
Received March 29, 2022, accepted April 5, 2022, date of publication April 8, 2022, date of current version May 26, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3165815

Hybrid Entropy in the Time-Frequency Domain
for Grading Electrode Sediment Identification
WEIHUA CHEN1, HONGQIANG CHEN 1, XIAOHENG YAN 1, YANJU YANG2, AND SHIWEI JIN3
1Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao 125105, China
2School of Electronic Information and Electrical Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
3State Grid Liaoning Maintenance Company, Shenyang 110003, China

Corresponding author: Xiaoheng Yan (xiaohengyan@163.com)

This work was supported in part by the Scientific and Technological Research and Innovation Team Project of Liaoning Provincial
Department of Education under Grant LT201900, and in part by the Science and Technology Project of State Grid Corporation of China
under Grant SGLNJX00YJJS2100620.

ABSTRACT The traditional manual periodic screening method of grading electrode sediments is prone to
cause the equipment failure of high voltage direct current converter valves. Therefore, we propose to use
ultrasonic time-domain reflection method to detect the sediments. However, the ultrasonic echo signals are
characterized by nonlinearity and nonsmoothness, which makes it very difficult to extract effective features
for sediment detection. To address this issue, we propose an intelligent detection method based on multiscale
hybrid entropy characteristics in the time-frequency domain. First, a multiscale decomposition of the signal
is performed. Second, the weighted form factor index is proposed to select the noise modes. Moreover,
we propose to calculate the hybrid entropy in the time-frequency domain of each mode as the characteristic
input bidirectional long and short-term memory network model, and verified that feature enhancement can
be achieved by noise modes noise reduction. Finally, the experimental validation shows that the proposed
method can achieve nondestructive testing and intelligent identification of graded electrode sediment with a
correct identification rate of 94.25%.

INDEX TERMS Electrodes, electrical fault detection, entropy, feature extraction, neural networks, nonde-
structive testing, noise reduction, sediments, signal detection, signal processing.

I. INTRODUCTION
Grading electrodes are key devices for mitigating electrolytic
corrosion in the cooling system of high voltage direct current
(HVDC) converter valves. As cooling system radiator cor-
rosion leads to sediment deposition on grading electrodes,
the breakage and falling of sediments lead to pipeline block-
age, equipment overheating and other problems, causing a
threat to the safe operation of the HVDC converter valve
equipment [1]–[3]. For this reason, researchers have inves-
tigated the mechanism of sediment deposition on grading
electrodes. Wang et al. [4] investigated the mechanism of
sediment deposition on grading electrodes in cooling water
dielectric of high voltage (HV) converter valve and the
method of suppression. Song et al. [5] proposed an elec-
trochemical diffusion coupling model to study the sedi-
ment deposition behaviour on the electrode surface. The
results indicated that the maximum sediment thickness and
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concentration are occurred in the tip section of electrode
surface. Wang et al. [6] investigated the distributing charac-
teristics of sediment deposited on pin-type grading electrodes
in Inner cooling circuit of HV converter valve and indicated
that the deposition degree of the sediment is mainly dom-
inated by the electrical current through the pin-type grad-
ing electrode. Yang et al. [7] investigated the phenomenon
and mechanism of deposition on platinum electrodes in
HVDC converter valves, and indicated through simulation
experiments and numerical calculations that the deposited
sediment on the platinum electrode is rod-shaped and that
the growth rate of sediment thickness decreases with time.
However, the above studies did not investigate the detec-
tion and identification of sediment at the grading electrodes.
Therefore, the detection of sediment at the grading electrodes
is the key to the research of this paper. At present, the
method of manually screening the electrodes individually is
mainly used to observe the sediment condition of the grad-
ing electrode. This traditional method easily causes equip-
ment leakage due to disassembly and reassembly of pipes,
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which leads to problems such as equipment short circuits.
To achieve nondestructive detection of pipe defects, numer-
ous studies have focused on the use of electromagnetic
acoustic transducers (EMATs) [8], circumferential Lamb
waves [9], and ultrasonic guided waves [10]. However, the
above methods can only detect defects on or near the surface
of the workpiece, and are no longer applicable to the inspec-
tion of grading electrodes located inside composite pipes.
For the detection of sediment in pipes, many scholars have
used ultrasonic time-domain reflectometry (UTDR) to obtain
sediment echo signals for quantitative analysis [11]–[14].
This method enables fixed-point detection of the object under
test [15], [16]. Therefore, it meets the requirements of grading
electrode sediment detection. However, the method requires
the inspectors to further identify the sediment condition based
on the sediment echo vibration characteristics and discrimi-
native experience, and problems such as unclear signal char-
acterization and manual misdetection as well as inspection
misses. Intelligent identification and detection of sediment
signals are not achieved. Moreover, the sediment echo signal
is nonlinear and nonsmooth in nature, and is easily disturbed
by noise, thus increasing the difficulty of sediment echo sig-
nal feature extraction and identification. Therefore, effective
characterization of the features of the sediment echo signal
under noise interference is key to realizing intelligent identi-
fication of the sediment condition of the grading electrode.

