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ABSTRACT This study introduces a novel Parallel Hybrid Island architecture which shows a parallel way to
combine different meta-heuristic algorithms by using the island model as the base. The corresponding hybrid
algorithm is called Parallel Hybrid Island Metaheuristic Algorithms (PHIMA). The hybrid parallel structure
exploits the characteristics of the individual metaheuristic algorithms to boost robustness and diversity. Island
Genetic Algorithm has been combined with Particle Swarm Optimization and Fireworks Algorithm to build
three different PHIMA algorithms: PSO-GA (PHIMA-PGA), FWA-GA (PHIMA-FGA) and FWA-PSO-GA
(PHIMA-FPGA). Further, another implementational variation known as “‘co-evolution” is applied to the
sub-GA islands of PHIMA-FPGA to improve the performance on multi-modal high-dimensional problems.
This variation is referred to as PHIMA-FPGA-Co. Each PHIMA Algorithm exhibits different advantages
and characteristics, and the parallel hybridization using the island model is found to improve robustness and
population diversity. The performances of the four new algorithms are compared with each other and that of
the traditional Island GAs and all four proposed PHIMA algorithms show better result quality.

INDEX TERMS Meta-heuristic algorithms, hybrid algorithms, optimization, genetic algorithm, particle

swarm algorithm, fireworks algorithm, co-evolution, island model.

I. INTRODUCTION

The Genetic Algorithm (GA), found in a wide range of suc-
cessful applications such as helicopter autopilot [1], railway
systems [2], big data [3] and many other areas of modern
technology has gone through many changes over the years.
For instance, Deb [4] tried to use decimal-chromosome GA
to solve multi-objective problems and the proposed algorithm
showed a fast convergence rate. Furthermore, researchers
have paid a lot of attention to the operator improvement in
GA, such as the adaptive probability of crossover and muta-
tion [5], different selection approaches [6] and adaptation
co-evolution for high-dimension problems [7].

Particle Swarm Optimization (PSO), inspired by the swarm
behavior of birds and insects is a popular research topic
and has been successfully applied in many areas, such as
antenna design [8], railway vehicle suspension systems [9]
and parameter optimization for deep learning models [10].

The Fireworks Algorithm (FWA) [11], as its name implies,
borrows ideas from the explosion of fireworks in the night
sky. FWA has been successfully applied in areas such as
power systems [12], image recognition [13], and financial
systems [14].
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The GA, PSO, and FWA metaheuristic algorithms have
received much attention in research and real-world appli-
cations. Although outstanding in their performance, these
traditional metaheuristic algorithms suffer from the problem
of premature convergence, especially in multi-modal and
high-dimensional problems [15], [16]. Many studies have
attempted to improve the performance of these algorithms
by tweaking their internal structures. For example, in 2013,
Melin et al. [17] used three fuzzy systems to adjust the PSO
parameters and proved that this method can improve the opti-
mization results. In 2017, Deng et al. [18] improved the PSO
by applying alpha-stable distribution to update the particles
and used dynamic inertia weight to improve the population
search. In 2013, Zheng et al. [19] improved the simple FWA
by adding new minimal explosion sparks, a new mapping
strategy for out-space sparks and new operations for selection
and Gaussian spark generation.

The memetic algorithm can also be regarded as an
improvement over the meta-heuristic algorithm, because
it combines the meta-heuristic algorithm and local search
approach to achieve a good performance on both exploita-
tion and exploration abilities. For example, in 2019,
Gong et al. [20] proposed an Effective Memetic Algorithm
(EMA) to solve the multi-objective job-shop scheduling
problem (MOJSSP). Based on the simple Memetic Algorithm
(MA), they applied a new hybrid crossover operator (HCO)
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FIGURE 1. (a) GA flowchart (b) PSO flowchart (c) FWA flowchart.

and a new efficient variable neighborhood search approach
(VNSA) to improve the memetic algorithm.

In spite of the detailed improvements, the existing meta-
heuristic algorithms still suffer from several drawbacks such
as slow convergences rate, trapping into local optima, having
complex operators, long computational time, and so on [21].
In particular, they suffer from premature convergence in the
case of multi-modal and high-dimensional problems. Some
researchers have tried to modify their architecture, parame-
ters and improve the partial operators of the algorithm to solve
these weaknesses.

