference tracking control of nonlinear stochastic
sample-data system with external disturbance and measurement noise in (25). In the off-line operation phase, the output y (t) is generated
by the physical system with the worst-case external disturbance v∗(t) and measurement noise n∗(t) through H∞ observer-based control
input u∗(t). Since x(t) is unavailable, which is needed in calculating HJIE in (19), we need Luenberger observer in (26) to generate x̂(t) and
state estimation error equation in (28) to generate x̃(t) to obtain x(t) = x̂(t)+ x̃(t) for HJIE in (19) and e(t) = x(t)− r (t) as input to the

trained DNN to output ∂V (x̃(t),e(t),t)
∂[x̃T (t) eT (t) t ]T

to generate L∗(x̂(t)) in (15) for observer and estimation error dynamic and u∗(t) = K∗(x̂(t),e(t))

in (14) for nonlinear stochastic system and estimation error equation.

nonlinear stochastic system in (1). However, if |ε(θs(t))| > δ

during on-line operation phase, the weighting parameters
θs(t) of DNN can be still updated by Adam learning algo-
rithm in (21)-(23) in the on-line operation phase without the
influence on DNN-based control.

For the convenience of practical applications, the nonlinear
stochastic system in (1) can be described by the following
nonlinear stochastic sample-data system

x(t + h)− x(t)
h

= F(x(t))+ G(x(t))u(t)

+D(x(t))v(t), x(0) = x0
y(t) = C(x(t))+ n(t)

where h denotes the sampling time.
Or

x(t + h) = (x(t)+ hF(x(t)))+ hG(x(t))u(t)

+hD(x(t))v(t), x(0) = x0
y(t) = C(x(t))+ n(t) (25)

i.e., F(x(t)) is changed to x(t)+hF(x(t)), G(x(t)) is changed
to hG(x(t)) and D(x(t)) is changed to hD(x(t)).

In this case, the observer-based output feedback control
in (5) is modified as

x̂(t + h) = (x̂(t)+ hF(x̂(t)))+ hG(x̂(t))u(t)

+hL(x̂(t))(y(t)− C(x(t))), x̂(0) = x̂0
u(t) = K (x̂(t), e(t)) (26)

Similarly, the reference tracking error dynamic in (4) and
state estimation error equation in (7) are modified as

e(t + h) = (e(t)+ hFe(e(t), t))+ hGe(e(t), t)u(t)

+hDe(e(t), t)v(t) (27)

and

x̃(t + h) = (x̃(t)+ hF(x(t))− hF(x̂(t)))+ h(G(x(t))

−G(x̂(t)))u(t) − hL(x̂(t))(C(x(t))− C(x̂(t)))

+h
[
D(x(t)) −L(x̂(t))

]
v̄(t) (28)

respectively. For the convenience of practical designs, the
flow chart of HJIE-embedded DNN-based H∞ observer-
based output feedback reference tracking scheme in Fig. 1
for nonlinear stochastic continuous system in (1)-(5) is mod-
ified as Fig. 3 for nonlinear stochastic sample-data system
in (25)-(28). Based on the above analyses of the nonlinear
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stochastic sample-data system in (25)-(28), the flow chart
of HJIE-embedded DNN-based H∞ observer-based output
feedback reference tracking control scheme is modified in
Fig. 3. In the following simulation example of H∞ observer-
based reference tracking control of quadrotor UAV, for the
convenience of design, the nonlinear stochastic sample-data
systems (25)-(28) are employed for practical application.
Remark 5: In this study, unlike the conventional big

data-driven DNN schemes, the training data x̃(t) and e(t)
of DNN are generated by system model, observer model and
estimation model, respectively. Furthermore, the theoretical
result of HJIE for H∞ observer-based reference tracking
control strategy is also employed to train DNN to achieve
the robust H∞ state estimation and H∞ reference tracking
performance simultaneously, which are not easily achieved
by the conventional big-data driven DNN approaches. There-
fore we could save a much amount of training time and
training data of HJIE-embedded DNN. Moreover, with the
well-trained DNN with a large amount of initial conditions in
the off-line training phase, we could also avoid the instability
of the H∞ observer-based output feedback tracking control of
nonlinear stochastic system in (1) in the beginning of on-line
operation phase.
Remark 6: The minmax H∞ observer-based output feed-

back reference tracking control design problem in Theorem
1 can be reduced to the following optimal H2 observer-
based output feedback reference control design problem if
v(t) = 0 and n(t) = 0 in (1) and ρ2 = ∞ in (6), i.e., the
robust H∞ observer-based reference tracking control strategy
becomes the following optimal H2 quadratic observer-based
reference tracking control strategy if v(t) = 0, n(t) = 0 and
ρ2 = ∞ [15]

min
K (x̂(t),e(t))
L(x̂(t))

E{
∫ tf

0
((x(t)− x̂(t))TQ1(x(t)− x̂(t))

+eT (t)Q2e(t)+ uT (t)Ru(t))dt} (29)

for the nonlinear system in (1). Then the H2 optimal control
gain and observer gain of the observer-based reference track-
ing control law in (5), which achieve the minimization in (29),
are given as follows:

u∗(t) = K∗(x̂(t), e(t))

= −
1
2
R−1ḠT (x̃(t), e(t), t)(

∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

) (30)

L∗(x̂(t)) =
1
2

( ∂V (x̃(t),e(t),t)
∂ x̃(t) )∥∥∥ ∂V (x̃(t),e(t),t)∂ x̃(t)

∥∥∥2 C̃T (x̃(t)) (31)

where V (x̃(t), e(t), t) > 0 with the initial condition
V (0, 0, t) = 0 is the solution of the following HJIE,

HJIE = (
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)T
[
F̄(x̃(t), e(t), t)

1

]
+x̄T (t)Q̄x̄(t)−

1
4
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)T

FIGURE 4. The quadrotor UAV dynamic system with the attitude and
position in the inertial earth-fixed frame (xe, ye, ze) and the body-fixed
frame (xb, yb, zb).

×

[
Ḡ(x̃(t), e(t), t)

0

]
R−1

[
Ḡ(x̃(t), e(t), t)

0

]T
×(

∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

) = 0 (32)

which is a modification of HJIE in (19) with ρ2 = ∞
[11]–[13]. Therefore, with a small modification, the pro-
posed HJIE-embedded DNN-based H∞ observer-based con-
trol scheme in Fig. 1 and Fig. 3 can be also used to treat
the optimal H2 quadratic observer-based output feedback
tracking control of nonlinear stochastic system in (1) with-
out consideration of external disturbance and measurement
noise.
Remark 7: While ∂V (x̃(t),e(t),t)

∂ x̃(t) = 0, L∗(x̂(t)) in (31) will
become singular. In this situation, the previous L∗(x̂(t − h))
can replace L∗(x̂(t)) to avoid the singularity of L∗(x̂(t)).

IV. SIMULATION EXAMPLE
After the introduction of HJIE-embedded DNN-based robust
H∞ observer-based output feedback reference tracking con-
trol design for nonlinear stochastic system with external
disturbance and output measurement noise in (1), an H∞
observer-based output feedback reference tracking design
example of quadrotor unmanned aerial vehicle (UAV) is
given in this section to validate the reference tracking perfor-
mance of the proposed scheme in comparison with robustH∞
T-S fuzzy observer-based output feedback reference tracking
control method [16]. The dynamic system of a quadrotor
UAV is described by two reference frames including the
inertial earth-fixed frame (xe, ye, ze) and the body-fixed frame
(xb, yb, zb) as shown in Fig. 4.