To extract effective features of nonstationary signals, the
traditional statistical properties in the time and frequency
domains cannot meet the requirements, but entropy theory
can be introduced to effectively evaluate the complexity and
irregularity of the signal [17]–[19]. Entropy-based meth-
ods have been introduced to nondestructive testing (NDT)
and diagnosis, including approximate entropy [20], sample
entropy [21], fuzzy entropy [22], and multiscale entropy [23].
Due to the attenuation characteristics of ultrasonic waves
during propagation, the echo signal shows amplitude and
energy attenuation phenomena [24]–[26], so the degree of
grading the electrode sediment can be assessed by extracting
the entropic features reflecting the changes in signal ampli-
tude and energy. Azami et al. [27] proposed fluctuation-
based dispersion entropy (FDE) on the basis of dispersion
entropy, which takes into account the differences in the dis-
persion patterns of neighbouring units and fully considers
the variation between amplitudes from the time-domain per-
spective to avoid the loss of useful amplitude information.
Ke et al. [28] proposed a hierarchical fluctuation disper-
sion entropy to measure the internal dynamics of the sig-
nal based on the fluctuation-based dispersion entropy and
verified the effectiveness of the method in common rail
injector fault feature extraction. Li et al. [29] defined the
Hilbert marginal spectrum energy entropy(HMSEE) based on
the Hilbert marginal spectrum using the concept of entropy,
which can be used to effectively characterize the amplitude
change of the signal at an instantaneous frequency from the
frequency domain perspective. Yang et al. [30] extracted the
Hilbert marginal spectral energy entropy as a feature vector

to assess the mechanical fault state of circuit breakers in
power systems and showed the effectiveness of the proposed
method. However, the above studies only extract the entropy
features of the signal from a single perspective in the time
domain or frequency domain, and does not consider both the
time and frequency domains simultaneously, which results
in inadequate signal characterization. Therefore, we propose
to use the fluctuation-based dispersion entropy and Hilbert
marginal spectral energy entropy to form a hybrid entropy as
features to achieve adequate extraction of signal features from
both time and frequency domains.

Moreover, most of the above studies use limited single-
scale analysis, ignoring the information embedded in the
multiscale features of the signal, which is prone to the loss of
fault information. In view of the above facts, Costa et al. [31]
and Aziz et al. [32] introduced multiscale entropy (MSE)
and multiscale replacement entropy (MPE), respectively,
to assess the irregularity of time series and overcome the
drawbacks of entropy-based estimation methods that con-
sider only a single scale. Many scholars use empirical mode
decomposition (EMD) to perform multiscale decomposi-
tion of signals by extracting the entropy values of different
scales of modes as the feature vectors for fault diagnosis.
Ji et al. [33] proposed an empirical mode decomposition-
refined composite multiscale dispersion entropy analysis
(EMD-RCMDEA) and verified the validity and stability of
the method. Xie et al. [34] proposed to apply EMD to
decompose the signal and extract the entropy of the effective
modes as features for fatigue and fault pattern recognition of
fan blades. However, EMD is prone to the phenomenon of
mode confusion during the decomposition process. Based on
this, variational mode decomposition (VMD) can be used to
efficiently decompose the nonstationary signal into intrinsic
mode functions (IMFs) of different scales [35] and overcome
the flaws of the EMD method; its advantages in dealing
with nonsmooth signals have been demonstrated in previous
studies. Ni et al. [36] proposed a fault information-guided
VMD (FIVMD) method for extracting the weak bearing
repetitive transient and proposed the ratio of fault character-
istic amplitude (RFCA) to optimize the VMD decomposition
parameters. Huang et al. [37] proposed to analyze the acous-
tic signal of defects inside an arc magnet using a combina-
tion of variational mode decomposition and beetle antennae
search, and proposed to optimize the VMD parameters using
beetle antenna search. Liu et al. [38] proposed a signal anal-
ysis method combining variational modal decomposition and
detrended fluctuation analysis (DFA), and proposed a simple
criterion based on DFA to select the number of modes. In this
paper we achieve the optimization of VMD performance by
determining the number of modes based on a simple criterion
of the centre frequency method.

After decomposing the signal into different scale modes
using VMD, filtering out the noise modes is key to achieving
signal noise reduction and feature enhancement. In [39], [40],
the authors used the correlation coefficient method for noise
mode selection, but the conventional correlation coefficient
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method is vulnerable to noise interference, and a single indi-
cator does not fully interpret the fluctuating characteristics
of the signal, making it is less effective in distinguishing
noise modes. In [41], [42], the authors applied the weighted
kurtosis index for noise mode selection of vibration shock
signals, since the WKI takes into account the advantage
of the high sensitivity of the kurtosis index to the shock
component of the vibration signal, the combination of the
correlation coefficient and the kurtosis index improves the
accuracy of the noise mode screening of the vibration shock
signal. However, this criterion is not sensitive to changes
in the amplitude distribution of the ultrasonic echo signal
and may ignore some components with large amplitudes and
scattered distributions. Therefore, we propose a new method
of weighted form factor index (WFF) to filter out the noise
modes of ultrasound signals.