One such approach is to combine different algorithms to
improve their performance. Manasrah and Ali [22] proposed
a hybrid GA-PSO algorithm for cloud computing in 2018.
The algorithm uses GA computations in the first half of the
total iterations (n/2), followed by PSO computations for the
remaining iterations. This hybrid algorithm was compared
with GA, PSO, HSGA, WSGA, and MTCT. The experiments
showed that the proposed algorithm can effectively reduce
the total execution time compared to the other algorithms.
In 2019, Senel et al. [23] proposed a hybrid PSO-GWO algo-
rithm. In PSO-GWO, the particles generated by PSO have
a probability of being further optimized by the grey wolf
optimizer (GWO) before the next PSO iterations. This hybrid
algorithm shows better result quality and faster convergence
speed compared to the simple PSO and GWO. In 2018,
Tam et al. [24] proposed a hybrid GA-ACO-PSO algorithm
for material identification. In this algorithm, the population is
first optimized by the GA, and then further processed by ACO
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and PSO. The role of the ACO and PSO in this algorithm
is to improve diversification and intensification, respectively.
In 2020, Taher et al. [25] improved the GA by using an artifi-
cial bee colony (ABC). The new algorithm called GABC was
tested on random number generation (RNG) and travelling
salesman problem (TSP). The performance of GABC is better
than that of the traditional GA.

However, most hybrid algorithm approaches hybridize dif-
ferent algorithms in series, which means the algorithms or
parts of the algorithms are processed one after another. Only a
few studies have attempted to combine algorithms in parallel.

One example is a novel PSO-GA-based hybrid algorithm
proposed by Shi er al. [26]. The entire population of this algo-
rithm is first divided into two equal parts: one sub-population
corresponds to PSO, and the other corresponds to GA. Each
sub-population processes independently during one single
iteration step. The two sub-populations are then mixed at the
end of each iteration step and moved to the next iteration
step. This algorithm shows an effective performance in the
experiments.

To address the issue of premature convergence in the case
of multi-modal and high-dimensional problems, this paper
introduces a novel method to hybridize algorithms in parallel
using an island model. The island model of GA is one of
the most famous applications of this idea [27]-[29]. Some
researchers have also applied the island model to the PSO to
improve its performance [30], [31].

The new hybrid approach proposed in this study
is called Parallel Hybrid Island (PHI) architecture, the
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FIGURE 2. Flowchart of PHIMA-PGA and its migration.

corresponding hybrid metaheuristic algorithm is called Paral-
lel Hybrid Island Metaheuristic Algorithm (PHIMA). In the
PHI architecture, different algorithms are combined using the
island model. Each algorithm corresponds to one or several
islands, and processes information independently during each
generation for most of the time. Sometimes, the islands share
key information among themselves by using the migration
operation.

By combining PSO and/or FWA to the island GA, three
novel PHIMA algorithms are proposed in this paper: PHIMA-
PGA (PSO and GA), PHIMA-FGA (FWA and GA), PHIMA-
FPGA (FWA, PSO and GA). By combining PSO and/or FWA
into the island GA using PHI architecture, the population
diversity of the algorithm is expected to be enhanced and
therefore, the result quality can be improved. Moreover,
a co-evolution structure is applied to the sub-GA islands
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of the PHIMA-FPGA, to enhance the performance of the
algorithm on high-dimensional problems. The PHIMA-
FPGA with the co-evolution strategy is the fourth PHIMA
algorithm and is referred to as PHIMA-FPGA-Co in this
study.

The multi-population feature of the PHI architecture can
increase the diversification of the algorithm population and
combine the characteristics of the different sub-algorithms.
The experimental results show that in most cases, all four
PHIMA algorithms have better performance in terms of
the result quality compared to the traditional Island GA
algorithm. Additionally, PHIMA-PGA and PHIMA-FPGA
exhibit faster convergence speeds. Finally, the comparison
between PHIMA-FPGA and PHIMA-FPGA-Co proves the
co-evolution structure can improve the convergence speed on
all the proposed benchmark functions.
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FIGURE 3. Flowchart of PHIMA-FGA and its migration.

This paper is organized as follows: Section II briefly
describes the three meta-heuristic algorithms forming the
fundamental building blocks of our new parallel hybrid
algorithm. Section III describes in detail the hybrid island
meta-heuristic structure. Section IV tabulates the results and
discusses their significance. Section V concludes the study
and indicates areas for further research.

Il. METAHEURISTIC ALGORIHTMS

Metaheuristic algorithms are widely used in solving opti-
mization problems. This section briefly describes three
well-known algorithms: Genetic Algorithm, Particle Swarm
Optimization, and Fireworks algorithm, which are used as
fundamental building blocks of the hybrid metaheuristic
described in the next section. The island model and the
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co-evolution strategy are also described at the end of the
section.

A. GENETIC ALGORITHM

The Genetic Algorithm (GA) metaphor was inspired by the
Darwinian theory of evolution. The algorithm mimics the
principle of genetics in the natural world, and produces opti-
mal solutions based on the idea of the survival of the fittest.
It begins with a group of possible solutions called ““individu-
als” or “chromosomes’’. Each chromosome contains several
“genes”’, which define the features of the individual. The
initial chromosomes are randomly generated and evaluated
for their fitness which depends on the objective function. Indi-
viduals with higher fitness values have a higher opportunity
for survival. The selection operation selects better fit individ-
uals from the original population. These individuals are then
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FIGURE 5. Experiment 1 6-Dimension Ackley.

subjected to “crossover’ with a “crossover probability (p.)”
and then “mutation” operations with a ‘““mutation probability
(pm)”. Subsequently, the offspring population is generated
and moved to the next iteration step. The GA population
is allowed to evolve through a predetermined number of
iterations (Fig. 1). In the proposed algorithms, the tournament
selection with size 2, single-point crossover and single-point
mutation operators are used for the GA part.
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FIGURE 6. Experiment 1 6-Dimension Bohachevsky_1.