The linear position of the mass center of the quadrotor
UAV in the inertial earth-fixed frame (xe, ye, ze) is denoted
by 0 = (x, y, z)T ∈ R3 and the orientation of the quadrotor
UAV is described by Euler angles 2 = (φ, θ, ψ)T ∈ R3,

i.e., roll, pitch and yaw angles, respectively, at the body-
fixed frame (xb, yb, zb) in Fig. 4. It is assumed that these
three Eular angles within (−π/2 < φ < π/2), (−π/2 <
θ < π/2) and (−π < ψ < π), respectively. Therefore,
the linear velocity and acceleration of quadrotor UAV are

39900 VOLUME 10, 2022



B.-S. Chen, P.-H. Wu: Robust H∞ Observer-Based Reference Tracking Control Design of Nonlinear Stochastic Systems

given as 0̇ = (ẋ, ẏ, ż)T ∈ R3 and 0̈ = (ẍ, ÿ, z̈)T ∈
R3 in the earth-fixed frame. Similarly, the angular velocity
and acceleration of UAV are given as 2̇ = (φ̇, θ̇ , ψ̇)T ∈
R3 and 2̈ = (φ̈, θ̈ , ψ̈)T ∈ R3 in the body-fixed frame,
respectively.

With the above definitions and notation, the dynamic
equation of quadrotor UAV in Fig. 4 can be written in
form of two subsystems corresponding to translational
motion (referring to the position (x(t), y(t), z(t)) of mass
center of UAV) and angular motion (referring to the atti-
tude (φ(t), θ(t), ψ(t)) of UAV). Based on the Newton-Euler
method, the stochastic quadrotor UAV system with external
disturbance and output measurement noise can be described
as follows [17]:

[ẋ1(t), ẋ2(t), ẏ1(t), ẏ2(t), ż1(t), ż2(t)

, φ̇1(t), φ̇2(t), θ̇1(t), θ̇2(t), ψ̇1(t), ψ̇2(t)]T

=



x2(t)
−
Kx
m x2(t)+ (cosφ1(t) sin θ1(t) cosψ1(t)
+ sinφ1(t) sinψ1(t))

F(t)
m + vx(t)

y2(t)
−
Ky
m y2(t)+ (cosφ1(t) sin θ1(t) sinψ1(t)
− sinφ1(t) cosψ1(t))

F(t)
m + vy(t)

z2(t)
−
Kz
m z2(t)− g

+ cosφ1(t) cos θ1(t)
F(t)
m + vz(t)

φ2(t)
Jy−Jz
Jx
θ1(t)ψ1(t)−

Kφ
Jx
φ2(t)

+
l
Jx
τφ(t)+ vφ(t)
θ2(t)

Jz−Jx
Jy
φ1(t)ψ1(t)−

Kθ
Jy
θ2(t)

+
l
Jy
τθ (t)+ vθ (t)
ψ2(t)

Jx−Jy
Jz
φ1(t)θ1(t)−

Kψ
Jz
ψ2(t)

+
c
Jz
τψ (t)+ vψ (t)



(33)

where x1(t), y1(t), z1(t) ∈ R1 define the locations of the
UAV in x-, y-, and z-axes in the Cartesian coordinate space
with respect to the inertial frame, x2(t), y2(t), z2(t) ∈ R1

define the velocities of the UAV in x-, y-, and z-axes in
the Cartesian coordinate space with respect to the inertial
frame, φ1(t), θ1(t), ψ1(t) ∈ R1 define the attitudes of the
UAV in the Euler angles with respect to the body frame and
φ2(t), θ2(t), ψ2(t) ∈ R1 define the angular velocities of the
UAV in the Euler angles with respect to the body frame,
respectively. vx(t), vy(t), vz(t) are the external disturbances of
the UAV in the three translation dynamics and vφ(t), vθ (t),
vψ (t) are the external disturbances caused by unexpected
rotation force in roll, pitch and yaw dynamics, respectively.
m ∈ R+ is the total mass of the UAV, Jx , Jy, Jz ∈ R+ are the
moments of inertia of the UAV, g ∈ R+ is the acceleration
of gravity, Kx ,Ky,Kz,Kφ,Kθ ,Kψ ∈ R+ denote the aerody-
namic damping coefficients of the UAV. F(t) ∈ R1 represents
the total thrust and τφ(t), τθ (t), τψ (t) ∈ R1 represent the

rational torques caused by the four rotors of the UAV.
l ∈ R+ denotes the distance between epicenter of the UAV
and the rotor axis. c ∈ R+ denotes costant of force-to-
moment factor.

In this observer-based reference tracking design example,
let us denote the state vector X (t) of quadrotor UAV and the
desired reference target r(t) to be tracked by quadrotor UAV
as follows:

X (t) , [x1(t), x2(t), y1(t), y2(t), z1(t), z2(t)

, φ1(t), φ2(t), θ1(t), θ2(t), ψ1(t), ψ2(t)]T

, [x(t), ẋ(t), y(t), ẏ(t), z(t), ż(t)

, φ(t), φ̇(t), θ(t), θ̇ (t), ψ(t), ψ̇(t)]T

r(t) , [r1(t), r2(t), r3(t), r4(t), r5(t), r6(t)

, r7(t), r8(t), r9(t), r10(t), r11(t), r12(t)]T

, [xd (t), ẋd (t), yd (t), ẏd (t), zd (t), żd (t)

, φd (t), φ̇d (t), θd (t), θ̇d (t), ψd (t), ψ̇d (t)]T (34)

Then the tracking error between the state X (t) of UAV and
the desired reference target r(t) is defined as

e(t)

,



e1(t)
e2(t)
e3(t)
e4(t)
e5(t)
e6(t)
e7(t)
e8(t)
e9(t)
e10(t)
e11(t)
e12(t)



,



x1(t)− r1(t)
x2(t)− r2(t)
y1(t)− r3(t)
y2(t)− r4(t)
z1(t)− r5(t)
z2(t)− r6(t)
φ1(t)− r7(t)
φ2(t)− r8(t)
θ1(t)− r9(t)
θ2(t)− r10(t)
ψ1(t)− r11(t)
ψ2(t)− r12(t)



,



x(t)− xd (t)
ẋ(t)− ẋd (t)
y(t)− yd (t)
ẏ(t)− ẏd (t)
z(t)− zd (t)
ż(t)− żd (t)
φ(t)− φd (t)
φ̇(t)− φ̇d (t)
θ (t)− θd (t)
θ̇ (t)− θ̇d (t)
ψ(t)− ψd (t)
ψ̇(t)− ψ̇d (t)


(35)

Thus, based on (33), the stochastic quadrotor UAV
system with external disturbance and measurement noise
can be described as the following nonlinear stochastic
system

Ẋ (t) = F(X (t))+ G(X (t))u(t)+ D(X (t))v(t)

Y (t) = C(X (t))+ n(t) (36)

where X (t) is defined in (34) and

u(t) =
[
F(t), τφ(t), τθ (t), τψ (t)

]T
v(t) =

[
vx(t), vy(t), vz(t), vφ(t), vθ (t), vψ (t)

]T
Y (t) = [Y1(t),Y2(t),Y3(t),Y4(t),Y5(t),Y6(t)

,Y7(t),Y8(t),Y9(t),Y10(t),Y11(t),Y12(t)]T
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F(X (t)) =



x2(t)

−
Kx
m x2(t)

y2(t)

−
Kx
m y2(t)

z2(t)

−
Kx
m z2(t)− g

φ2(t)
Jy−Jz
Jx
θ1(t)ψ1(t)−

Kφ
Jx
φ2(t)

θ2(t)
Jz−Jx
Jy
φ1(t)ψ1(t)−

Kθ
Jy
θ2(t)