To solve the above problems, this paper proposes an intel-
ligent identification method of grading electrode sediment
based on multiscale hybrid entropy in the time-frequency
domain, as the identification of grading electrode sediment
is a new topic. The contributions of this paper can be summa-
rized as follows.

1) We propose to use ultrasonic time domain reflection
method to achieve the first nondestructive detection of sed-
iment of the grading electrode. Thus, we obtained the signal
data of the grading electrode sediment.

2) We propose a new method of weighted form factor
index (WFF), which effectively filter out the noise modes
of ultrasonic echo signals and solves the problem of difficult
selection of noise modes of ultrasonic echo signals.

3)We propose to calculate the fluctuation-based dispersion
entropy and Hilbert marginal spectral energy entropy of each
mode to form hybrid entropy (HE) in the time-frequency
domain as the feature vector, which realizes the full extraction
of signal features from the time-frequency domain. And the
feature vector is input into a bidirectional long and short-term
memory (Bi-LSTM) network model to achieve the recogni-
tion of graded electrodes with different sediment thicknesses,
verifying that the recognition rate of entropy values based on
the time-frequency domain is better than the entropy value in
the time or frequency domains alone.

4) We propose an improved wavelet threshold function.
On the basis of noise reduction of the noise modes, the
enhancement of the entropy value feature is achieved, which
in turn improves the recognition accuracy.

The paper is organized as follows: Section 2 details the
research methodology and the proposed work. Section 3
presents the experimental validation and analysis of the
results. Section 4 summarizes the conclusions.

II. MATERIALS AND METHODS
A. MECHANISM OF GRADING ELECTRODE
SEDIMENT DEVELOPMENT
To avoid damage to the components in the converter valve
caused by overheating, deionized water is used as the coolant

FIGURE 1. Distribution of sediment at the graded electrode: (a) indicates
the area at the tip of the graded electrode where the thickness of the
sediment layer is larger, and (b) indicates the sample appearance of the
actual grading electrode after the presence of sediment, the main
component of the sediment is Al(OH)3.

for the valve cooling system. Although the deionized water
has low conductivity, the generation of leakage current is
inevitable due to the relatively big potential difference of the
metal components the coolant flows over, resulting in corro-
sion of metal components. Generally, grading electrodes are
installed in the cooling system to reduce corrosion. However,
ions generated by the corrosion of aluminum radiators move
to the surface of the grading electrodes and produce sediment
by electrochemical reactions. Under certain conditions, the
surface of aluminum radiators can undergo electrochemical
reactions in water as follows.

2Al → 2Al3+ + 6e− (1)
6H2O → 6H+ + 6OH− (2)

6H+ + 6e− → 3H2 ↑ (3)
2Al3+ + 6OH− → 2Al(OH )3 ↓ (4)

As is shown in Figure 1, the sediment adheres to the
surface of the grading electrode, the main component of the
sediment is Al(OH)3, and the thickness of the sediment layer
is larger on the area of the tip of the grading electrode [7].
After deposition of the sediment layer on the surface of the
grading electrode, the sediment thickness can reach up to
0.3-0.8 mm [43]. At present, the method of shutting down
the converter valve and sampling the electrode to observe the
degree of sediment is typically adopted, which has relatively
large blindness and easily leads to water leakage. Therefore,
a new method is needed for online inspection of the sediment
status of the grading electrode.
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B. MULTISCALE DECOMPOSITION AND ENTROPY
FEATURE ENHANCEMENT OF ULTRASONIC
ECHO SIGNALS
Single-scale features cannot effectively characterize the rich
information of ultrasonic signals. To reflect the characteris-
tics of the signal at different scales, the multiscale decompo-
sition of the signal is performed by using variational modal
decomposition.

The process of variational modal decomposition can be
converted into the construction and solution of variational
models. The constrained variational model of the modal com-
ponent is

min
{uk },{ωk }

=

{∑
k

∥∥∥∥∂t [(δ (t)+ j
π t

)
uk (t)

]
e−jωk t

∥∥∥∥2
2

}
s.t.

∑
k

uk = f
(5)

where f is the original input signal; k is the number of
modes; uk denotes the mode obtained by decomposition;
and ωk denotes the centre frequency of each mode.
To solve Equation (5), the constrained variational model in
Equation (5) can be converted to an unconstrained variational
model before applying the alternating direction multiplier
algorithm. Finally, the optimal solution of Equation (5) is
obtained by iteratively updating the centre frequency and
bandwidth of each mode component, thus realizing the adap-
tive decomposition of the signal.

