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ABSTRACT The automatic fault detection of freight train image is difficult to locate, and its average
detection accuracy is low. In this paper, an object detection model Bidirectional You Only Look Once
(BD-YOLO), is proposed. The process of BD-YOLO is divided into four steps. First, the feature extraction
network extracts and separates image features. Second, multiscale features are fused to aggregate features
of different scales. Third, prediction across scale modules is used to forecast the feature layers obtained
after aggregation. Fourth, the final prediction result is obtained by decoding the prediction feature layer. The
BD-YOLO model is trained using the mosaic data enhancement method and K-means clustering algorithm
to improve detection accuracy and speed. Experimental results show that the mean average precision of
BD-YOLO model is improved by 17.57%, on average, compared with the state-of-the-art object detection
models on four types of data sets. The BD-YOLOmodel can immediately detect three typical faults, namely,
movement of upper lever, offset of locking plate, and closing of truncated plug door handle. It has high
detection rate, low false detection rate, and good robustness.

INDEX TERMS Convolutional neural network, fault detection, freight trains, object detection.

I. INTRODUCTION
With the rapid development of the economy and technolog-
ical progress in the field of railway transportation, railway
freight trains begin to change into heavy-load and high-
density operation mode. The high efficiency and accuracy of
train fault detection are critical for the safe operation of trains.
Traditional manual detection methods are difficult to adapt
to the high-speed, high-frequency operation requirements of
freight trains. The National Railway Department of China
has promoted the Trouble of Running Freight Train Detection
System (TFDS) to promote the intelligent construction of the
railway industry and satisfy the requirements for the rapid,
accurate fault detection of freight trains [1]. TFDS uses the
special camera beside the railway track to capture the image
of the bottom of the freight train, transmits it, and stores
it in the system through the network. The existing TFDS
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system is still in the manmachine combination mode and
cannot realize automatic fault image detection. The tradi-
tional detection method mainly discriminates the suspected
fault images manually by inspectors in the TFDS system.
However, the complicated outdoor weather and changes in
illumination affect the image capture and negatively affect
the image detection. TDFS produces numerous images of
freight trains daily. Many types of freight train fault images
are available. These factors greatly affect the judgment of
the inspectors. In addition, longtime indoor inspection work
causes fatigue to the inspectors, easily leading to missed and
false inspection events.

In recent years, more researchers work on automatic fault
detection models for TDFS systems. Sun et al. [1] designed
an automatic fault recognition system (AFRS) based on the
convolutional neural network (CNN) model for the fault
image recognition of side frame keys and shaft bolts. AFRS
is a two-stage system, which contains object region detec-
tion and fault recognition. AFRS has high accuracy and

VOLUME 10, 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 39613

https://orcid.org/0000-0002-4413-9974
https://orcid.org/0000-0002-7542-4356


L. Zhang et al.: Automatic Fault Detection Method of Freight Train Images Based on BD-YOLO

good robustness. Liu et al. [2] proposed an automated visual
inspection system (VIS) for checking missing keys of bogie
blocks in freight cars. VIS uses gradient coded co-occurrence
matrix feature and support vector machine for feature extrac-
tion and classification. VIS has good robustness in illu-
mination. However, recognizing various freight train faulty
images is difficult for VIS. Fu et al. [3] proposed a two-stage
detection method to identify rolling bearing faults, which
cascaded a bearing positioning stage and a fault classification
stage. Fu et al. also designed an attention aware network
APP-UNet16, to identify the defect areas of small oil spots
in bearings. APP-UNet16 achieves a high-quality inspection
and increases detection speed.Most researchers focus on fault
detection of freight train bearings. AFRS, VIS, and other two-
stage methods perform well, but they are designed for some
specific freight component. This fact proves that a certain
fault determination algorithm can be used to solve a certain
type of fault detection, but it is not so suitable for other faults
and multiple types of fault detection. Moreover, few studies
are about the typical fault detection of other freight train
parts, such as upper lever, truncated plug door handle, and
locking plate. The traditionalmanmachine combinationmode
has low efficiency and is prone to the problem of missing
and misdetection of train fault images. An object detection
model named Bidirection You Only Look Once (BD-YOLO)
is proposed to improve the automatic detection efficiency of
train fault images and solve the automatic detection problem
of typical train fault detections.

The main contributions of this paper are summarized as
follows:
• An efficient one-stage object detection model, namely,
BD-YOLO, is proposed. BD-YOLO model contains
feature extraction network (FEN), feature integrated
network (FIN), multiscale feature fusion (MFF), predic-
tion across scales (PAS), and decoding of five modules.
BD-YOLO can maintain a high detection precision
while reducing the number of MFF module layers.

• The MFF module, which realizes the function of cross-
scale information fusion and greatly improves the accu-
racy of the BD-YOLO model, is devised. MFF uses a
horizontal skipping connection and two additional con-
volution layers to enhance the efficiency of multiscale
feature information sharing.

• Themosaic data enhancementmethod is used to increase
the sample data sets. K-means clustering algorithm is
also used to generate the prior bounding box clustering
center of the dataset with good fitting effect. More fit-
ting data set clustering centers are used to improve the
detection accuracy of BD-YOLO.

• Data sets of three freight train parts, namely, truncated
plug door handle, upper lever, and locking plate, are
annotated. Moreover, the BD-YOLOmodel is applied to
the fault detection of truncated plug door handle closing,
upper lever jumping out, and offset of locking plate. The
experimental results show that the BD-YOLOmodel has
good detection accuracy and robustness.