ψ2(t)
Jx−Jy
Jz
φ1(t)θ1(t)−

Kψ
Jz
ψ2(t)


C(X (t)) = [x1(t), x2(t), y1(t), y2(t), z1(t), z2(t)

, φ1(t), φ2(t), θ1(t), θ2(t), ψ1(t), ψ2(t)]T

D(X (t)) =



0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1



, G(X (t))

=



0 0 0 0
(cosφ1(t) sin θ1(t) cosψ1(t)

+ sinφ1(t) sinψ1(t)) 1m
0 0 0

0 0 0 0
(cosφ1(t) sin θ1(t) sinψ1(t)

− sinφ1(t) cosψ1(t)) 1m
0 0 0

0 0 0 0
cosφ1(t) cos θ1(t) 1m 0 0 0

0 0 0 0
0 l

Jx
0 0

0 0 0 0

0 0 l
Jy

0

0 0 0 0

0 0 0 c
Jz


According to Theorem 1, the following H∞ Luenberger

observer-based output feedback control is designed to achieve
the H∞ observer-based reference tracking strategy in (6)
or (10)

·

X̂ (t) = F(X̂ (t))+ G(X̂ (t))u(t)

+L∗(X̂ (t))(y(t)− C(X̂ (t)))

u(t) = K∗(X̂ (t), e(t)) (37)

where

F(X̂ (t))

=



x̂2(t)
−
Kx
m x̂2(t)
ŷ2(t)
−
Kx
m ŷ2(t)
ẑ2(t)

−
Kx
m ẑ2(t)− g
φ̂2(t)

Jy−Jz
Jx
θ̂1(t)ψ̂1(t)−

Kφ
Jx
φ̂2(t)

θ̂2(t)
Jz−Jx
Jy
φ̂1(t)ψ̂1(t)−

Kθ
Jy
θ̂2(t)

ψ̂2(t)
Jx−Jy
Jz
φ̂1(t)θ̂1(t)−

Kψ
Jz
ψ̂2(t)


C(X̂ (t))

= [x̂1(t), x̂2(t), ŷ1(t), ŷ2(t), ẑ1(t), ẑ2(t)

, φ̂1(t), φ̂2(t), θ̂1(t), θ̂2(t), ψ̂1(t), ψ̂2(t)]T

G(X̂ (t))

=



0 0 0 0
(cos φ̂1(t) sin θ̂1(t) cos ψ̂1(t)
+ sin φ̂1(t) sin ψ̂1(t)) 1m

0 0 0

0 0 0 0
(cos φ̂1(t) sin θ̂1(t) sin ψ̂1(t)
− sin φ̂1(t) cos ψ̂1(t)) 1m

0 0 0

0 0 0 0
cos φ̂1(t) cos θ̂1(t) 1m 0 0 0

0 0 0 0
0 l

Jx
0 0

0 0 0 0
0 0 l

Jy
0

0 0 0 0
0 0 0 c

Jz



with the H∞ control u∗(t) = K∗(X̂ (t), e(t)) =

−
1
2R
−1ḠT (X̃ (t), e(t), t)( ∂V (X̃ (t),e(t),t)

∂[X̃T (t) eT (t)]T
) in (14) and H∞

observer gain L∗(X̂ (t)) = 1
2

( ∂V (X̃ (t),e(t),t)
∂X̃ (t)

)∥∥∥ ∂V (X̃ (t),e(t),t)
∂X̃ (t)

∥∥∥2 C̃T (X̃ (t)) in (15),

where the estimation error X̃ (t) and reference tracking error
e(t) of the quadrotor UAV are generated, respectively, by

·

X̃ (t) = F̃(X̃ (t))+ G̃(X̃ (t))u(t)− L∗(X̂ (t))C̃(X̃ (t))

+
[
D(X (t)) −L∗(X̂ (t))

]
v̄(t) (38)

where

F̃(X̃ (t)) = F(X (t))− F(X̂ (t))
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=



x̃2(t)
−
Kx
m x̃2(t)
ỹ2(t)
−
Kx
m ỹ2(t)
z̃2(t)
−
Kx
m z̃2(t)
φ̃2(t)

Jy−Jz
Jx

(θ1(t)ψ1(t)− θ̂1(t)ψ̂1(t))−
Kφ
Jx
φ̃2(t)

θ̃2(t)
Jz−Jx
Jy

(φ1(t)ψ1(t)− φ̂1(t)ψ̂1(t))−
Kθ
Jy
θ̃2(t)

ψ̃2(t)
Jx−Jy
Jz

(φ1(t)θ1(t)− φ̂1(t)θ̂1(t))−
Kψ
Jz
ψ̃2(t)


C̃(X̃ (t)) = C(X (t))− C(X̂ (t)) = X̃ (t)

G̃(X̃ (t)) = G(X (t))− G(X̂ (t))

=



0 0 0 0
(cosφ1(t) sin θ1(t) cosψ1(t)
− cos φ̂1(t) sin θ̂1(t) cos ψ̂1(t)
+ sinφ1(t) sinψ1(t)
− sin φ̂1(t) sin ψ̂1(t)) 1m

0 0 0

0 0 0 0
(cosφ1(t) sin θ1(t) sinψ1(t)
− cos φ̂1(t) sin θ̂1(t) sin ψ̂1(t)
− sinφ1(t) cosψ1(t)
+ sin φ̂1(t) cos ψ̂1(t)) 1m

0 0 0

0 0 0 0
(cosφ1(t) cos θ1(t)
− cos φ̂1(t) cos θ̂1(t)) 1m

0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


and

ė(t) = Fe(e(t), t)+ Ge(e(t), t)u∗(t)+ De(e(t), t)v(t) (39)

where

Fe(e(t), t) = F(e(t)+ r(t))− ṙ(t)

=



e2(t)
−
Kx
m (e2(t)+ r2(t))− ṙ2(t)

e4(t)
−
Ky
m (e4(t)+ r4(t))− ṙ4(t)

e6(t)
−
Kz
m (e6(t)+ r6(t))− g− ṙ6(t)

e8(t)
Jy−Jz
Jx

(e9(t)+ r9(t))(e11(t)+ r11(t))
−
Kφ
Jx
(e8(t)+ r8(t))− ṙ8(t)

e10(t)
Jz−Jx
Jy

(e7(t)+ r7(t))(e11(t)+ r11(t))
−
Kθ
Jy
(e10(t)+ r10(t))− ṙ10(t)

e12(t)
Jx−Jy
Jz

(e7(t)+ r7(t))(e9(t)+ r9(t))

−
Kψ
Jz
(e12(t)+ r12(t))− ṙ12(t)



De(e(t), t) = D(X (t))

Ge(e(t), t) = G(e(t)+ r(t))

=



0 0 0 0
(cos(e7(t)+ r7(t)) sin(e9(t)
+r9(t)) cos(e11(t)+ r11(t))
+ sin(e7(t)+ r7(t))
× sin(e11(t)+ r11(t))) 1m

0 0 0

0 0 0 0
(cos(e7(t)+ r7(t)) sin(e9(t)
+r9(t)) sin(e11(t)+ r11(t))
− sin(e7(t)+ r7(t))
× cos(e11(t)+ r11(t))) 1m