To reduce the influence of noise modes on entropy fea-
ture extraction, the noise modes need to be screened out for
noise reduction and to realize the enhancement of entropy
features. The commonly used correlation coefficient method
is relatively onefold and vulnerable to noise interference as an
evaluation index, and cannot effectively screen out the noise
modes of the ultrasonic echo signal. In contrast, the form
factor, as a dimensionless statistic in the time domain signal,
is sensitive to the variation and fullness of the signal wave-
form amplitude. Therefore, combining these two indicators
can improve the sensitivity to the effective mode components
and better screen out the noise modes. Since the correlation
coefficient satisfies |C| ≤ 1, the correlation coefficient is
used to weight the form factor, and a new evaluation index,
the weighted form factor (WFF) index, is proposed, which is
defined as follows:

WFF = F · C (6)

F =

√
1
N

N∑
n=1

u2k

1
N

N∑
n=1
|uk |

(7)

C =

N∑
n=1

(uk − ūk) (x − x̄)√
N∑
n=1

(uk − ūk)2
N∑
n=1

(x − x̄)2

(8)

where F,C are the form factor and correlation coefficient,
respectively; x and x̄ are the signal sample value and its
mean value respectively; uk and ūk are the kth IMF and its
mean value respectively; and N is the number of echo signal
sampling points. If the weighted form factor index calculated
by Equation (6) is greater than 1, it is considered as a valid
mode, otherwise it is a noise mode.

When noise reduction is performed for noise modes, the
problem of signal oscillation due to discontinuity at the
threshold for the hard thresholding function (HT) and signal
distortion due to deviation between the original and esti-
mated values of wavelet coefficients for the soft thresholding
function (ST) are overcome. An improved wavelet threshold
(IWT) function with a double modulation factor is proposed,
whose expression is

ŵj,k =



sign
(
wj,k

) (∣∣wj,k ∣∣− (1− α) λ2β + 1

)
,∣∣wj,k ∣∣ > λ

sign
(
wj,k

) (α + 2β)
(2β + 1) λ2β

∣∣wj,k ∣∣2β+1 ,∣∣wj,k ∣∣ ≤ λ
(9)

λ = σ
√
2 logN (10)

where the parameters α and β are moderators, which are
both positive; wj,k and ŵj,k are the wavelet coefficients of
the original signal before and after processing, respectively;
sign is the step function; N is the signal length; λ is the
threshold; and σ is the standard deviation of the noisy signal,
where σ = median

(
wj,k

)
/0.6745.

The procedure for proving the continuity and correlation
of the improved threshold function is as follows.

The continuity analysis is

lim
wj,k→−λ−

ŵj,k = lim
wj,k→−λ+

ŵj,k =
− (α + 2β) λ

2β + 1
(11)

lim
wj,k→λ−

ŵj,k = lim
wj,k→λ+

ŵj,k =
(α + 2β) λ
2β + 1

(12)

This proves that the threshold function is continuous at the
threshold, and thus overcomes the disadvantage that the hard
threshold function curve is not continuous at the threshold.

The correlation analysis is

lim
wj,k→+∞

ŵj,k
wj,k
= lim

wj,k→+∞

(
1+

(α − 1) λ
(2β + 1)wj,k

)
= 1 (13)

lim
wj,k→−∞

ŵj,k
wj,k
= lim

wj,k→−∞

(
1+

(1− α) λ
(2β + 1)wj,k

)
= 1 (14)

When wj,k → ∞, ŵj,k approaches wj,k along the asymp-
tote ŵj,k = wj,k , which proves the correlation of the function.
Thus, the bias between the original and estimated values of
wavelet coefficients is reduced. The threshold function can
be adjusted by adjusting the αα and β parameters, which in
turn changes the noise reduction performance.

C. HYBRID ENTROPY IN THE ULTRASONIC
TIME-FREQUENCY DOMAIN
This paper proposes the concept of hybrid entropy in the
time-frequency domain, which consists of fluctuation-based
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dispersion entropy characterizing the signal amplitude
change in the time domain and Hilbert marginal spectrum
energy entropy characterizing the signal amplitude change
in the frequency domain, so that the extracted characteristic
information can fully reflect the characteristics of the sedi-
ment ultrasonic echo signal for both the time and frequency
domains.

1) FLUCTUATION-BASED DISPERSION ENTROPY
The fluctuation-based dispersion entropy takes into account
the differences in the dispersion patterns of neighbouring
cells, which are sensitive to changes in synchronization fre-
quency, amplitude and bandwidth. For a given time series
x = {xi, i = 1, 2, . . . ,N }. First, the normal cumulative
distribution function (NCDF) is applied to map x to y =
{yi, i = 1, 2, . . . ,N } in the range [0,1] and then a linear
transformation is applied to assign yi to the range [1,c],
which is zcj = round(c · yi + 0.5), where round is the
rounding function and c is the number of categories. Then,
the embedding vector zm,cj is calculated according to zm,cj ={
zcj , z

c
j+d , . . . , z

c
j+(m−1)d

}
, j = 1, 2, . . . ,N − (m−1)d ,where

m and d are the embedding dimension and the time delay,
respectively.