B. PARTICLE SWARM OPTIMIZATION

The Particle Swarm Optimization (PSO) metaphor is inspired
by how swarms of insects and flocks of birds search for
food in the natural world. Each candidate solution is called
a “particle” in PSO, which corresponds to a single bird
in the flock or an insect in a swarm in the natural world.
By sharing key information, the individuals collaborate to
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FIGURE 9. Experiment 1 6-Dimension Schwefel.

find the “food”, which corresponds to the global solution of
an optimization problem.

In PSO, each particle has two features, velocity and posi-
tion. During each iteration, each particle updates its velocity
and direction based on four parameters: its previous position,
its previous velocity, its own historic optimal position, and
the current global optimal position. The particle velocity and
position updating equations are given in (1) and (2) [32].

Vi = w*xVvi_1 4 c1 % rand() * (pbest,- — x,-)
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+ ¢ * rand() x (gbest — x;) (1)
Xi = Xi—1+vi 2

where, pbest is the historic optimal position for each particle,
gbest is the current global optimal position, v is the particle
velocity, w is the inertia weight, x is the particle position.
c1 and ¢y are learning factors that are constants normally
between 1 and 2, and rand() is a uniform random number
between 0 and 1. To avoid over-large or over-small move-
ments, based on (2), particle velocity bounds are imposed as
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shownin (3), where Thr pso__min and Thr pgo__mayx are the lower
and upper bound respectively. The flowchart of the PSO used
in this paper is shows in Fig.1.

Vi,» Thrpsuimax = |Vi,| = Thrpsuimin

+Thr pso__min»
£Thr pso__max s

Vi, = Vi,| < Thrpsoimin 3)

Vi,| > Thrp.m_max

C. FIREWORKS ALGORITHM
The Fireworks algorithm (FWA) proposed by Tan in
2010 [11] is inspired by the explosion of fireworks in the
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night sky. The first step in the FWA is to generate a group
of random individuals. Each individual called a “spark™ is
evaluated and given a fitness value. During the calculation,
each spark will further generate several sparks for the next
iteration step depending on its fitness value. The spark with a
higher fitness generates more sparks with a shorter explosion
radius, whereas a lower-fitness spark generates fewer sparks
with a longer explosion radius. The explosion radius A; and
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the number of sparks S; are computed using (4) and (5) [11].

A :A* Nf(xi)_)’min+8 (4)
Zi:l (f &) = Ymin) + €
Si= M % Ymax —f (X)) +¢€ (5)

Zg\;] Omax —f (X)) + ¢

where, A and M are the parameters to control the explosion
radius and the total number of sparks respectively. y,q, and
Ymin correspond to the worst individual and best individuals,
respectively, in the case of minimization problems.
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In the real calculation of FWA, a spark sometimes produces
excessive sparks which will slow down the calculation time,
or the value of S; can be lower than 1 and therefore the
information of this spark will be lost. Therefore, S; bounds
are imposed as shown in (6) [19], where a and b are both
constants and a<b< 1. Moreover, similar to equation (3) in
the Section I1.B, to avoid over-small search precision, a lower
precision threshold Thr,, is imposed on the explosion radius
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A; as shown in (7) [19].

round (a* M), S; <aM
S; = round (bxM), S;>bM
round (S;) , other
f i) — Ymin + € ~
N * A,
Ai = Zi:l (f (Axi) - ymin) +e
Thrfya * A,
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A; = Thrfig * A

A; < Thrfiyg %A

(6)
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To incr

ease the diversity of the population, mutation opera-

tion is added. After generating normal sparks, a random spark

will be s
spark are

elected. Then certain dimensions of the selected
subjected to a Gaussian mutation operation to gen-

erate a mutation spark or Gaussian spark. The generation of
a Gaussian spark follows (8).

where, e

®)

is the Gaussian distribution with both mean and

Xik = Xj, * e

variance values equal to 1.
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After the normal sparks and Gaussian spark explosions, the
best spark in the candidate population is directly passed to
the next iteration. The remaining sparks are selected by the
selection operator. Roulette Wheel Selection was used in the
original FWA paper [11]. The selection probability of each
spark is calculated using (9) and (10).

p i) = i)
2 R(x)

R =y d(x—x)=)_ [x—ux]
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where, R (x;) is the total distance from the spark x; to all
other sparks. The equation indicates that the sparks that are
relatively far from other sparks will have a relatively high
probability of being selected. This enhances the diversity
of the population. However, the distance calculation is very
time-consuming, and the computation time would be very
large when the population size increases, such as for some
complex or high-dimension problems.