The remainder of this paper is organized as follows.
Section II introduces related works. Section III describes
the proposed BD-YOLO framework. Section IV presents the
data set, experimental parameters, results, and performance
analysis. Section V summarizes this study and plans for the
future.

II. RELATED WORK
Deep learning models have powerful characterization and
modeling capabilities. Through supervised or unsupervised
training methods, the feature representation of the object
can be learned layer by layer automatically, and the hier-
archical abstraction and description of the object can be
realized. The development of deep learning technology has
greatly promoted the research of object detection and com-
puter vision. The latest methods for common object detec-
tion problems can be simply divided into two categories,
namely, anchor-based and anchor-free methods. Anchor-
based methods include two types, namely, one-stage method
and two-stage method.

One-stage methods include You Only Look Once
(YOLO) [4], YOLOv2 [5], YOLOv3 [6], YOLOv4 [7],
single-shot multi-box detector [8], RetinaNet [9], Efficient-
Det [10], and feature-selective anchor-free [11]. One-stage
method research mainly adopts the idea of regression. For
example, Redmon et al. [4] designed an anchor-free object
detection model called YOLO. YOLO is a unified, real-time
object detection framework, though its detection accuracy
and speed are not as good as those of two-stage method,
which provides a new idea for object detection. Redmon and
Farhadi [5] proposed an improved YOLO model, denoted
as YOLOv2. YOLOv2 uses multiple strategies such as
multi-scale training, batch normalization, and high-resolution
classifiers to improve recall and positioning accuracy while
maintaining classification accuracy. Redmon and Farhadi [6]
also improved backbone network depth and loss function
based on YOLOv2 to obtain YOLOv3. Bochkovskiy et al. [7]
proposed the YOLOv4 object detection model. Compared
with the YOLOv3 model, the backbone network of YOLOv4
is changed from Darknet53 to CSPDarknet53. The feature
feature fusion module of YOLOv4 is spatial pyramid pooling
and path aggregation network (PAN) [12], and the prediction
classification regression layer is still YOLO-Head. In the
YOLO series of models, YOLOv4 has higher detection accu-
racy and faster detection speed than others. Liu et al. [9]
designed a multiobject detection model, RetinaNet, and pro-
posed focal loss to solve the problem of category imbalance in
the training of the one-stage object detector. Compared with
other models, RetinaNet can achieve end-to-end training, and
does not reduce detection speed while improving detection
accuracy. Typical MFF modules include feature pyramid
network (FPN) [9], neural architecture search FPN [13], bi-
directional feature pyramid network (Bi-FPN) [14] and PAN
to achieve rapid feature fusion.

The two-stage method usually refers to the object detec-
tion method based on region proposal, mainly including
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region-based convolutional neural networks (R-CNN) series
methods, such as Fast R-CNN [15], Faster R-CNN [16],
Mask R-CNN [17], T-CNN [18], Cascade R-CNN [19],
Libra R-CNN [20] and other frameworks. Ren et al. pro-
posed a region proposal network (RPN), a merged RPN,
and a Fast R-CNN [15] into a unified network called Faster
R-CNN [16]. Faster R-CNN reduces the computational cost
in the region proposal stage by sharing the convolution fea-
ture. Compared with previous frameworks, the number of
candidate regions extracted by Faster R-CNN is remarkably
reduced, and the quality of the candidate regions is improved
simultaneously. Thus, the performance of the entire object
detection network is improved, and real-time detection is
almost realized. He et al. [17] proposed the Mask R-CNN
instance segmentation framework, which can realize object
detection and object instance segmentation. Cai and Vascon-
celos [19] proposed Cascade R-CNN framework, a multi-
stage framework, where each stage is assigned a different
Intersection over Union (IoU) threshold. Cascade R-CNN can
remove fake samples that are close to real samples stage by
stage and prevent training from overfitting, but stage-by-stage
calculation also leads to a slow detection speed.

In addition, many researchers have carried out many stud-
ies on anchor-free object detection. Huang et al. [21] designed
an end-to-end object detection framework, DenseBox, which
uses a fully connected neural network to detect multiple
different objects accurately. However, the detection accuracy
of DenseBox is not as high as other object detectors using
anchor boxes. Law and Deng [22] proposed the Cornernet
framework, which uses a corner pooling strategy to estab-
lish the relationship between the point and the object posi-
tion. Cornernet uses two key points to replace the anchor
mechanism, which can substantially reduce the number of
parameters and calculation, resulting in fast detection speed.
However, its detection accuracy is not as good as that of
object detectors using the anchor mechanism. Zhou et al. [23]
proposed the CenterNet framework, which uses key points to
find the center point and regress to other object attributes,
such as size, dimension, 3D extent, orientation, and posi-
tion. CenterNet increases detection speed without sacrificing
accuracy. Kong et al. [24] designed a completely anchor-
free object detection framework named Fovea Box. Fovea
Box does not require the use of anchors as a reference
and can detect objects with any aspect ratio and shape.
Tian et al. [25] proposed a pixel-by-pixel object detector
named FCOS base on a fully connected layer. FCOS realizes
anchor-free and proposal-free solutions and puts forward the
idea of center-ness.