Next, map each embedding vector zm,cj to a dispersion pat-
tern πv0v1...vm−1 ; the number of dispersion patterns assigned
to each embedding vector zm,cj is (2c − 1)m−1. For each dis-
persion pattern πv0v1...vm−1 , the relative frequency is obtained
as follows:

p(πv0v1...vm−1) =
Number(πv0v1...vm−1)

N − (m− 1)d
(15)

where Number(πv0v1...vm−1) is the number of zm,cj mapped to
the dispersion pattern πv0v1...vm−1 .
Finally, based on Shannon’s definition of entropy, the

fluctuation-based dispersion entropy is calculated as follows:

FDispEn(x,m, c, d)

= −

(2c−1)m−1∑
π

p(πv0v1...vm−1 ) · ln(p(πv0v1...vm−1 )) (16)

To obtain a robust fluctuation dispersion entropy, the num-
ber of categories c is set to 3 and the embedding dimension is
set to 2.

2) HILBERT MARGINAL SPECTRUM ENERGY ENTROPY
TheHilbert marginal spectrum can characterize the amplitude
change of the signal in the frequency domain, and the entropy
value can effectively measure the slight change of the signal,
so the energy entropy of the Hilbert marginal spectrum that
can reflect the amplitude change of the signal in thewhole fre-
quency band is introduced. Calculating the Hilbert marginal
spectrum energy values and normalizing them gives

pk = Ek/
K∑
k=1

Ek (17)

The Hilbert marginal spectrum energy entropy is further
calculated as

Hk = −pk log pk (18)

FIGURE 2. Basic structure of the LSTM. It mainly consists of a forgetting
gate, an input gate, an output gate and a memory unit.

FIGURE 3. Basic structure of the Bi-LSTM. It mainly consists of an input
layer, a forward layer, a backward layer, and an output layer.

where Ek and pk are the energy value and energy normalized
value of the kth IMF, respectively, and Hk is the Hilbert
marginal spectrum energy entropy of the kth IMF.

D. INTELLIGENT IDENTIFICATION OF GRADING
ELECTRODE SEDIMENT BASED ON MULTISCALE HYBRID
ENTROPY IN THE TIME-FREQUENCY DOMAIN
Based on the above study, themultiscale hybrid entropy based
on the time-frequency domain is used as the feature vector of
the network model. The network model uses the Bi-LSTM
network model, which is an improvement of the LSTM. The
basic structure of the LSTM is shown in Figure 2; it mainly
consists of a forgetting gate (ft ), an input gate (ot ), an output
gate (it ) and a memory unit (ct ). The 3 control gates allow
for us to control the effect of the previous state of the system
on the current output.

The compact formulation of the LSTM network is
described as follows.

ft = σ
(
Wf [ht−1, xt ]+ bf

)
(19)

it = σ (Wi [ht−1, xt ]+ bi) (20)
ot = σ (Wo [ht−1, xt ]+ bo) (21)
Ĉt = tanh (WC [ht−1, xt ]+ bC ) (22)
Ct = ft∗Ct−1 + it∗Ĉt (23)
ht = ot∗ tanh (Ct) (24)

where xt represents the state of the input; ht represents the
final output of the memory unit; Wf ,Wi,Wo,WC represents
the weightmatrix; σ denotes the sigmoid function; Ĉt denotes
the alternative vector required for the update; Ct denotes
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FIGURE 4. Feature extraction and intelligent recognition process of grading electrode sediment. Signal data is first obtained by
experiment, then the signal is processed by noise reduction, and finally feature extraction and recognition is performed.

FIGURE 5. Experimental platform for grading electrode sediment
detection. Ultrasonic pulser/receiver excites the ultrasonic probe to
generate pulses to the object under test, and the ultrasonic probe
receives the echo signal and transmits it back to the ultrasonic
pulser/receiver, and then the echo signal is collected by the oscilloscope.

the resulting new long-term memory; tanh is the activation
function; and ∗ represents the dot product.
The Bi-LSTM network model considers both past and

future information of the data, thus solving the problem that
the LSTM does not utilize backward information. Its network
structure is shown in Figure 3.

The network unit extracts the feature data in both directions
simultaneously, and the output of the network unit at the
current moment is

Ht =
[
Eht ,
←

h t
]

(25)

where
−→
h t and

←−
h t are the forward and backward outputs of

the network unit at the current moment, respectively.
The intelligent identification process of grading electrode

sediment is shown in Figure 4, and the specific steps as
follows.