Therefore, instead of Roulette Wheel selection, Elitism-
Random Selection is used in this study. As the name implies,
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in the Elitism-Random selection, the best solution is directly
passed to the next iteration, and the remaining sparks are
selected randomly. Elitism-Random Selection is a time-
saving approach compared to the Roulette Wheel Selec-
tion [19]. The flowchart of the FWA which used in this paper
is shown in Fig.1.

D. ISLAND MODEL
In the island GA, the whole population is divided into several
sub-population groups called islands. Each island processes
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an entire GA computation independently and periodically
shares fitter individuals between each other for every certain
number of iterations. The sharing of individuals is called
migration and the number of generations is called migra-
tion interval (Mjnservar)- In the proposed model, during the
migration, the top certain percentage (migration ratio, M ysi,)
of the fitter individuals is selected from each island, and a
copy of them replaces the lesser fit individuals in the other
islands. Additionally, an extra elite individual from each
island is transferred to the other islands during migration.
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For convenience, the copy of good individuals and the extra
elite doing the migration is referred to as migration group in
this study.

It has been demonstrated by many researchers that the
island GA improves the convergence rate and result quality
compared to the classic GA [33], [34]. The independence
feature of the island model enables the population to reach a
wide search region with a larger opportunity, thus increasing
the global search ability. Meanwhile, the migration opera-
tion allows the key information to be shared between each
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FIGURE 46. Experiment 3 6-Dimension SumSquares.
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FIGURE 47. Experiment 3 20-Dimension Ackley.

L ]
[ ]
[ ]
[ ]
L}
[ ]
L]

0 100 200 300 400 500
[terations

20-Dimension Bohachevsky —PGA ® ® FGA == =FPGA

FIGURE 48. Experiment 3 20-Dimension Bohachevsky 1.

island so that the algorithm efficiency is maintained or even
increased. The independence feature makes it easy and fea-
sible to hybridize different algorithms using the one island
model system.

E. CO-EVOLUTION

For high-dimensional problems, the traditional GA faces the
problem of a slow convergence rate. The Cooperative Coevo-
lutionary Algorithm can efficiently lower the dimensions
of the problem to improve the performance on large-scale
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FIGURE 49. Experiment 3 20-Dimension Griewank.
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FIGURE 50. Experiment 3 20-Dimension Schaffer.
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FIGURE 51. Experiment 3 20-Dimension Schwefel.

problems [7]. It consists in dividing the high-dimensional
problem into several subproblems with relatively low dimen-
sions. All subgroups evolve independently and solve the
problem cooperatively. In the proposed model, the entire GA
population (GA“"ned) js equally divided into two sub-GAs,
subGA! and subGA?, based on the dimensions. Each sub-GA
performs selection, crossover, and mutation independently.
During the fitness calculation operation, an elite individual
(elite'") is selected. This elite’®@ refers to the current global
best solution for the entire population. The individuals from
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FIGURE 52. Experiment 3 20-Dimension SumSquares.
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FIGURE 53. Experiment 3 50-Dimension Ackley.
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FIGURE 54. Experiment 3 50-Dimension Bohachevsky 1.

the first-half-dimension population (subGA') are combined
with the last-half-dimension part of elite individuals (elite®)
to perform the fitness evaluation. Similarly, the individuals
from the last-half-dimension population (subGA?) are com-
bined with the first-half-dimension part of elite individuals
(elite") during the fitness evaluation. The new elite individ-
uals are updated when all individuals from both the sub-
GA populations are evaluated. Then each sub-GA population
performs selection, crossover and mutation independently
and continues to the next iteration. In Experiment 2, the
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FIGURE 55. Experiment 3 50-Dimension Griewank.
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FIGURE 56. Experiment 3 50-Dimension Schaffer.
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FIGURE 57. Experiment 3 50-Dimension Schwefel.

performance of the models with and without the Coopera-
tive Coevolutionary strategy is compared. The experimental
results show that the Cooperative Coevolutionary algorithm
provides improvements in both convergence speed and result
quality. The pseudocode code for a Cooperative Coevolution-
ary Algorithm with two sub-GAs is shown below:

(1) Start

(2) Initialization of subGA' population group

(3) Initialization of subGA? population group
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FIGURE 58. Experiment 3 50-Dimension SumSquares.

(4) Random combination of subGA' and subGA? to gener-
ate GA“bined population group

(5) Fitness evaluation of GAcmbined

(6) Find the current best individual elite™® from
G Acombined

(7) Divide elite’® into elite' and elite*

(8) While Stop condition is not met:

(9) Fitness evaluation of population subGAi1 by using elite?