0 0 0

0 0 0 0
cos(e7(t)+ r7(t))
× cos(e9(t)+ r9(t)) 1m

0 0 0

0 0 0 0
0 l

Jx
0 0

0 0 0 0
0 0 l

Jy
0

0 0 0 0
0 0 0 c

Jz


Since we have only 4 controls, i.e., u(t) =

[
F(t), τφ(t),

τθ (t), τψ (t)
]T
, it is not easy to arbitrarily control 6 motions,

i.e., the position (x(t), y(t), z(t)) in the translational motion
and the attitude (φ(t), θ(t), ψ(t)) in the angular motion, inde-
pendently due to the underactuated property of the quadrotor
UAV [17]. Therefore, we can only control 4 motions directly
and other 2 motions must be dependent on other motions.
In this situation, only the desired xd (t), yd (t), zd (t) and the
desired yaw ψd (t) are arbitrarily selected to construct as the
reference guidance system to control x(t), y(t), z(t) and ψ(t)
to track xd (t), yd (t), zd (t) and ψd (t) directly. The trajectory
of yaw ψ(t) is specified by the designer and is set to track
ψd (t) = 0 in this example. Further, the desired roll reference
φd (t) and pitch reference θd (t) are computed accordingly as
follows [17]:

φd (t) = sin−1(
m
F(t)

(ux(t) sinψd (t)− uy(t) cosψd (t)))

θd (t) = tan−1(
ux(t) cosψd (t)+ uy(t) cosψd (t)

uz(t)+ g
) (40)

where the total thrust F(t) and the virtual inputs
ux(t), uy(t), uz(t) are defined as follows:

F(t) = m
√
u2x(t)+ u2y(t)+ (uz(t)+ g)2

ux(t) = ẍd (t)

uy(t) = ÿd (t)

uz(t) = z̈d (t) (41)

where ẍd (t), ÿd (t), z̈d (t) are the double derivative of xd (t),
yd (t), zd (t), respectively, i.e., in this design example of
quadrotor UAV reference tracking control, we could specify
the desired trajectories of xd (t), yd (t), zd (t) and ψd (t) but the
desired trajectories of φd (t) and θd (t) are consequentially
generated by (40) and (41).
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In this design example, the parameters of quadrotor UAV
in (33) are given as follows: Kx = Ky = Kz = 0.01Ns2/rad,
Jx = Jy = Jz = 0.1Ns2/rad, m = 2kg, l = 1.2m,
Kφ = Kθ = Kψ = 0.01Ns2/rad, c = 1, g = 9.8m2/s.
The weighting matrices Q1 = 0.01diag{2I6, 5I6}, Q2 =

0.01I12 and R = 10−4I4 are given in the H∞ observer-based
reference tracking control strategy in (6). The sampling time h
is 0.01s and the terminal time tf = 30s. The random external
disturbances are supposed Gaussian noises with the proba-
bility distribution functions as follows: vx(t) + N (0, 0.1),
vy(t) + N (0, 0.1), vz(t) + N (0, 0.1), vφ(t) + N (0, 0.01),
vθ (t) + N (0, 0.01) and vψ (t) + N (0, 0.01) where N (0, σ )
denotes the Gaussian distribution with 0 mean and σ standard
deviation. The distribution function of measurement noise
n(t) + N (0, 0.1I12). The desired reference position and yaw
angle trajectories are given as xd (t) = 10 sin(0.5t), yd (t) =
10 cos(0.5t), zd (t) = t and ψd (t) = 0, respectively, and
φd (t), θ (t) are given in (40). This is a circle with a radius
of 10 meters in x − y axis, rising at a constant velocity on the
z−axis.
According to Theorem 1, the minmax H∞ observer-based

reference tracking control design needs to solve the following
HJIE for H∞ control gain K∗(X̂ (t), e(t)) in (14) and H∞
observer gain L∗(X̂ (t)) in (15) for the observer-based output
feedback control in (37) to achieve the robust H∞ observer-
based reference tracking control strategy in (6) with ρ2 = 2.

HJIE = X̄T (t)Q̄X̄ (t)−
1
4
(
∂V (X̃ (t), e(t), t)

∂[X̃T (t) eT (t) t]T
)T

×

[
Ḡ(X̃ (t), e(t), t)

0

]
R−1

×

[
Ḡ(X̃ (t), e(t), t)

0

]T
(
∂V (X̃ (t), e(t), t)

∂[X̃T (t) eT (t) t]T
)

+(
∂V (X̃ (t), e(t), t)

∂[X̃T (t) eT (t) t]T
)T
[
F̄(X̃ (t), e(t), t)

1

]
+

1
4ρ2

×(
∂V (X̃ (t), e(t), t)

∂[X̃T (t) eT (t) t]T
)T
[
D̄(X̃ (t), e(t), t) 0

0 0

]
×(

∂V (X̃ (t), e(t), t)

∂[X̃T (t) eT (t) t]T
)−

1
16ρ2

C̃T (X̃ (t))C̃(X̃ (t))

= 0 (42)

where the elements in augmented matrices X̄ (t), C̃(X̃ (t)),
F̄(X̃ (t), e(t), t), Ḡ(X̃ (t), e(t), t), D̄(X̃ (t), e(t), t) of the esti-
mation error and reference tracking error of quadrotor UAV
are defined in (38) and (39), respectively.

Since it is very difficult to solve ∂V (X̃ (t),e(t),t)
∂[X̃T (t) eT (t) t]T

from
(42) analytically or numerically for H∞ control u∗(t) =
−

1
2R
−1ḠT (X̃ (t), e(t), t)( ∂V (X̃ (t),e(t),t)

∂[X̃T (t) eT (t)]T
) and H∞ observer

gain L∗(X̂ (t)) = 1
2

( ∂V (X̃ (t),e(t),t)
∂X̃ (t)

)∥∥∥ ∂V (X̃ (t),e(t),t)
∂X̃ (t)

∥∥∥2 C̃T (X̃ (t)) in Theorem 1 for

the H∞ observer-based output feedback controller in (5)
to achieve the H∞ reference tracking of quadrotor UAV.
Therefore, the proposed HJIE-embedded DNN-based H∞

FIGURE 5. 3-D graph of the desired trajectory and the UAV flighting
trajectories by the proposed H∞ HJIE-embedded DNN-based
observer-based tracking control scheme and the H∞ observer-based T-S
fuzzy tracking control scheme [16].

FIGURE 6. The desired references and their corresponding position
trajectories by the proposed H∞ HJIE-embedded DNN-based
observer-based tracking control scheme and the H∞ observer-based
T-S fuzzy tracking control scheme [16].

FIGURE 7. The desired references and their corresponding attitude
trajectories by the proposed H∞ HJIE-embedded DNN-based
observer-based tracking control scheme and the H∞ observer-based
T-S fuzzy tracking control scheme [16].

observer-based reference tracking scheme based on stochas-
tic sample-data systems in (25 )-(28) with sampling time h =
0.01 in Fig. 3 is employed to solve ∂V (X̃ (t),e(t),t)

∂[X̃T (t) eT (t) t]T
from HJIE

in (42) for the H∞ observer-based output feedback reference
tracking control of quadrotor UAV. The architecture of DNN
used in this UAV design example consists of input layer with
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FIGURE 8. Control inputs of the UAV by the proposed H∞ HJIE-embedded
DNN-based observer-based controller.

input X̃ (t), e(t) and output layer with output ∂V (X̃ (t),e(t),t)
∂[X̃T (t) eT (t) t]T