Liu et al. [26] developed a composite backbone network
architecture, CBNet, which uses more than one backbone
extraction feature. CBNet combines multiple backbone net-
works to extract more effective features, but leads to decrease
detection speed. Dong et al. [27] designed a framework that
could be embedded into multiple detection models, which
obtain better accuracy and recall rate through the itera-
tion of training process samples from simple to complex.

Cheng et al. [28] proposed an online instance classifier
refinement (OICR) framework to solve the problem of
weakly supervised object detection and proposal generation
and selection. OICR combines selective search and grad-
weighted class activation mapping (Grad-CAM) based on
Grad-CAM technology to generate proposals with higher IoU
than the greedy search strategy. OICR selects more posi-
tive samples and ignores negative samples by enhancing the
loss weight. Tang et al. [29] proposed Weakly Supervised
Object Detection Deep Network (WSOD), which learns and
improves the classifier in the iterative process by generating
proposal clusters. The application of convolutional neural
network based on deep learning in the field of object detection
brings new ideas for TFDS typical fault detection.

Inspired by the YOLO model and Bi-FPN network, this
work proposes a bidirectional YOLO (BD-YOLO) object
detection model for the three types of typical train fault
detection, namely, upper lever jumping out, offset of locking
plate, and truncated plug door handle closing, owing to the
rapid development of object detection models.

Fig. 1 shows the detection of BD-YOLO. First, gray bars
are added to the original input image. Second, the image is
divided into three grids with different scales (13×13, 26×26,
52× 52), which are used to predict large, medium, and small
objects, respectively. When the center of a certain target A
falls in grid G, target A is finally predicted by grid G. Each
bounding box contains five predicted values, namely, x, y, h,
w, and confidence. The (x, y) coordinates represent the center
point of the box; h and w indicate the height and width of
the object to be predicted respectively. Each grid predicts
B bounding boxes, and B is the number of objects. These
boxes will be assigned a confidence level. The confidence
score is equal to the probability of the target object times
the IoU of the prediction bounding box and the ground truth
bounding box, and the range is [0, 1]. When the grid has no
object, the confidence score is 0. Otherwise, the confidence
score is equal to the IoU of the predicted bounding box
and the ground truth bounding box. Finally, the prediction
bounding boxwith the highest confidence is obtained through
nonmaximum suppression (NMS), and the detection result is
obtained.

III. PROPOSED FRAMEWORKS
In this section, the overall structure of the BD-YOLO model
is initially introduced. Then, FEN, FIN, MFF, loss function
of classification regression, and decoding of classification
regression are presented. Finally, the freight train fault image
detection based on BD-YOLO is demonstrated.

A. BD-YOLO
Fig. 2 shows the overall architecture of BD-YOLO, including
FEN, FIN, and MFF, PAS, and decoding five modules.

The first module is FEN, which contains 29 convo-
lutional layers. The model inputs the original image of
416 × 416 pixels into FEN to obtain three effective feature
layers. Each convolutional layer is defined by the structure
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FIGURE 1. BD-YOLO model detection.

of shared parameters (weight vectors and bias) and has the
characteristics of translation invariance. The input and output
of each convolutional layer are 3D arrays, called feature
layers, with a size of H × W × C , where H , W , and C are
the height, width, and number of feature channels, respec-
tively. The three feature layers of FEN output to FIN and
MFF modules are P3 (52, 52, 256), P4 (26, 26, 512), and
P5 (13, 13, 1024). FEN consists of five feature layers, namely,
P1, P2, P3, P4, and P5. FEN input is the original image of
416 × 416 pixels. The three feature layers of PEN output to
FIN and MFF modules are P3 (52, 52, 256), P4 (26, 26, 512),
and P5 (13, 13, 1024) respectively.

The secondmodule is FIN. BD-YOLOperformsmaximum
pooling of four different sizes for the feature layer P5 of the
last FEN layer to integrate the feature information of P5.

The third module is MFF. By adding bottomup, topdown,
and horizontal paths, MFF fuses FEN and FIN modules
to output feature information of feature layers P3, P4 and
P5 of three different sizes. MFF outputs feature layer
P′3 (52, 52, 128), P

′

4 (26, 26, 256), and P′5 (13, 13, 512).
The fourth module is PAS. PAS predicts feature layers P′3,

P′4, and P
′

5 ofMFF output. PAS outputs three feature layers P′′3
(BS, 52, 52, 27), P′′4 (BS, 26, 26, 27), and P

′′

5 (BS, 13, 13, 27)
containing the predicted results. BS indicates batch size. PAS
generates three prior bounding boxes in each feature layer.
Each prior bounding box contains the offset of x, the offset
of y, h, w, and category confidence. The dataset has four
classification labels. Therefore, the third dimension of P′′3 , P

′′

4 ,
and P′′5 feature layer is 3× (5+ 4) = 27.

The fifth module is decoding. The working process of the
decoding module includes three stages: calculation of the
five prediction parameters of the prediction bounding box,
adjustment of the position of the prior bounding box, and
NMS. The decoding module calculates the five predicted
parameters of feature layers P′′3 , P

′′

4 , and P
′′

5 of PAS output. The
decoding module adjusts the center point, width, and height
of the prior bounding box according to the prediction param-
eters. The position of the detection bounding box is obtained
by calculating the offset between the prediction bounding
box and the prior bounding box. The decoding module
removes redundant detection bounding boxes through the
NMS and obtains the detection bounding box with the highest
score.