(10) Fitness evaluation of population subGAi2 using elite!

(11) Find one current best individual eliteﬁ?l from subGA|
and subGAi2

(12) Divide elite!’®{! into elite] | and elite}

(13) If the stop condition is satisfied:

(14) Output the result, Go to (23)

(15) Else:

(16) subGAil selection, generate subGAi1 1

(17) subGAi2 selection, generate subGA? 1

(18) Crossover of subGA} 1

(19) Crossover of subGAlZ+1

(20) Mutation of subGA!_

(21) Mutation of subGA?,

(22) Go to (8)

(23) End

Ill. HYBIRD-ISLAND MERAHEURISTIC STRUCTURE

In 2003, Osaba et al. [35] introduced a novel approach for
the island GA model which contains several sub-GA islands
with different crossover functions and dynamic crossover
probabilities. From their experimental results, they proposed
that ““the multi-crossover feature enhanced diversification,
allowing a broader exploration”, because different crossover
operations have different ways to explore the search space
of the optimization problems. Similarly, different algorithms
also have different ways to explore the search space.

Based on this idea, we propose a new hybrid architec-
ture called the Parallel Hybrid Island (PHI) architecture.
This approach uses the island model to combine different
algorithms. The corresponding hybrid algorithms are called
Parallel Hybrid Island Metaheuristic Algorithm (PHIMA).
In PHIMA, each sub island corresponds to an algorithm that
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computes independently and then shares the key information
during the migration operation. This parallel hybrid architec-
ture can combine characteristics from different algorithms.
The hybridization of populations from the different algo-
rithms can improve population diversity because different
algorithms have different evolution trails.

In this study, island GAs has been combined with PSO
or/and FWA to form four PHIMAs: PHIMA-PGA (PSO and
GA), PHIMA-FGA (FWA and GA), PHIMA-FPGA (FWA,
PSO and GA) and PHIMA-FPGA-Co (PHIMA-FPGA with
co-evolution).

In all four proposed PHIMAs, the number of GA islands
is always larger than that of the other algorithms, making it
the main body of the hybrid algorithm. The reason is that
GA has a comprehensive and stable performance compared
to PSO and FWA. Through experimentation, it is found that
the proposed PHIMA algorithms with two sub-GA islands
show better robustness compared to that with only one sub-
GA island. PSO and FWA form the additional components
of the new hybrid algorithm. Compared to GA, PSO has
the advantages of faster convergence speed [36] and better
local search ability [37]. The spark explosion of the FWA
can further improve the diversity of the PHIMAs. Compared
to the PSO and GA, FWA has a more stochastic way to
update the search agents, because the new spark generation is
random. Therefore, FWA is expected to further improve the
diversity of the PHIMAs. By replacing the PSO and FWA, the
PHIMA is expected to obtain different characteristics.

A. PHIMA-PGA

PHIMA-PGA is a 3-hybrid-island algorithm composed of
two sub-GA islands and one sub-PSO island. Each island per-
forms the optimization process independently and migration
occurs every two iterations (M, servai = 2). The M4, 1s equal
to 2% for every island. Fig. 2 shows the flowchart of PHIMA-
PGA and the migration process. As illustrated in Fig. 2, the
migration process occurs from GAl to GA2, GA2 to GAl
and PSO to GA1 and GA2. The sub-PSO island only donates
the copy of the migration population to the sub-GA islands.
Moreover, during the migration, the sub-PSO island collects
the information of the current global best solution, ebest,
of the entire system of PHIMA-PGA system for updating the
particle positions in the next iterations. The iteration equa-
tions of PSO ((1) and (2)) are accordingly modified into (11)
and (12).

Vi = Wk vi_| + ¢y *x rand() * (pbesti — xi)
+c2 * rand() x (gbest — x;)

+c3 * rand() * (ebest — x;) (11)
Xj = Xj—1 + Vi (12)
B. PHIMA-FGA

PHIMA-FGA is a 3-hybrid-island algorithm composed
of two sub-GA islands and one sub-FWA island. Like
PHIMA-PGA, each island performs the optimization process
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independently and migration occurs for every two itera-
tions (Mintervat = 2). The M,4io is equal to 2% for every
island. Migration occurs between every island, which means
that every island donates the migration population to all
other islands. Roulette Wheel Selection is replaced with the
Elitism-Random selection. Fig. 3 shows the flowcharts of
PHIMA-FGA and its migration process.

C. PHIMA-FPGA

PHIMA-FPGA is a 4-hybrid-island algorithm composed of
two sub-GA islands, one sub-PSO island and one sub-FWA
island. Migration occurs for every 2 iterations (Minservar = 2).
The M4, equals 1.2% for every island. Fig. 4 shows
the flowcharts of PHIMA-FPGA and its migration process.
During migration, two sub-GAs and sub-FWA islands donate
migration populations to each other. The sub-PSO island
only donates the migration population to the other three
islands and collects the information of ebest from the overall
system to update the position of individuals by using (11)
and (12). In PHIMA-FGA, too, Elitism-Random Selection is
used instead of Roulette Wheel Selection.