,

4 hidden layers, an HJIE layer with input ∂V (X̃ (t),e(t),t)
∂[X̃T (t) eT (t) t]T

and output ε(θ (t)) as shown in Fig. 2. There are 512, 256,
64 and 25 hidden neurons in each hidden layer sequentially.
The parameters of Adam learning algorithm in (21)-(23) are
set as l = 10−3, µ1 = 0.9, µ2 = 0.999 and ζ = 10−7.
Training steps and batch size are set as S = 30 and B = 800,
respectively. In the off-line training phase in Fig. 3, we ran-
domly select 20000 initial tracking errors e(0) and estimation
errors X̃ (0) around the origin X (0). The initial state of the
UAV and its state estimation are assumed as X (0) = [0.54,
5.55, 10.57, 0.57, 3, 1.5, 0.52, 0.52, 0.51, 0.59, 0.55, 0.52]T

and X̂ (0) = [0.44, 5.45, 10.47, 0.47, 2.9, 1.4, 0.49, 0.49,
0.48, 0.56, 0.52, 0.49]T .
The simulation results of the proposed H∞ HJIE-

embedded DNN-based observer-based reference tracking
control scheme of quadrotor UAV are shown in Fig. 5-10. The
3-D flighting trajectory of the UAV and its desired trajectory
are shown in Fig. 5. In Figs. 6-7, we see that the position
and attitude trajectories can track the corresponding desired
trajectories by the HJIE-embedded DNN-based observer-
based control scheme. The control inputs of the UAV are
constructed by the proposed method as shown in Fig. 8.
In Figs. 9-10, the state estimation can be efficiently achieved
by the proposed HJIE-embedded DNN-based observer-based
control method with external disturbance and measurement
noise. The simulation example of sinusoidal external distur-
bance vx(t) + 0.1 sin(0.5t), vy(t) + 0.1 sin(0.5t), vz(t) +
0.1 cos(0.5t), vφ(t) + 0.01 cos(0.5t), vθ (t) + 0.01 sin(0.5t)
and vψ (t) + 0.01 sin(0.5t) is also shown in Fig. 13. In the
transient response, the UAV has fluctuation in the proposed
method due to the initial value of control inputs. In the real
application with DNN method, at the beginning of off-line
training phase, we need to randomly select the initial train-
ing data near the state estimation error x̃(t) and reference
tracking error e(t). This will significantly affect the training
performance. If the domain of initial conditions is limited
by the random selection in the off-line training phase, the

FIGURE 9. The estimation errors of the position by the proposed H∞
HJIE-embedded DNN-based observer-based tracking control scheme.

FIGURE 10. The estimation errors of the attitude by the proposed H∞
HJIE-embedded DNN-based observer-based tracking control scheme.

state x(t) = x̂(t) + x̃(t) and e(t) = x(t) + r(t) may
be far from the training data during the on-line operation
phase. Hence, it will limit the domain of ∂V (x̃(t),e(t),t)

∂[x̃T (t) eT (t) t]Tε
to

approach to the real ∂V (x̃(t),e(t),t)
∂[x̃T (t) eT (t) t]T of HJIE which will cause

the fluctuation in the transient response. In this situation, the
error ε(θk (t)) will be larger than a small prescribed δ, (i.e.,
|ε(θk (t))| > δ) so that we need to start on Adam learning
algorithm again for updating weighting parameters of DNN.
The computational complexity ofH∞ HJIE-embeddedDNN-
based observer-based reference tracking control scheme can
be approximately calculated as O(Ln), where L is denoted as
the number of layers in the DNN and n is denoted as the
dimension of the state estimation error x̃(t) and reference
tracking error e(t). The real H∞ observer-based output feed-
back reference tracking control performance in (10) is also
calculated as follows:∫ 30

0 (x̄T (t)Q̄x̄(t)+ uT (t)
×Ru(t))dt − V (x̃(0), e(0), 0)∫ 30

0 v̄T (t)v̄(t)dt
≈ 1.81 ≤ 2

In comparison with the proposed method, the H∞
observer-based T-S fuzzy reference tracking control
design in [16] is carried out and the results are shown
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FIGURE 11. The estimation errors of the position by the H∞
observer-based T-S fuzzy tracking control scheme [16].

FIGURE 12. The estimation errors of the attitude by the H∞
observer-based T-S fuzzy tracking control scheme [16].

FIGURE 13. 3-D graph of the desired trajectory and the UAV flighting
trajectories by the proposed H∞ HJIE-embedded DNN-based
observer-based tracking control scheme with sinusoidal external
disturbance.

in Figs. 5-7, 11-12 when compared with the proposed H∞
HJIE-embedded DNN-based observer-based reference track-
ing control scheme. In the transient response, the simulation
results of H∞ observer-based T-S fuzzy reference tracking
control have large fluctuations in the position and attitude
except for the x(t), y(t) and z(t). Due to the limitaion of
the number in fuzzy rules, the H∞ observer-based T-S fuzzy
reference tracking control design is only employed to track
a small size of reference trajectory. The way to improve

the tracking performance is to increase the number of fuzzy
rules. However, the observer-based T-S fuzzy control law
·

x̂(t) =
125∑
i=1

125∑
j=1

hi(z(t))hj(z(t))(Aix̂(t)+Biu(t)+Li(y−Cjx̂(t)))

and u(t) =
125∑
i=1

hi(z(t))Kix̂(t) with 125 fuzzy rules is used

in this simulation. We need to solve 1252 BMIs for fuzzy
controller and fuzzy observer in the H∞ observer-based
T-S fuzzy control design. If we want to increase the fuzzy
rules to increase the performance, more computations will
be required. In addition, the robust H∞ observer-based T-S
fuzzy controller needs to compute the above observer and
control law at every time instant. The real tracking control
performance of the H∞ observer-based T-S fuzzy reference
tracking control design is also calculated as ρ∗ ≈ 7.61 which
is poor than the proposed method because of the worse
tracking results in the transient response. The computational
complexity of H∞ observer-based T-S fuzzy reference track-
ing scheme is calculated as O(L

′2n), where L
′

denotes as the
number of the local systems and n is the dimension of the
state estimation error x̃(t) and reference tracking error e(t).
Remark 8: In the field of observer-based tracking control

designs at present, there exists no study to use the con-
ventional big data-driven DNN method to deal with this
nonlinear observer-based control design problem due to the
unavailable empirical data for training DNN. In general,
the conventional DNN is based on a very large amount
of input/output empirical data pairs to train the weighting
parameters of hidden layers in DNN by optimizer from the
big data perspective. However, in the nonlinear H∞ observer-
based reference tracking control design problem, x(t) is
unavailable and needs to be obtained from x(t) = x̂(t)+ x̃(t).
Therefore, we can not compare with the conventional big
data-driven DNN method in nonlinear H∞ observer-based
reference tracking control design. Instead, we show the H∞
observer-based T-S fuzzy reference tracking control design to
compare the tracking control performance with the proposed
H∞ HJIE-embedded DNN-based observer-based reference
tracking control scheme.

V. CONCLUSION
In this study, a novel HJIE-embedded DNN-based H∞
observer-based control scheme is proposed to directly solve
∂V (x̃(t),e(t),t)

∂[x̃T (t) eT (t) t]T of the nonlinear partial differential HJIE of
robust H∞ observer-based reference tracking control design
problem of nonlinear stochastic system under external dis-
turbance and measurement noise. In order to overcome the
unavailable external disturbance v(t) and measurement noise
n(t) for system model to generate training data and unavail-
able x(t) and e(t) = x(t) − r(t) in HJIE, we used v∗(t) and
n∗(t) to replace v(t) and n(t) without influence on the H∞
estimation and control, and employed estimation dynamic
to generate x̂(t) and estimation error model to generate x̃(t)
so that we could obtain x(t) = x̂(t) + x̃(t) and tracking
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error e(t) = x(t) − r(t) so that we could calculate the error
HJIEε = ε(θ (t)) in (20) for Adam learning algorithm to

train DNN to solve ∂V (x̃(t),e(t),t)
∂[x̃T (t) eT (t) t]T of HJIE for the design

of H∞ observer-based reference tracking control design.
We have proven that if the approximation error of HJIE
approaches to 0 by DNN through Adam learning algorithm,
the proposed DNN-based estimator-based reference track-
ing control scheme could achieve the H∞ estimator-based
reference tracking control strategy unlike the conventional
big data-driven DNN only for classification and recognition.
Based on system modeling and theoretical result of HJIE
for nonlinear H∞ estimator-based reference tracking control
of nonlinear stochastic system, the proposed DNN-based
scheme could efficiently achieve the nonlinearH∞ estimation
and reference tracking control design simultaneously with
much saving of training data and time. Finally, a design
example of H∞ observer-based reference tracking control
quadrotor UAV system is also given to illustrate the design
procedure and validate the effectiveness of the proposed
method in comparison with the conventional robust H∞ T-S
fuzzy observer-based tracking control of nonlinear dynamic
system.