1. First, the echo signal data of the graded electrode sedi-
ment thickness in the range of 0.1 mm-0.8 mmwere obtained
experimentally.

2. Second, the signal is decomposed into k IMFs using
the VMD, the weighted form factor index of each IMF is

FIGURE 6. Ultrasound propagation in the pipe: (a) indicates the
ultrasound propagation process, where T denotes the ultrasound
propagation path, R1 is the reflected echo signal at the inner tube
wall-fluid interface, R2 is the reflected echo signal at the grading
electrode, R3 is the reflected echo signal at the fluid-internal tube wall
interface, and (b) indicates the acquired ultrasound echo signal, where
A is the initial wave of the pulse.

calculated, and the noise modes with an index less than 1 are
preprocessed with the IWT method for noise reduction.

3. Third, the fluctuation-based dispersion entropy and
Hilbert marginal spectrum energy entropy of each IMF after
preprocessing are calculated according to Equations (16)
and (18), respectively, and the hybrid entropy is characterized
as the feature vector.

4. Finally, the sample data are divided into training and
test sets, and the category labels of the graded electrode
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sediment thickness are determined for the training and test
sets. The training set is input to the Bi-LSTM network
model for training and learning, the test set is input to the
trained network to detect and identify the sediment condition
of the grading electrode, and the identification results are
output.

III. EXPERIMENTAL VALIDATION
A. EXPERIMENTAL PLATFORM AND DATA ACQUISITION
Referring to the arrangement of the±500 kV converter valve
cooling system and the grading electrode, a PVDF pipe with
60 mm outer diameter, 4 mm wall thickness was used as the
converter valve convergence pipe. The experimental system
is shown in Figure 5. The grading electrode was installed
vertically in the centre of the pipe, and the electrode was
inserted into the pipe at a depth of 28 mm. An Olympus
D790-SM 5 MHz ultrasonic probe, JSR DPR300 ultrasonic
pulse transmitter-receiver and oscilloscope were selected to
detect the sediment condition in the tip area of the grading
electrode. The specific testing process was as follows: an
ultrasonic coupling agent was evenly applied to the tube wall,
and the probe was firmly placed on the centre of the tube wall.
The DPR300 excites the ultrasonic probe to generate pulses
to the object under test, which generates reflected echoes at
different media interfaces. The ultrasonic probe receives the
echo signals and transmits them back to the DPR300, and the
output of the DPR300 is connected to an oscilloscope for real-
time echo signal acquisition.

The propagation path of ultrasound in the pipe and the
real ultrasonic echo signal are shown in Figure 6, where
echo A is the initial wave of the pulse, R1 is the reflected
echo signal at the inner tube wall-fluid interface, R2 is the
reflected echo signal at the grading electrode, and R3 is the
reflected echo signal at the fluid-internal tube wall interface.
Due to the thin sediment layer on the surface of the grading
electrode, a signal mixing phenomenon occurred, and the
sediment layer thickness could not be obtained by calculation,
so it was necessary to analyse the change in the sediment layer
thickness by extracting signal features.

Using the experimental system above, the grading elec-
trode with sediment thickness in the range of 0.1 mm-0.8 mm
in the electrode tip area was divided into 8 grading electrode
sediment thicknesses in steps of 0.1 mm. Under the same
experimental conditions, echo signal data acquisition was
performed for eight different sediment thicknesses of the
grading electrodes. Two hundred sets of echo signal data
were collected for each sediment thickness of the grading
electrode samples, and a total of 1600 sets of sample data
were acquired, with 2000 sampling points for each set of
sample data.

To fully analyse the signal characteristics for both the time
and frequency domains, 0.1 mm, 0.3mm, 0.5mm and 0.7mm
scale echo signals were selected for time domain analysis and
smoothed pseudo-Wigner-Ville distribution (SPWVD) time
frequency analysis.

FIGURE 7. Time domain analysis of the echo signal. Echo signals of
sediment thicknesses of 0.1 mm, 0.3 mm, 0.5 mm and 0.7 mm were
selected, and it was found that the amplitude of the echo signal at the
grading electrodes gradually decayed and the position gradually moved
forward with the increase of the thickness of the grading electrode.

As shown in Figure 7, due to the attenuation characteristics
of ultrasonic waves during of propagation, as the thickness of
the grading electrode increases, the echo signal at the grading
electrode gradually decays in amplitude and gradually moves
forward in position.

The SPWVD time-frequency diagram is shown in
Figure 8, and the effective signal frequency of the ultrasonic
echo is mainly concentrated approximately 5 MHz. With the
increase in the thickness of the grading electrode sediment,
the echo signal amplitude and energy at the grading electrode
decrease, and the ultrasonic echo signal amplitude and energy
at the back wall decrease. As the ultrasonic wave propagates
in the medium, it is scattered in the sediment layer, and thus
an increase in thickness will increase the signal attenuation
and scattering degree.