D. PHIMA-FPGA-CO

The co-evolution system is used on two sub-GA islands of
the PHIMA-FPGA to build the PHIMA-FPGA-Co algorithm.
For each sub-GA island, the entire population is equally
divided into two smaller groups based on their dimensions.
The addition of co-evolution is expected to improve the
performance of the algorithm for high-dimensional prob-
lems. PHIMA-FPGA and PHIMA-FPGA-Co share the same
parameters in this study.

IV. EXPERIMENTS

In the experiments, six objective functions [38] with dimen-
sions of 6, 20 and 50, have been used as shown in Table 1. For
every algorithm, each objective function is tested 20 times to
obtain an average result for robustness.

Instead of error, the fitness has been used to indicate the
result quality. The fitness can be computed from the error
using (13). Using the fitness can decrease the weight of
extremely bad results and therefore reduce the noise during
the result analysis.

100

fimess = 1 4+ error (15
A. EXPERIMENT 1
In this paper, PHI architecture is expected to improve the
performance of island GAs by introducing PSO and/or FWA
to the island GAs. In Experiment 1, the performance of
PHIMA-PGA and PHIMA-FGA is compared to that of the
3-island GA (3iGA) to prove this idea. In all three algorithms,
the total population size is equal to the dimensions D x 72.
The total population size is equally divided among the three
sub islands, making the population size of each island D x 24.
The algorithms terminate on completing 500 iterations. The
rest of the parameters are listed in Table 2. These parameter
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TABLE 1. Objective functions.

TABLE 2. Experiment’s parameters.

settings are also used in Experiments 2 and 3. The results of
Experiment 1 are shown in Fig. 5 to Fig. 22. The final fitness
values for each algorithm after completing 500 iterations are
listed in Table 3.

The convergence speed and result quality of PHIMA-
PGA and PHIMA-FGA are better than 3iGA in most

VOLUME 10, 2022

Algorithm Parameter Value
Ackley p— GA L, 15/dimension
f(x) =20-20exp| —0.2 —Z X2 |+e GA Pc 70%
N i=1 GA Pm 10%
1 PSO w 0.5
—exp (NZ-_ cos(an,-)) PSO c 1.5
=t PSO c, 1
PSO s 1
PSO Thtpso max rangeuy — rangeaown
x; € [-32.768,32.768] x; = 0. ) 20
PSO ThTse min 0.01
Vie{1..N},f(x) =0. FWA A 100
FWA M 10
FWA a 0.1
SumS N
UmSQUATe ey = Z ix? FWA b 0.9
i=1 FWA Thtfwg 0.01
x; € [-5.12,5.12] x; = 0.
Vie{l..N},f(x) =0. TABLE 3. Experiment 1 fitness.
Schwefel | f(x) = 418.9828872724339 - N 6 Dimension
N
—Z xsin (y/Txi) PGA FGA 3iGA
=t Ackley 99.6 99.66 95.99
SumSquares 100 100 100
x; € [100,500] x; = 420.96874636. Schwefel 100 999 4501
Greiwank 95.03 95.52 90.31
vi e{1..N}, f(x) =0. Bohachevsky 1 99.96 99.84 95.4
Schaffer 79.6 67.88 4338
Gri k 1 N N X; i i
riewan Flx) = Z x,? _ 1_[ cos (_,) 1 20 Dimensions
4000 L=y i=1 Vi PGA FGA 3iGA
Ackley 99.6 79.85 39.62
x; € [-100,100] x; = 0. SumSquares 100 100 100
Schwefel 81.81 98.84 7.14
Vie{1..N}f(x) =0. e
Bohacke- Greiwank 97.32 98.09 97.42
vsky 1 N-1 Bohachevsky 1 97.72 99.19 91.48
f@x) = Z,_l (xf +2x%1 — 0.3 cos(3mx)) Schaffer 35.14 16.05 8.54
—0.4cos(4mx;) + 0. 7) 50 Dimensions
PGA FGA 3iGA
Ackley 49.99 47.21 39.92
x; € [~100,100] x; = 0. SumSquares 100 99.9 99.99
Schwefel 90.19 99.9 0.59
vie{l..N}f(x) =0. Greiwank 99.27 99.93 99.86
Bohachevsky_1 95.04 95.95 87.9
Schaffer -1, 2 s
Fo) = Z (2 + x%,,)02 Schaffer 10.67 2.85 1.73
i=1
- [sin?(50 - (x? + x2,1)°1°) + 10]
x; € [-100,100] xi = 0. cases, except for the 50-dimension Griewank (Fig. 19),
20-dimention SumSquares (Fig. 16) and 50-dimension Sum-
vie{l.N}f(x)=0. Squares (Fig. 22). The result quality of PHIMA-PGA on

50-dimension Griewank is slightly inferior to that of 3iGA,
the convergence speed of PHIMA-FGA on 20-dimension
and 50-dimension SumSquares is slower than that of
3iGA. In addition, the result quality of PHIMA-FGA on
50-dimension SumSquares is worse than that of 3iGA. The
SumSquares is a single-pole, smooth and symmetric function.
Its simple terrain can be used to test the convergence speed of
the algorithms. The slow convergence speed of PHIMA-FGA
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TABLE 4. Experiment 2 fitness.