APPENDIX A: PROOF OF THEOREM 1
By the indirect method, the minmax H∞ observer-based
reference tracking strategy in (10) is transformed to the
equivalent constrained minmax Nash quadratic game strat-
egy in (11). Based on two-step method, in the first step,
we need to solve the minmax Nash quadratic game prob-
lem in (12). In the second step, we need to guarantee J ≤
E{V (x̃(0), e(0), 0)}. Therefore, Theorem 1 will be proven as
follows:

(a)(i) Step 1:
From (12), we get

J = min
u(t)=K (x̂(t),e(t))

L(x̂(t))

max
v̄(t)∈L2[0,tf ]

E{
∫ tf

0
(x̄T (t)Q̄x̄(t)

+uT (t)Ru(t)− ρ2v̄T (t)v̄(t))dt}

= min
u(t)=K (x̂(t),e(t))

L(x̂(t))

max
v̄(t)∈L2[0,tf ]

E{−V (x̃(tf ), e(tf ), tf )

+V (x̃(0), e(0), 0)+
∫ tf

0
(x̄T (t)Q̄x̄(t)

+uT (t)Ru(t)− ρ2v̄T (t)v̄(t)

+
d
dt
V (x̃(t), e(t), t))dt} (A1)

By the fact V (x̃(t), e(t), t) is the Lyapunov function of
the augmented time-varying nonlinear stochastic error system
in (9), by chain rule, we get

dV (x̃(t), e(t), t)
dt

=
∂V (x̃(t), e(t), t)

∂t
+ (

∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)T

×

([
F̃(x̃(t))− L(x̂(t))C̃(x̃(t))

Fe(e(t), t)

]

+

[
G̃(x̃(t))
Ge(e(t), t)

]
u(t)

+

[
D(x(t)) −L(x̂(t))
De(e(t), t) 0

]
v̄(t)

)
(A2)

Substituting Ḡ(x̃(t), e(t), t) =
[

G̃(x̃(t))
Ge(e(t), t)

]
and (A2)

into (A1), we get

J = min
u(t)=K (x̂(t),e(t))

L(x̂(t))

max
v̄(t)∈L2[0,tf ]

E{−V (x̃(tf ), e(tf ), tf )

+V (x̃(0), e(0), 0)+
∫ tf

0
(
∂V (x̃(t), e(t), t)

∂t
+ x̄T (t)Q̄x̄(t)

+uT (t)Ru(t)+ (
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)T

×

[
F̃(x̃(t))− L(x̂(t))C̃(x̃(t))

Fe(e(t), t)

]
+ (

∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)T

×Ḡ(x̃(t), e(t), t)u(t)+ (
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)T

×

[
D(x(t)) −L(x̂(t))
De(e(t), t) 0

]
v̄(t)− ρ2v̄T (t)v̄(t))dt} (A3)

By using the completing square method, we immediately
have

J = min
u(t)=K (x̂(t),e(t))

L(x̂(t))

max
v̄(t)∈L2[0,tf ]

E{−V (x̃(tf ), e(tf ), tf )

+V (x̃(0), e(0), 0)+
∫ tf

0
(
∂V (x̃(t), e(t), t)

∂t
+ x̄T (t)Q̄x̄(t)

−
1
4
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)T Ḡ(x̃(t), e(t), t)R−1

×ḠT (x̃(t), e(t), t)(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)

+(
1
2
Ḡ(x̃(t), e(t), t)T (

∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)+ Ru(t))TR−1

×(
1
2
Ḡ(x̃(t), e(t), t)T (

∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)+ Ru(t))

+(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)T
[
F̃(x̃(t))− L(x̂(t))C̃(x̃(t))

Fe(e(t), t)

]
+

1
4ρ2

(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)T
[

D(x(t)) −L(x̂(t))
De(e(t), t) 0

]
×

[
D(x(t)) −L(x̂(t))
De(e(t), t) 0

]T
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)

−(
1
2ρ

[
D(x(t)) −L(x̂(t))
De(e(t), t) 0

]T
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)

−ρv̄(t))T (
1
2ρ

[
D(x(t)) −L(x̂(t))
De(e(t), t) 0

]T
×(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)− ρv̄(t)))dt} (A4)

From (A4), it is seen that the worst-case
[
v∗(t)
n∗(t)

]
in (13) and the optimal u∗(t) = K (x̂(t), e(t)) in (14)
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make the involved quadratic terms be zero achieve
min

u(t)=K (x̂(t),e(t))
max[
v(t)
n(t)

]. Then we get

J = min
L(x̂(t))

E{−V (x̃(tf ), e(tf ), tf )+ V (x̃(0), e(0), 0)

+

∫ tf

0
(
∂V (x̃(t), e(t), t)

∂t
+ x̄T (t)Q̄x̄(t)

+(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)T
[
F̃(x̃(t))− L(x̂(t))C̃(x̃(t))

Fe(e(t), t)

]
−
1
4
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)T Ḡ(x̃(t), e(t), t)R−1

×ḠT (x̃(t), e(t), t)(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)

+
1

4ρ2
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)T
[

D(x(t)) −L(x̂(t))
De(e(t), t) 0

]
×

[
D(x(t)) −L(x̂(t))
De(e(t), t) 0

]T
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

))dt}

(A5)

By the fact

∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

=

[
∂V (x̃(t),e(t),t)

∂ x̃(t)
∂V (x̃(t),e(t),t)

∂e(t)

]
(A6)

we get

(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)T
[
F̃(x̃(t))− L(x̂(t))C̃(x̃(t))

Fe(e(t), t)

]
= (

∂V (x̃(t), e(t), t)
∂ x̃(t)

)T
(
F̃(x̃(t))− L(x̂(t))C̃(x̃(t))

)
+(
∂V (x̃(t), e(t), t)

∂e(t)
)TFe(e(t), t) (A7)

and

(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)T
[

D(x(t)) −L(x̂(t))
De(e(t), t) 0

]
×

[
D(x(t)) −L(x̂(t))
De(e(t), t) 0

]T
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)

=

[
( ∂V (x̃(t),e(t),t)

∂ x̃(t) )T ( ∂V (x̃(t),e(t),t)
∂e(t) )T

]
×

 D(x(t))DT (x(t))
+L(x̂(t))LT (x̂(t))

D(x(t))DTe (e(t), t)

De(e(t), t)DT (x(t)) De(e(t), t)DTe (e(t), t)


×

[
( ∂V (x̃(t),e(t),t)

∂ x̃(t) )

( ∂V (x̃(t),e(t),t)
∂e(t) )

]
= (

∂V (x̃(t), e(t), t)
∂ x̃(t)