B. ENTROPY EXTRACTION AND FEATURE ENHANCEMENT
Extraction of the sediment signal feature vector is key to per-
forming intelligent identification. Multiscale decomposition
and noise mode selection were performed on the collected
1600 sets of sample data using the VMD-WFF algorithm,
and the entropy features of each mode were extracted with
the noise modes processed using noise-reduction methods to
realize entropy feature enhancement.

First, the number of modal decompositions of VMD was
determined using the centre frequency method. Taking the
0.3 mm sediment signal as an example, the centre frequencies
corresponding to different values of k are shown in Table 1.
When k = 9, the centre frequency values of the 6th and
7th modes are close to each other, and thus it is inferred
that decomposition occurred, so the number of modes was
determined.

Next, the noise modes of the signal were selected using
the proposed weighted form factor index. The weighted form
factor of each mode in Figure 9(a) was calculated and com-
pared with the correlation coefficient and the weighted kurto-
sis index, and the comparison results are shown in Figure 10.
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FIGURE 8. SPWVD analysis of the echo signal at different sediment thicknesses: (a) Thickness of 0.1 mm, (b) Thickness of 0.3 mm,
(c) Thickness of 0.5 mm, and (d) Thickness of 0.7 mm. It was found that the amplitude and energy of the echo signal at the grading
electrode decreased with the increase of the thickness of the grading electrode sediment.

FIGURE 9. VMD decomposition of the 0.3 mm thickness sediment echo
signal: (a) indicates the time domain diagram of each mode when the
number of modes is eight, and (b) indicates the frequency domain
diagram of each mode.

FIGURE 10. Comparison of different evaluation indicators. Effectiveness
of the correlation coefficient method (C), the weighted kurtosis
index (WKI) and the weighted form factor index (WFF) for the effective
selection of noise modes was compared.

Combining Figure 9 with Figure 10, IMF4, IMF5 and
IMF6 have high amplitudes, and the corresponding WFF
indices are greater than 1, and the frequencies are all dis-
tributed around the effective signal frequency of 5 MHz,
so they were judged to be effective modes, and the rest are
noise modes.

FIGURE 11. Entropy values of each mode without feature enhancement:
(a) indicates the fluctuation-based dispersion entropy values, where the
noise modes IMF7 and IMF8 have relatively high entropy values with
irregular trends, and (b) indicates the Hilbert marginal spectrum energy
entropy values, where the effective modes IMF4-IMF6 have an
insignificant decreasing trend.

According to the correlation coefficient selection rules, the
correlation coefficients range from±0.50−±0.80 for signifi-
cant correlation, and±0.80−±0.10 for high correlation [44],
only the IMF5 component has a correlation coefficient greater
than 0.5, indicating that the single correlation coefficient
method does not completely screen out the effective modes.
While the WKI is susceptible to noise interference and is not
sensitive to the effective modes of ultrasonic echo signals, the
WFF index is more suitable for the identification of effective
modes of ultrasonic echo signals than the other two methods.
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FIGURE 12. Comparison of the effects of different noise reduction
methods: (a) indicates the comparison of the effects of signal noise
reduction, and (b) indicates the partial amplification of the signal in the
red box. It can be seen that the proposed VMD-WFF-IWT method retains
the integrity of the signal compared with other methods.

FIGURE 13. Comparison of the enhanced entropy features using different
methods: (a) indicates the change in the fluctuation-based dispersion
entropy, where the entropy values of the effective modes IMF4-IMF6
remain unchanged and the noise mode entropy values are weakened,
and (b) indicates the change in the Hilbert marginal spectral energy
entropy, where the entropy values of the effective modes IMF4-IMF6 are
enhanced and the entropy values of the noise modes are weakened.

Then, VMDmultiscale decomposition is performed on the
echo signals of different sediment thicknesses and the entropy
values of each mode are extracted. When the number of mode
decompositions is k = 8, the entropy values of each mode for
different sediment thickness signals are shown in Figure 11.

Figure 11 shows that the effective modes IMF4-IMF6 have
a higher proportion of Hilbert marginal spectrum energy
entropy values and fluctuation-based dispersion entropy val-
ues, and the noise mode energy entropy values are smaller.

FIGURE 14. Entropy values of each mode after feature enhancement:
(a) indicates the fluctuation-based dispersion entropy values, and
(b) indicates the Hilbert marginal spectrum energy entropy values. It can
be seen that the entropy value of the noise mode is significantly
weakened, while the entropy value of the effective mode achieves
enhancement.

As the sediment thickness increases, the decreasing trend of
the fluctuation-based dispersion entropy values of the effec-
tive modes IMF4-IMF6 becomes more obvious, and can be
used to effectively distinguish and reflect the change of the
sediment thickness of the grading electrodes. However, the
decreasing trend of the Hilbert marginal spectrum energy
entropy values of the effective modes is not obvious due to
the noise interference, and the fluctuation-based dispersion
entropy values of the noise modes IMF7 and IMF8 are rela-
tively high and the changing trend is irregular.