1) FEATURE EXTRACTION NETWORK
Fig. 3 shows that, FEN consists of one Conv2D-BN-Mish
layer and five Resblock-body layers. Resblock-body consists
of a stack of one down sampling and multiple residual struc-
tures. Convolution block Conv2D-BN-Mish is composed of
Conv2D, Batch Normalization and Mish functions. Mish is
the activation function and defined as follows:

Mish = x × tanh
(
ln(1+ ex)

)
. (1)

Conv2D is the basic convolution block. Batch Normal-
ization can speed up network convergence, prevent gradient
explosion and gradient disappearance, and reduce the occur-
rence of overfitting.
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FIGURE 2. Overall framework.

FIGURE 3. Feature extraction network.

2) FEATURE INTEGRATION NETWORK
Fig. 4 shows the feature integration module. FIN can greatly
increase the receptive field and separate the most remarkable
contextual features. Regardless of input size, FIN can produce
a fixed size output. When the FIN module has completely
performed three Conv2D-BN-Leaky convolutions on the last
feature layer of FEN, maximum pooling is then conducted on
four different pooling cores with different sizes of 13 × 13,
9 × 9, 5 × 5, and 1 × 1.

3) MULTISCALE FEATURE FUSION
The MFF module not only adds topdown, bottomup, and
horizontal paths in each layer but also places an additional
horizontal path in the middle feature layer P4. The P4 feature
layer with dual paths can more effectively aggregate features
with different resolutions.

Fig. 5 shows that the feature layers P3, P4, and P5 with three
scales of 13×13, 26×26, and 52× 52, respectively, are used
to predict large, medium, and small objects.

The output feature Pout3 of feature layer P3 is defined as:

Pout3 = Conv
(
Pin3 + Resize

(
Ptd4
))
, (2)

FIGURE 4. Feature integration network.

where, Pin3 is the input feature layer of P3, Conv is a con-
volution operation for adjusting the number of channels on
the feature layer, and Resize usually represents an increase
or decrease in resolution, that is, upsampling and downsam-
pling. Ptd4 is the intermediate feature layer of P4, which is
calculated as follows:

Ptd4 = Conv
(
Pin4 + Resize

(
Pin5
))
. (3)

Pout4 is the output feature layer of a topdown path, and is
expressed as follows:

Pout4 = Conv
(
Conv

(
Pin4
)
+ Conv

(
Ptd4
)
+ Resize

(
Pout3

))
,

(4)

where Pin4 is the input feature layer of the P4. Two addi-
tional convolutions are added in Pout4 to adjust the number of
channels.

The output feature Pout5 of the feature layer P5 is expressed
as follows:

Pout5 = Conv
(
Pin5 + Resize(P

out
4 )

)
, (5)

where Pin5 represents the input feature layer of P5.
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FIGURE 5. Multiscale feature fusion module.

4) LOSS FUNCTION
CIoU comprehensively considers the IoU, scale, penalty term
and distance between the object and the anchor. Thus, it has
good convergence and avoids divergence problem in training.
IoU (pre, gt) is the ratio of the intersection and union of the
predicted bounding box and the ground truth bounding box.
The function IoU (pre, gt) is expressed as follows:

IoU (pre, gt) =
Intersection(pre, gt)

Union(pre, gt)
, (6)

where Intersection(C,D) is the intersection of C and D;
Union(C,D) is the union of C and D; gt and pre are the
ground truth bounding boxes and predicted bounding boxes
of the object to be detected, respectively.

CIoU can be formulated as follows:

CIoU = IoU
(
b, bgt

)
−
ρ2
(
b, bgt

)
c2

− αυ, (7)

where ρ2
(
b, bgt

)
is the Euclidean distance between the center

point of the predicted bounding box and the ground truth
bounding box, b is the position of the predicted bounding box,
bgt is the position of the ground truth bounding box, and c is
the diagonal distance of theminimumbounding rectangle that
can contain both the predicted bounding box and ground truth
bounding box.

The calculation of positive trade-off parameter α and
parameter υ measuring the consistency of the aspect ratio are
shown in Eqs. (8) and (9), respectively.

α =
υ

1− IoU (b, bgt)+ υ
, (8)

υ =
4
π2

(
arctan

wgt

hgt
− arctan

w
h

)2

, (9)

wherewgt and hgt are the width and height of the ground truth
bounding box, respectively; w and h are the width and height
of the prediction bounding boxes, respectively.

Loss function lossCIoU is calculated as follows:

lossCIoU = 1− IoU
(
b, bgt

)
+
ρ2
(
b, bgt

)
c2

+ αυ. (10)

5) DECODING
Decoding is divided into three steps. Step 1 obtains the
prediction results of three feature layers from PAS. Step 2
calculates the center point coordinates, width, and height
of the detection bounding box. Step 3 inputs the position
and type confidence score of the detection bounding box for
NMS and outputs the detection bounding boxwith the highest
category confidence score.

The center point (bx , by), width bw, and height bh of the
detection bounding box are calculated as follows:

bx = σ (tx)+ cx , (11)
by = σ (ty)+ cy, (12)
bw = pwetw , (13)
bh = pheth . (14)

where tx and ty are the horizontal and vertical coordinates of
the center point of the predicted bounding box, respectively;
tw and th are the width and height of the predicted bounding
box, respectively; pw and ph are the width and height of the
prior bounding box, respectively; cx and cy are the offset of
the distance between the prior bounding box and the upper-
left cell of the image, respectively; σ (x) is the sigmoid(x)
function.