)T

×

(
D(x(t))DT (x(t))+ L(x̂(t))LT (x̂(t))

) ∂V (x̃(t), e(t), t)
∂ x̃(t)

+(
∂V (x̃(t), e(t), t)

∂ x̃(t)
)TD(x(t), t)DTe (e(t), t)

× (
∂V (x̃(t), e(t), t)

∂e(t)
)

+(
∂V (x̃(t), e(t), t)

∂e(t)
)TDe(e(t), t)DT (x(t))

× (
∂V (x̃(t), e(t), t)

∂ x̃(t)
)

+(
∂V (x̃(t), e(t), t)

∂e(t)
)TDe(e(t), t)DTe (e(t), t)

× (
∂V (x̃(t), e(t), t)

∂e(t)
) (A8)

Substituting (A6), (A7) and (A8) into (A5), we get

J = min
L(x̂(t))

E{−V (x̃(tf ), e(tf ), tf )+ V (x̃(0), e(0), 0)

+

∫ tf

0
(
∂V (x̃(t), e(t), t)

∂t
+ x̄T (t)Q̄x̄(t)

+ (
∂V (x̃(t), e(t), t)

∂ x̃(t)
)T

×

(
F̃(x̃(t))− L(x̂(t))C̃(x̃(t))

)
+ (

∂V (x̃(t), e(t), t)
∂e(t)

)T

×Fe(e(t), t)−
1
4
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)T Ḡ(x̃(t), e(t), t)R−1

×ḠT (x̃(t), e(t), t)(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)+
1

4ρ2

×(
∂V (x̃(t), e(t), t)

∂ x̃(t)
)T (D(x(t))DT (x(t))

+L(x̂(t))LT (x̂(t)))(
∂V (x̃(t), e(t), t)

∂ x̃(t)
)+

1
4ρ2

×(
∂V (x̃(t), e(t), t)

∂ x̃(t)
)TD(x(t))DTe (e(t), t)

× (
∂V (x̃(t), e(t), t)

∂e(t)
)

+
1

4ρ2
(
∂V (x̃(t), e(t), t)

∂e(t)
)TDe(e(t), t)DT (x(t))

×(
∂V (x̃(t), e(t), t)

∂ x̃(t)
)+

1
4ρ2

(
∂V (x̃(t), e(t), t)

∂e(t)
)T

×De(e(t), t)

×DTe (e(t), t)(
∂V (x̃(t), e(t), t)

∂e(t)
))dt}

= min
L(x̂(t))

E{−V (x̃(tf ), e(tf ), tf )+ V (x̃(0), e(0), 0)

+

∫ tf

0
(
∂V (x̃(t), e(t), t)

∂t
+ x̄T (t)Q̄x̄(t)

−
1
4
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)T Ḡ(x̃(t), e(t), t)R−1

×Ḡ(x̃(t), e(t), t)T (
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)

+

(
∂V (x̃(t), e(t), t)

∂ x̃(t)

)T
×F̃(x̃(t))+ (

∂V (x̃(t), e(t), t)
∂e(t)

)TFe(e(t), t)+
1

4ρ2

×(
∂V (x̃(t), e(t), t)

∂ x̃(t)
)TD(x(t))DT (x(t))(

∂V (x̃(t), e(t), t)
∂ x̃(t)

)

+
1

4ρ2
(
∂V (x̃(t), e(t), t)

∂ x̃(t)
)TD(x(t))DTe (e(t), t)

×(
∂V (x̃(t), e(t), t)

∂e(t)
)+

1
4ρ2

(
∂V (x̃(t), e(t), t)

∂e(t)
)T
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×De(e(t), t)

×DT (x(t))(
∂V (x̃(t), e(t), t)

∂ x̃(t)
)+

1
4ρ2

(
∂V (x̃(t), e(t), t)

∂e(t)
)T

×De(e(t), t)DTe (e(t), t)(
∂V (x̃(t), e(t), t)

∂e(t)
)

+
1

4ρ2
(LT (x̂(t))(

∂V (x̃(t), e(t), t)
∂ x̃(t)

)−
1
2
C̃(x̃(t)))T

×(LT (x̂(t))(
∂V (x̃(t), e(t), t)

∂ x̃(t)
)−

1
2
C̃(x̃(t)))

−
1

16ρ2
C̃T (x̃(t))C̃(x̃(t)))dt} (A9)

From (A9), we obtain the optimal L∗(x̂(t)) as (15), i.e.,

J = E{−V (x̃(tf ), e(tf ), tf )+ V (x̃(0), e(0), 0)

+

∫ tf

0
(
∂V (x̃(t), e(t), t)

∂t
+ x̄T (t)Q̄x̄(t)

−
1
4
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)T Ḡ(x̃(t), e(t), t)R−1

×Ḡ(x̃(t), e(t), t)T (
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)

+(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)T F̄(x̃(t), e(t), t)

+
1

4ρ2
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)T D̄(x̃(t), e(t), t)

×(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t)]T

)−
1

16ρ2
C̃T (x̃(t))C̃(x̃(t)))dt}

(A10)

(ii) Step 2:
By the HJIE of (16) and (A10), we get

J = E
{
−V (x̃(tf ), e(tf ), tf )+ V (x̃(0), e(0), 0)

}
(A11)

By the fact V (x̃(tf ), e(tf ), tf ) ≥ 0, then

J ≤ E {V (x̃(0), e(0), 0)} (A12)

(b) If v(t) ∈ L2[0,∞) and n(t) ∈ L2[0,∞), i.e., v̄(t) ∈
L2[0,∞), from the definition of J in (12) with tf = ∞,
then (A12) becomes

J = min
K (x̂(t),e(t))
L(x̂(t))

max
v̄(t)∈L2[0,∞)

E{
∫
∞

0
(x̄T (t)Q̄x̄(t)

+uT (t)Ru(t)− ρv̄T (t)v̄(t))dt}

= E{
∫
∞

0
(x̄T (t)Q̄x̄(t)+ uT (t)Ru(t)

−ρv̄T (t)v̄(t))dt}

≤ E{V (x̃(0), e(0), 0)} (A13)

i.e.,

E{
∫
∞

0
(x̄T (t)Q̄x̄(t)+ uT (t)Ru(t))dt}

≤ E{V (x̃(0), e(0), 0)} + ρE
∫
∞

0
v̄T (t)v̄(t)dt (A14)

Since v̄∗(t) ∈ L2[0,∞) and V (x̃(0), e(0), 0) are finite
due to finite initial condition x̃(0), e(0), the right hand side
of (A14) is finite. Therefore, x̄(t) → 0 (or x̃(t) → 0 and
e(t) → 0) and u∗(t) → 0 as tf → ∞, i.e., the proposed
H∞ observer-based output feedback reference tracking con-
trol will achieve the mean-square asymptotical estimation
and tracking if external disturbance v(t) ∈ L2[0,∞) and
measurement noise n(t) ∈ L2[0,∞). Further, if reference
signal r(t) ∈ L2[0,∞), i.e., r(t) → 0 as tf → ∞, then
e(t) = x(t)− r(t)→ 0 as tf →∞ implies x(t)→ 0 as tf →
∞. Therefore, the whole closed loop system is mean-square
asymptotically stable. The proof is completed.

APPENDIX B: PROOF OF THEOREM 2
(a) In (24), we suppose

(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)ε

= (
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)+ h̄(x̃(t), e(t), t) (B1)

where h̄(x̃(t), e(t), t) is the error function between the

approximate ( ∂V (x̃(t),e(t),t)
∂[x̃T (t) eT (t) t]T )ε of HJIEε = ε(θs(t)) in (24)

and the real solution ∂V (x̃(t),e(t),t)
∂[x̃T (t) eT (t) t]T of HJIE = 0 in (16).