TABLE 5. Experiment 3 fitness.

6 Dimensions 6 Dimensions
FPGA FPGA-Co 4iGA PGA FGA FPGA
Ackley 99.7 99.66 78.92 Ackley 99.6 99.66 99.7
SumSquares 100 100 100 SumSquares 100 100 100
Schwefel 100 100 47.3 Schwefel 100 99.9 100
Greiwank 96.13 97.23 91.36 Greiwank 95.03 95.52 96.13
Bohachevsky 1 99.94 99.93 98.32 Bohachevsky 1 99.96 99.84 99.94
Schaffer 77.51 77.59 43.55 Schaffer 79.6 67.88 77.51
20 Dimensions 20 Dimensions
FPGA FPGA-Co 4iGA PGA FGA FPGA
Ackley 99.6 99.6 47.38 Ackley 99.6 79.85 99.6
SumSquares 100 100 100 SumSquares 100 100 100
Schwefel 99.83 99.94 8.24 Schwefel 81.81 98.84 99.83
Greiwank 97.63 98.55 92.65 Greiwank 97.32 98.09 97.63
Bohachevsky 1 99.19 99.18 93.38 Bohachevsky _1 97.72 99.19 99.19
Schaffer 35.52 34.98 12.12 Schaffer 35.14 16.05 35.52
50 Dimensions 50 Dimensions
FPGA FPGA-Co 4iGA PGA FGA FPGA
Ackley 49.66 93.61 39.39 Ackley 49.99 47.21 49.66
SumSquares 100 100 99.96 SumSquares 100 99.9 100
Schwefel 92.03 98.29 0.77 Schwefel 90.19 99.9 92.03
Greiwank 99.22 99.64 97.06 Greiwank 99.27 99.93 99.22
Bohachevsky 1 96.46 96.46 80.71 Bohachevsky 1 95.04 95.95 96.46
Schaffer 11.63 15.17 2.6 Schaffer 10.67 2.85 11.63

on the SumSquares function indicates that the sub-FWA
island will have a negative effect on the convergence speed.
Moreover, PHIMA-PGA shows a better convergence speed
than PHIMA-FGA for all functions in all dimensions.
Moreover, in most of the proposed cases, the result qual-
ity of PHIMA-PGA is better than that of PHIMA-FGA,
except 6-dimension Ackley (Fig. 5) and Griewank (Fig. 7),
20-dimension Bohachevsky_1 (Fig. 12), Griewank (Fig. 13)
and Schwefel (Fig. 15), 50-dimension Bohachevsky_1
(Fig. 18), Griewank (Fig. 19) and Schwefel (Fig. 21).
Griewank and Schwefel are functions that have large num-
ber of local optimal solutions. Bohachevsky_1 function has
a large number of vibrations caused by the term “0.3cos
(3mx; )-0.4cos(4mx;)”. This type of oscillations can be con-
sidered as local optima where the algorithm easily gets stuck.

B. EXPERIMENT 2
For the same purpose as Experiment 1, in Experiment 2,
PHIMA-FPGA and PHIMA-FPGA-Co are compared with
4-island GA (4iGA). In all three algorithms, the total pop-
ulation size is equal to Dx72, and the total population size
is equally divided among the four sub-islands. Therefore, the
population size for each island is equal to Dx 18. The algo-
rithms stop at the 500th iteration. The rest of the parameters
are listed in Table 2. The results of Experiment 2 are shown in
Fig. 23 to Fig. 40. The fitness results are presented in Table 4.
Both PHIMA-FPGA and PHIMA-FPGA-Co show an
apparently better performance compared to the 4-island
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GA in terms of convergence speed and result quality for
all the proposed cases. Compared to that of PHIMA-
FPGA, PHIMA-FPGA-Co shows better performance in
terms of convergence speed for all the proposed 6-dimension
and 20-dimension functions and a significantly improved
performance on convergence rate for 50-dimension func-
tions. Moreover, the result quality of PHIMA-FPGA-Co
is slightly better than that of PHIMA-FPGA in most
cases, except 6-dimension Ackley (Fig. 23), 6-dimension
Bohachevsky_1 (Fig. 24), 20-dimension Bohachevsky_1
(Fig. 30), 20-dimension Schaffer (Fig. 32) and 50-dimenson
Bohachevsky_1 (Fig. 36). Moreover, the result quality has
significantly improved for 50-dimension Ackley (Fig. 35).