According to Eq. (15), the NMS algorithm filters all
the detection bounding boxes to be detected and selects
the detection bounding box with the highest score. The
input of NMS algorithm includes all detection bounding box
set B = {b1, . . . , bi, . . . , bN }, type confidence score set
S ={S1 . . . Si, . . . , SN } and preset score threshold Nt . NMS
initially traverses sets B and S to find the detection bound-
ing box M with the highest score. Then, NMS calculates
the IoU values of M and other detection bounding box bi.
If IoU(M , bi) is greater than Nt , then bi has a score of 0.
If IoU(M , bi) is less than Nt , then the score Si of bi is
maintained and placed into an empty set D until all detection
bounding boxes are calculated. NMS finally outputs sets D
and S.

Sf , =
{
Si, IoU(M ,bi)<Nt
0, IoU(M ,bi)≥Nt

, (15)

where bi is the ith boxes to be detected, Si is the original score
of bi, Sf is the final score of bi, IoU(M , bi) is the combined
ratio of M and bi, and Nt is the preset score threshold.

B. FAULT DETERMINATION
Fig. 6 shows the object detection of the faulty image of the
freight train. Step 1 inputs the freight train image, extracts
the image features and fusion features through the BD-YOLO
model, and predicts the fault location. Step 2 obtains the
normal images and images with faults by classification. Fault
types are divided into upper lever, locking plate, and truncated
plug door handle.

IV. EXPERIMENTS AND RESULTS
In this section, the data set in the experiment is initially
described, and then the software and hardware configura-
tion of the experimental environment, parameter setting of
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BD-YOLO, and evaluation performance metrics are intro-
duced. Finally, the proposed model is compared and tested
for robustness, and the experimental results are analyzed.

A. EXPERIMENT DATA SET
A total of 11,769 images are randomly selected from the
images collected by the TFDS system to develop a data set.
The dataset uses images of freight trains in the Zhuzhou
Rolling Stock Depot, which are captured by the TFDS system
of China Railway Guangzhou Group Company Limited with
an initial pixel size of 1400 × 1024. LabelImg software is
used to annotate the position of the object bounding box in
the data set to generate XML files, and the data set is set
to PASCAL VOC format. The labels of the data set images
include truncated plug door handle, upper lever, locking plate,
and normal. In this experiment, the training data set and test
data set are randomly divided at a ratio of 9:1. The train-
ing dataset contains 10,589 images, covering all categories
of fault and normal images. The test dataset which named
Test1180 contains 1,180 images.

Test1176 contains 1,176 images, covering three categories
of fault and normal images. In this experiment, the training
data set and test data set are randomly divided at a ratio of 1:1.
In addition, 300 fault images of three types and 100 normal
images, namely, upper lever, locking plate, and truncated plug
door handle, are randomly selected to generate a test dataset,
Test400.

In actual application scenarios, images obtained from
TFDS are susceptible to image distortion due to the influ-
ence of weather and illumination changes. Images in Test400
are flipped or added with noise to simulate the poor out-
door environment. Test400 is processed by adding Gaussian
noise, random noise, salt-and-pepper noise, horizontal flip,
vertical flip, and horizontal vertical flip as well as gen-
erates Test400AddGN, Test400AddRN, Test400AddSPN,
Test400AddFH, Test400AddFV, and Test400AddFHV test
data sets, respectively. The robust test results and analyses
of the BD-YOLO model are introduced in Section IV-E.

B. PARAMETER SETTINGS
The BD-YOLO model is implemented based on Pytorch
framework. All experiments are conducted on a platformwith
GTX1080Ti GPU and 128 GBmemory. The software config-
urations of the experiment platform are as follows: Ubuntu
20.0.0 OS, Python 3.6, Torch 1.2.0, Torchvision 0.4.0,
Cuda 10.0, and Cudnn 7.4.1.5.

In BD-YOLO model training, parameters are set as fol-
lows: learning rate is 0.001, iteration is 100, smooth label is
0.01, and confidence score threshold is 0.5. The BD-YOLO
model uses cosine decay with warm up. The BD-YOLO
model uses freezing training to prevent the weights from
being destroyed at the initial stage of training. BD-YOLO
does not have to start training again even fault occurs.

PAS uses k-means clustering algorithm [30] to aggregate
the same type of initial prior bounding boxes. Different
initial prior bounding boxes affect the results of detection

bounding boxes. Table 1 shows that three groups of different
initial prior bounding boxes of freight train data sets are used
in the experiment. The first type is generated by the YOLOv4
model based on COCO format. The second type is generated
by the YOLOv4 model based on VOC format. The third type
is generated by BD-YOLO based on VOC format.

TABLE 1. Parameters of initial prior bounding boxes cluster center.

C. PERFORMANCE METRICS
Seven performance metrics, namely, recall, precision, aver-
age precision (AP), mean average precision (mAP), F1, log
average miss rate (LAMR), and frames per second (FPS) are
used to evaluate the performance of the BD-YOLO model.
When the confidence score of the sample is greater than the
preset threshold, the sample is judged to be a positive sample.
Otherwise, it is judged to be a negative sample. When a
positive sample sp is predicted to be a positive sample, the pre-
diction result is accurate, and the result is true positive (TP).
When a negative sample sp is predicted to be a negative
sample, the prediction result is accurate, and the result is
true negative (TN). When a negative sample sp is predicted
to be a positive sample, the prediction result is inaccurate,
and the result is false positive (FP). When a positive sample
sp is predicted as negative sample, the prediction result is
inaccurate, and the result is false negative (FN).