By substracting (24) from (16), ε(θs(t)) could be rewritten
as the follows:

ε(θs(t))

= HJIEε − HJIE

=

(
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)Tε − (
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)T
)

×

[
F̄(x̃(t), e(t), t)

1

]
−

1
4
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)Tε

×

[
Ḡ(x̃(t), e(t), t)

0

]
R−1

[
Ḡ(x̃(t), e(t), t)

0

]T
×(

∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)ε +
1
4
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)T

×

[
Ḡ(x̃(t), e(t), t)

0

]
R−1

[
Ḡ(x̃(t), e(t), t)

0

]T
×(

∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)+
1

4ρ2
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)Tε

×

[
D̄(x̃(t), e(t), t) 0

0 0

]
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)ε

−
1

4ρ2
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)T
[
D̄(x̃(t), e(t), t) 0

0 0

]
×(

∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

) (B2)

By (B1), we get

ε(θs(t))

= h̄T (x̃(t), e(t), t)
[
F̄(x̃(t), e(t), t)

1

]
−
1
4
h̄T (x̃(t), e(t), t)

[
Ḡ(x̃(t), e(t), t)

0

]
R−1
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×

[
Ḡ(x̃(t), e(t), t)

0

]T
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)

−
1
4
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)T
[
Ḡ(x̃(t), e(t), t)

0

]
R−1

×

[
Ḡ(x̃(t), e(t), t)

0

]T
h̄(x̃(t), e(t), t)

−
1
4
h̄T (x̃(t), e(t), t)

[
Ḡ(x̃(t), e(t), t)

0

]
R−1

×

[
Ḡ(x̃(t), e(t), t)

0

]T
h̄(x̃(t), e(t), t)

+
1

4ρ2
h̄T (x̃(t), e(t), t)

[
D̄(x̃(t), e(t), t) 0

0 0

]
×(

∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)+
1

4ρ2
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)T

×

[
D̄(x̃(t), e(t), t) 0

0 0

]
h̄(x̃(t), e(t), t)

+
1

4ρ2
h̄T (x̃(t), e(t), t)

[
D̄(x̃(t), e(t), t) 0

0 0

]
×h̄(x̃(t), e(t), t) (B3)

By the following symmetric properties

h̄T (x̃(t), e(t), t)
[
Ḡ(x̃(t), e(t), t)

0

]
R−1

×

[
Ḡ(x̃(t), e(t), t)

0

]T
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)

= (
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)T
[
Ḡ(x̃(t), e(t), t)

0

]
R−1

×

[
Ḡ(x̃(t), e(t), t)

0

]T
h̄(x̃(t), e(t), t) (B4)

h̄T (x̃(t), e(t), t)
[
D̄(x̃(t), e(t), t) 0

0 0

]
×(

∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

) = (
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)T

×

[
D̄(x̃(t), e(t), t) 0

0 0

]
h̄(x̃(t), e(t), t) (B5)

By (B4) and (B5), then we get

ε(θs(t)) = h̄T (x̃(t), e(t), t){
[
F̄(x̃(t), e(t), t)

1

]
−
1
2

[
Ḡ(x̃(t), e(t), t)

0

]
R−1

×

[
Ḡ(x̃(t), e(t), t)

0

]T
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)

−
1
4

[
Ḡ(x̃(t), e(t), t)

0

]
R−1

×

[
Ḡ(x̃(t), e(t), t)

0

]T
h̄(x̃(t), e(t), t)

+
1

2ρ2

[
D̄(x̃(t), e(t), t) 0

0 0

]
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)

+
1

4ρ2

[
D̄(x̃(t), e(t), t) 0

0 0

]
h̄(x̃(t), e(t), t)} (B6)

If ε(θs(t))→ 0 in (24), then (B6) becomes

h̄T (x̃(t), e(t), t){
[
F̄(x̃(t), e(t), t)

1

]
−
1
2

[
Ḡ(x̃(t), e(t), t)

0

]
R−1

[
Ḡ(x̃(t), e(t), t)

0

]T
×(

∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)−
1
4

[
Ḡ(x̃(t), e(t), t)

0

]
R−1

×

[
Ḡ(x̃(t), e(t), t)

0

]T
h̄(x̃(t), e(t), t)

+
1

2ρ2

[
D̄(x̃(t), e(t), t) 0

0 0

]
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)

+
1

4ρ2

[
D̄(x̃(t), e(t), t) 0

0 0

]
h̄(x̃(t), e(t), t)}

→ 0 (B7)

Obviously, the term[
F̄(x̃(t), e(t), t)

1

]
−

1
2

[
Ḡ(x̃(t), e(t), t)

0

]
R−1

×

[
Ḡ(x̃(t), e(t), t)

0

]T
(
∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)

−
1
4

[
Ḡ(x̃(t), e(t), t)

0

]
R−1

[
Ḡ(x̃(t), e(t), t)

0

]T
×h̄(x̃(t), e(t), t)+

1
2ρ2

[
D̄(x̃(t), e(t), t) 0

0 0

]
×(

∂V (x̃(t), e(t), t)
∂[x̃T (t) eT (t) t]T

)+
1

4ρ2

[
D̄(x̃(t), e(t), t) 0

0 0

]
×h̄(x̃(t), e(t), t)

in {·} of (B7) is different from HJIE = 0 in (16) and
therefore is not equal to 0 for all x̃(t), e(t). From (B7) we
can conclude h̄(x̃(t), e(t), t) → 0. From (B1), it implies
( ∂V (x̃(t),e(t),t)
∂[x̃T (t) eT (t) t]T )ε →

∂V (x̃(t),e(t),t)
∂[x̃T (t) eT (t) t]T , i.e., HJIEε =

ε(θs(t)) → HJIE = 0 as ε(θs(t)) → 0. According to
Theorem 1, the HJIE-embedded DNN-based H∞ observer-
based output feedback reference tracking scheme in Fig. 1
can approach to the H∞ observer-based output feedback
reference tracking control in (14) and (15) in Theorem 1.

(b) Since we have shown ( ∂V (x̃(t),e(t),t)
∂[x̃T (t) eT (t) t]T )ε →

∂V (x̃(t),e(t),t)
∂[x̃T (t) eT (t) t]T and HJIEε → HJIE as ε(θs(t)) → 0,

the HJIE-embedded DNN-based robust H∞ observer-based
output feedback reference tracking control in Fig. 1 will
approach to the theoretical H∞ observer output feedback
reference tracking control design (13)-(15), i.e., v̄(t)ε =

1
2ρ2

[
D(x(t)) −L∗(x̂(t))
De(e(t), t) 0

]T
( ∂V (x̃(t),e(t),t)
∂[x̃T (t) eT (t)]T )ε → v̄∗(t)

in (13), u(t)ε = − 1
2R
−1
[

G̃(x̃(t))
Ge(e(t), t)

]T
×( ∂V (x̃(t),e(t),t)

∂[x̃T (t) eT (t)]T )ε →

u∗(t) in (14) and L(x̂(t))ε =
1
2 ×

( ∂V (x̃(t),e(t),t)
∂ x̃(t) )∥∥∥ ∂V (x̃(t),e(t),t)∂ x̃(t)

∥∥∥2
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C̃T (x̃(t)) → L∗(x̂(t)) in (15). Then the remaining proof
procedure of the asymptotical estimation, tracking and sta-
bility of closed loop system under v(t) ∈ L2[0,∞) and
n(t) ∈ L2[0,∞) is similar to part (b) of Theorem 1. The
proof is finished.
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