C. EXPERIMENT 3

In Experiment 3, the results of PHIMA-FPGA from Exper-
iment 2 are compared with those of PHIMA-PGA and
PHIMA-FGA from Experiment 1. The comparison results of
Experiment 3 are shown in Fig. 41 to Fig. 58. The fitness
results are presented in Table 5.

In terms of 6-dimension functions, except for the
6-dimension Schaffer (Fig. 44), the graphs of PHIMA-FPGA
and PHIMA-PGA nearly coincide. For 20-dimension func-
tions, the convergence speed of PHIMA-FPGA is slightly
slower than that of PHIMA-PGA, but its result quality
is better than that of PHIMA-PGA for all the proposed
20-dimension functions. For 50-dimension functions, the
convergence speed of PHIMA-FPGA is faster than that
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of PHIMA-PGA, and shows better result quality on
Bohachevsky_1 (Fig. 54), Schaffer (Fig. 56) and Schwe-
fel (Fig. 57) functions. However, its result quality on
50-dimension Ackley (Fig. 53), Griewank (Fig. 55) and Sum-
Squares (Fig. 58) is slightly inferior to that of PHIMA-PGA.

Compared with PHIMA-PGA and PHIMA-FPGA,
PHIMA-FGA has the slowest convergence speed for all the
proposed cases. However, it has the best result quality on
20-dimension Griewank (Fig. 49), 50-dimension Griewank
(Fig. 55) and 50-dimension Schwefel (Fig. 57).

D. RESULT AND ANALYSIS

All the novel hybrid algorithms show better result qual-
ity compared to the traditional island GA. Judging from
the results, it can be concluded that using the proposed
PHI architecture to hybrid island GAs with PSO and/or
FWA can significantly improve the algorithm performance
compared to the classic island GA. Also, the character of
the PHIMA varies with the changes of algorithms combi-
nations. The PHIMA-PGA has a significant advantage in
terms of convergence speed, while PHIMA-FPGA has the
best comprehensive performance on the result quality. More-
over, one merit for the PHIMA is, because each island in
the island model is relatively independent, it is easy to
apply improvement approach to some of the islands with-
out influence the others. The comparison between PHIMA-
FPGA and PHIMA-FPGA-Co in the experiment 2 proves the
co-evolution structure can improve the convergence speed
on all the proposed benchmark functions. It is also found to
improve the result quality for most of them.

V. CONCLUSION

To address the issue of premature convergence in multi-
modal and high-dimensional problems, this study proposed
a novel hybridization approach that uses the island model
to combine different meta-heuristic optimization algorithms
in parallel. The proposed approach is called Parallel Hybrid
Island (PHI) architecture and Parallel Hybrid Island Meta-
heuristic Algorithms (PHIMA). In the experiments, four
newly developed PHIMA algorithms, namely, PHIMA-PGA,
PHIMA-FGA, PHIMA-FPGA, and PHIMA-FPGA-Co are
tested on six benchmark functions: Ackley, Sumsquare,
Schwefel, Griewank, Bohachevsky_1 and Schaffer in 6,
20 and 50 dimensions. The performances of these four algo-
rithms are compared with one another and with that of
the traditional island GA. The experiment result shows that
the proposed PHI architecture is an effective improvement
approach compared to the traditional island GA.

PHI architecture owes its success to the judicious com-
bination of the salient characteristics of different algorithms
that contributes to the population diversity. Its parallel search
mechanism simultaneously handles the balance between
exploration and exploitation. The PHI architecture proposed
a new concept for hybridizing different metaheuristic algo-
rithms. The independent computation among the islands
makes it easy to hybridize different metaheuristic algorithms
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(and their variants) or add different structures, such as
co-evolution and memetic algorithm. One of the greatest
advantages of this novel parallel hybrid method is that it puts
no limit on the number of algorithms that can be hybridized.

The study reported the results based on the values of the
hyperparameters obtained through a brief pilot study. Opti-
mization of the hyper-parameters [39]-[41] such as M, 4o,
Minserval, and so on, although has the potential of further
improving the performance of the proposed parallel hybrid
algorithm, is itself not the main objective of this study.

As a sequel to this study, three further improvements are
expected. First, in this study, the co-evolution structure is
applied only to the sub-GA islands. The co-evolution struc-
ture can also be experimented on sub-PSO and sub-FWA
islands. Second, it is possible to find a better island structure
to combine these three algorithms. Finally, through experi-
mentation, it is found that the new hybrid algorithms show
different characteristics depending on the individual algo-
rithms used in the parallel hybrid structure. Therefore, it is
expected to further extend this idea to combine a variety of
algorithms, especially the state-of-the-art algorithms of the
moment, to develop a more robust PHIMA that can handle
real-life higher dimensional problems.
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