1) RECALL
Recall is the ratio of positive samples with accurate predic-
tions to all positive samples with accurate predictions. Recall
is expressed as follows:

Recall =
TP

FN+ TP
. (16)

2) PRECISION
Precision is the ratio between the predicted positive samples
and the actual positive samples. Precision is calculated as
follows:

Precision =
TP

FP + TP
. (17)

3) F1
A contradiction is found between precision and recall. There-
fore, precision and recall results need to be combined. F1 is a
compromise between precision and recall. A higher F1 value
indicates a better detection performance of the model. F1 can
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FIGURE 6. Fault image object detection.

be formulated as follows:

F1 =
2× Precision× Recall

Precsion + Recall
. (18)

4) AP
AP is the average of the precision of a certain category.
A higher AP value indicates a better detection effect of a
certain category. AP can be expressed as follows:

AP =
∫ 1

0
P(r)dr, (19)

where P is precision, r is recall, and P(r) is the maximum
precision corresponding to recall.

5) mAP
mAP is the average of the sum of APs of all categories in the
data set. A higher the mAP indicates a higher average accu-
racy of all categories of the model. mAP can be formulated
as follows:

mAP =
class∑
s=0

APs

/
class, (20)

where s is AP of the class, and class is the number of sample
categories in the data set.

6) LAMR
LAMR represents the logarithmic average false detection
rate. A smaller LAMR indicates a smaller number of false
detections and a better model detection effect. LAMR is
calculated as follows:

LAMR = exp

[
1
n

n∑
h=1

ln ah

]
, (21)

where a1, a2, . . . , ah is the miss rate of n false positive per
image points uniformly distributed between [0.01, 1].

7) FPS
A higher FPS indicates more frames transmitted in a second,
and a faster detection speed of the model. FPS can be com-
puted as follows:

FPS =
frameNum
elapsedTime

, (22)

where frameNum represents the number of frames,
elapsedTime represents a fixed time, and the interval is 1 s.
This experiment calculates FPS by recording the number of
frames within a fixed time.

D. EXPERIMENT RESULTS AND ANALYSIS
Many types of freight train components are available. This
paper mainly focuses on the detection of three typical fault
images of freight train components, namely, truncated plug
door handle, locking plate, and upper lever. In the data set,
the closed truncated plug door handle images are shown in
Figs. 7(a) and 7(b). The normal images of the truncated plug
door handle are shown in Figs. 7(c) and 7(d). The offset of
the locking plate images is shown in Figs. 7(e) and 7(f). The
normal images of the locking plate are shown in Figs. 7(g),
and 7(h). The upper lever jumping out images are shown in
Figs. 7(i), 7(j) and 7(k). The normal images of the upper lever
are shown in Figs. 7(l) and 7(m). There are many types of
image freight train components.

Fig. 8 shows the prediction results obtained through the
BD-YOLO model detection. The truncated plug door handle
in Fig. 8(a) is the closing mark of the truncated plug door
handle. The locking plate in Fig. 8(b) shows the mark of the
offset of the locking plate. The upper lever in Fig. 8(c) is
the mark of the upper lever jumping out. The normal images
of the truncated plug door handle, the locking plate, and
the upper lever are regarded as the normal category and the
normal marks in Figs. 8(d), 8(e), and 8(f). The values next to
all identifiers are category confidence scores.

In this experiment, the mosaic data enhancement method
is used to expand the number of samples during training.
It enables a single image to contain semantic information
from four images. Its specific steps are shown in Fig. 9.
Step 1 randomly imports four images, as shown in Fig. 9(a).
The four imported images are flipped, zoomed, and color
gamut changed, and the size of the image is randomly cropped
in Step 2. The cropped image is placed in four directions,
namely, top left, top right, bottom left, and bottom right,
as shown in Fig. 9(b). Step 3 splices the placed image into
one image, as shown in Fig. 9(c).

Table 2 shows the test results of the BD-YOLO model
in the Test1180. NORMAL indicates the normal category,
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FIGURE 7. Faulty and normal images.

UL indicates the upper lever jumping out category, LP indi-
cates the locking plate deviation category, and TPDH indi-
cates the closed truncated plug door handle category. The
experimental results show that the BD-YOLO model per-
forms effectively in the detection of all categories. Specifi-
cally, the AP of TPDH is 100%, the F1 of UL is 96%, and the
LAMR of TPDH and UL is 0.

When the ratio of training set to test set is 1:1, as shown in
Table 3, the experimental results of the BD-YOLO model on
Test1176 show a slight decrease in detection accuracy, while
reaching the same accuracy. This finding also highlights
BD-YOLO’s ability to achieve equally accurate results when
training with a small scale of images. The feature information
of TPDH is more evident than that of other categories, which
is why AP and F1 values of TPDH are the highest in Table 3.

To verify the performance of the BD-YOLO model,
the detection results of test dataset with the well-known
YOLOv4, CenterNet, EfficientDet, RetinaNet, and Faster
R-CNN models are shown in Table 4. Specially, APNOAML is

the AP of the normal category, APUL is the AP of the upper
lever fault category, APLP is the AP of the locking plate
fault category, and APTPDH is the AP of the truncated door
plug handle fault category. The BD-YOLO model improves
mAP by 22.41%, 19.99%, 17.21%, 12.25% and 9.54%, com-
pared with YOLOv4, CenterNet, EfficientDet, RetinaNet,
and Faster R-CNN, respectively. The FPS of BD-YOLO is
32, and the FPS of CenterNet is 46. Although the FPS of
BD-YOLO is not as good as that of CenterNet, it is faster than
those of the other object detection models. The reason is that
CenterNet is an object detection model based on the anchor-
free method without the calculating anchor. Thus, the FPS of
CenterNet is higher than that of BD-YOLO.

After obtaining the initial prior boxes in Table 1, the
results of the ablation experiment of K-means clustering
algorithm are shown in Table 5. CenterNet is based on the
anchor-free mechanism. Thus, only anchor-based YOLOv4
and BD-YOLO models are selected for comparison. The
experimental results show that the mAP and FPS of the
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FIGURE 8. Detection result under the BD-YOLO model.

FIGURE 9. Mosaic data enhancement example.

TABLE 2. Results for Test1180 on BD-YOLO.

prior bounding box generated by the YOLOv4model without
K-means clustering algorithm are 70.95% and 27, respec-
tively. Compared with a prior bounding box generated by
the YOLOv4 model using the K-means clustering algorithm,
the mAP of prior bounding box generated by the K-means
clustering algorithm is increased by 13.27%, and FPS is
increased by 5. The mAP and FPS of the prior bounding
box generated by the BD-YOLO model without K-means
clustering algorithm are 93.36% and 32, respectively. The
priori bounding box generated by BD-YOLO using K-means

clustering algorithm is improved by 1.19% compared with
the priori bounding box generated without K-means, and FPS
is improved by 2. The experimental results show that the
mAP and FPS of the model can be improved using K-means
clustering algorithm.

E. ROBUSTNESS TEST
1) ROBUSTNESS TEST FOR ADDING NOISE
Table 6 shows the experimental results of the BD-YOLO
model on Test400. Evidently, BD-YOLO performswell in the
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TABLE 3. Results for Test1176 dataset on BD-YOLO.

TABLE 4. Classical model comparison experiment results.

TABLE 5. Results of k-means ablation experiment for different models.

TABLE 6. Results for Test400 on BD-YOLO.

four categories of the train images. The AP of TPDH is 100%,
F1 is 100%, and LAMR is 0%. The experimental results show
that the detection effect of BD-YOLO on Test400 on TPDH
is better than that of the other types of train images.

Table 7 shows the experimental results of the BD-YOLO
model on Test400AddGN. Compared with Test400, the AP of
NORMAL with Gaussian noise under BD-YOLO increases
by 0.14%, F1 is decreased by 1%, and LAMR does not
change. This finding shows that Gaussian noise has aminimal
influence on NORMAL images. Compared with the UL of
Test400, the AP of UL with Gaussian noise is decreased
by 52.80%, F1 is reduced by 47%, and LAMR is increased
by 42%. The BD-YOLO model has a substantial drop in the
detection effect of UL with Gaussian noise because Gaus-
sian noise is densely distributed on the image, covering the
position of the upper lever. The finding evidently shows that
the addition of Gaussian noise also has a great influence on

TABLE 7. Results for Test400AddGN with Gaussian noise on BD-YOLO.

TABLE 8. Results for Test400AddRN with random noise on BD-YOLO.

the detection effect of the BD-YOLO model in detecting the
closing of the truncated plug door handle.

Table 8 shows the test results of the BD-YOLO model
on Test400AddRN. Compared with the UL of Test400, the
AP of UL with random noise is increased by 3.65%, F1 is
increased by 1%, and LAMR is reduced by 1%. Compared
with the TPDL of Test400, the AP, F1, and LAMR of TPDH
with random noise do not change. In general, the BD-YOLO
model slightly improves the fault image detection effect after
adding random noise.
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TABLE 9. Results for Test400AddSPN with salt-and-pepper noise on
BD-YOLO.

Table 9 shows the test results of the BD-YOLO model on
Test400AddSPN. Compared with the UL of Test400, the AP
of UL with salt-and-pepper noise is decreased by 18.32%,
F1 is reduced by 21%, and LAMR is increased by 14%.
Compared with the LP of Test400,the AP of LPwith salt-and-
pepper noise is decreased by 18.98%, F1 is reduced by 10%,
and LAMR is increased by 26%. Although the AP of UL,
TPDH, and LP are decreased after adding salt-and-pepper
noise, the AP of NORMAL is increased by 0.73%.

2) ROBUSTNESS TEST FOR FLIPPING
After flipping the image horizontally, the left and right posi-
tions of the target object are mirrored. Table 10 shows the
experimental results of the BD-YOLO model on the test
set Test400AddFH. Compared with the NORMAL of the
Test400 experiment result, AP of NORMAL after the hori-
zontal flip is reduced by 2.51%, F1 is reduced by 1%, and
LAMR is increased by 2%. The experiment proves that the
horizontal flip has a small effect on the detection effect of
NORMAL. Compared with the UL after the horizontal flip
of the Test400 experiment result, AP of UL is reduced by
30.29%, F1 is reduced by 19%, and LAMR is increased by
29%. The experiment proves that the horizontal flip has a
great influence on the detection effect of UL. Compared with
the LP of the Test400 experiment result, AP of LP after the
horizontal flip is increased by 3.72%, the F1 is increased
by 1%, and the LAMR is decreased by 3%. The experiment
proves that the detection effect of LP is improved after the
horizontal flip. Compared with the TPDH of Test400 experi-
ment results, AP of TPDH after the horizontal flip is reduced
by 8.3%, F1 is reduced by 7%, and LAMR is increased by
11%. Table 10 clearly shows that the horizontal flipping of
the image has a great influence on the detection effect of UL
and TPDH.

TABLE 10. Results for Test400AddFH with flip horizontally on BD-YOLO.

Table 11 shows the experimental results of the BD-YOLO
model on Test400AddFV. Compared with the NORMAL of
Test400, the AP value of NORMAL after vertical flipping
decreases by 5.77 %, F1 is reduced by 3%, and the LAMR

TABLE 11. Results for Test400AddFV with flip vertically on BD-YOLO.

is increased by 9%. Compared with the LP of Test400, the
AP value of the LP after the vertical flipping is reduced by
56.17%, F1 is decreased by 40%, and LAMR is increased by
49%. Table 11 shows that image vertical flipping has a certain
negative effect on UL, TPDH, and LP detection. In general,
the mAP of the BD model is in an acceptable range in this
case.

The horizontal and vertical flipping of the image indi-
cates that the image is flipped horizontally initially and then
vertically. Compared with the original image, the object
changes up, down, left, and right in the flipped image.
Table 12 shows the experimental results of the BD-YOLO
model on Test400AddFHV. Compared with the NORMAL
of Test400, AP of NORMAL after the horizontal and ver-
tical flipping is reduced by 3.06%, F1 is decreased by 2%,
and LAMR is increased by 9%. Compared with the LP of
Test400, AP of LP after the horizontal and vertical flipping is
reduced by 58.57%, F1 is decreased by 46%, and LAMR is
increased by 48%.

TABLE 12. Results for Test400AddFHV with flip horizontally and vertically
on BD-YOLO.

F. RESULTS ANALYSIS
Table 13 shows the experimental results of the robust-
ness test. The mAP of the BD-YOLO model in Test400 is
89.21%. The mAPs of the BD-YOLO model using the test
sets Test400AddGN and Test400AddSPN are 69.23% and
78.07%, respectively. Compared with the mAP of BD-YOLO
in Test400, their mAPs are reduced by 19.98% and 11.14%.
The mAP of the BD-YOLO model in Test400AddRN is
90.09%. The mAP of the BD-YOLO model using the test set
Test400AddRN is increased by 0.88% compared with that in
Test400.

The mAPs of the BD-YOLO model in Test400AddGN
and Test400AddSPN are 19.98% and 11.14% lower than
that in Test400, respectively, due to the dense distribution of
Gaussian noise and salt-and-pepper noise, which seriously
affect the image quality. The random noise distribution is
sparse, which almost does not affect image quality. The
random noise distribution is sparse, which almost does not
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affect the image quality. The mAP of BD-YOLO is slightly
increased in Test400AddRN. The experimental results show
that BD-YOLO model has good noise disturbance.

The mAPs of the BD-YOLO model in Test400AddFH,
Test400AddFV, and Test400AddFHV are 79.87%, 62.57%
and 68.28%, respectively. Theirmaps are 9.34%, 26.64%, and
20.93% lower than those on Test400.

Under the influence of image flipping, the mAP of the
BD-YOLO model is decreased in all data sets after flipping,
and that in Test400AddFV is decreased the most. When the
image is flipped horizontally, the left and right positions of
the object are only mirror changes, without causing a large
change in the position of the object in the image. Therefore,
it has a minimal influence on the mAP of the BD-YOLO
model.

However, when the image is vertically flipped, the upper
and lower positions of the object in the image change greatly,
thus considerably affecting the mAP of the BD-YOLO
model. In general, the average mAP of the BD-YOLO model
in the test sets after flipping is 70.24%, indicating that
the BD-YOLO model can resist the interference of image
flipping.

TABLE 13. Experimental results of robustness tests on BD-YOLO.

V. CONCLUSION
An object detection model for the image fault detection of
freight trains, BD-YOLO, is proposed in this paper. The
proposed BD-YOLOmodel consists of fivemodules, namely,
FEN, FIN, MFF, PAS, and decoding module. FEN is used
to extract the features of the object. FIN and MFF module
are responsible for fusing the extracted features to obtain
more detailed feature information. PAS is responsible for the
output of three different scale feature layers containing the
predicted results. The feature layer obtains the position of the
detection bounding box through decoding. The BD-YOLO
model uses the mosaic data enhancement method to increase
the number of data sets. It also uses K-means clustering
algorithm to generate better prior bounding boxes to improve
the precision of the model. The experimental results show
that the maximum mAP of BD-YOLO in the test data set is
94.55%, and the FPS is 34. Compared with the well-known
YOLOv4, CenterNet, RetinaNet, EfficientDet, and Faster
R-CNN object detection models, the mAP of BD-YOLO
model is improved by 23.6%, 21.18%, 13.94%, 18.4%, and
10.73%, respectively. The BD-YOLOmodel has better detec-
tion accuracy and speed, and enhanced robustness in complex
environments.

BD-YOLO can improve the precision of the fault image
detection of freight trains and realize multifault object detec-
tion. Our next plan is to research on improving detection
speed without reducing detection accuracy.
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