To enhance the entropy feature, the noise modes in
Figure 9(a) were noise-reduced by the IWT method.
A denoised signal was obtained by signal reconstruction,
and a comparison of the effects of different noise reduction
methods is shown in Figure 12. Through local magnification
of the scaling at the homogenous electrode, it was found that
the original signal is contaminated by noise and that the signal
characteristic information is difficult to extract. Compared
with the traditional noise reduction method, the proposed
method preserves the signal integrity and effectively retains
the characteristic information of the original signal.

The noise reduction index was used as the evaluation
standard. The noise reduction indices SNR = 15.1269 and
RMSE = 0.0543 obtained by the proposed IWT method are
significantly better than the hard-threshold noise reduction
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TABLE 1. Corresponding centre frequencies of each mode for different k values.

FIGURE 15. Confusion matrices for different input feature types under the ‘‘no feature enhancement’’ condition: (a) Fluctuation-based
dispersion entropy, (b) Hilbert marginal spectrum energy entropy, and (c) Hybrid entropy. Using the hybrid entropy as feature vectors input to
Bi-LSTM has higher recognition rate than entropy values in the time or frequency domain alone.

FIGURE 16. Confusion matrices for different input feature types under feature enhancement condition: (a) Fluctuation-based dispersion
entropy, (b) Hilbert marginal spectrum energy entropy, and (c) Hybrid entropy. Entropy values after feature enhancement are input into
Bi-LSTM has a higher recognition rate than that in Figure 15, where the hybrid entropy has a higher recognition rate than the entropy values
in the time or frequency domain alone.

indices SNR = 9.9403 and RMSE = 0.0987, and the
soft-threshold noise reduction indices SNR = 7.5015 and
RMSE = 0.1307, showing a better noise reduction effect.
The fluctuation-based dispersion entropy and Hilbert

marginal spectral energy entropy values of each mode were
calculated and compared with the original signal entropy
values as well as the entropy values obtained by other algo-
rithms, and the results are shown in Figure 13.

The fluctuation-based dispersion entropy values of the
effective modes IMF4-IMF6 remain unchanged and the
noise mode entropy values are weakened, among which the
noise mode entropy values of IMF7 and IMF8 decrease

significantly. The Hilbert marginal spectral energy entropy
values of effective modes IMF4-IMF6 are enhanced and the
entropy values of the remaining noise modes are weakened.
According to Equation (17), it can be seen that this is caused
by the constant value of the effective mode energy and the
decrease in the total energy value of the modes. Compared to
the proposed IWT method, the entropy value obtained from
noise modes after noise reduction by the conventional noise
reduction method is diminished to a greater extent. This is
due to the distortion of the signal caused by the conven-
tional noise reduction method. Therefore, by processing the
signal through the proposed VMD-WFF-IWT method and
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FIGURE 17. Confusion matrices of LSTM network under feature enhancement condition: (a) Fluctuation-based dispersion entropy, (b) Hilbert
marginal spectrum energy entropy, and (c) Hybrid entropy. Entropy values after feature enhancement are input into LSTM has a lower
recognition rate than Figure 16, where the hybrid entropy has a higher recognition rate than the entropy in the time or frequency domain
alone.

then extracting the entropy values of each mode, the effective
extraction of entropy values and the enhancement of entropy
features can be achieved.

Figure 14 shows the results of entropy extraction of the
echo signals with different sediment thicknesses using the
VMD-WFF-IWT method. The entropy values of the noise
modes are obviously weakened, and enhancement of the
fluctuation-based dispersion entropy and Hilbert marginal
spectrum energy entropy of the effective mode is realized.
The entropy values of the effective modes show a decreasing
trend as the sediment thickness increases. The fluctuation-
based dispersion entropy and Hilbert marginal spectral
energy entropy of eachmode have obvious differences, which
can reflect the sediment state of different thicknesses of
grading electrodes on different scales, and can be used as
feature vectors to distinguish the sediment state of grading
electrodes.

C. INTELLIGENT IDENTIFICATION AND ANALYSIS OF
GRADING ELECTRODE SEDIMENT
The features of the 1600 sets of data collected in the experi-
ment were extractedwith the abovemethod, and the data were
divided into a training set and a test set in a 3:1 ratio. In the
identification process, eight types of classification labels with
sediment thicknesses of 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm,
0.5 mm, 0.6 mm, 0.7 mm and 0.8 mm were set as 1, 2, 3, 4,
5, 6, 7 and 8 respectively.

The parameters of the Bi-LSTM network model were set
as follows: segmentation window length L = 50, number
of hidden layer nodes S = 200, and learning rate η = 0.05.
To achieve better recognition, the network was gradient opti-
mized using the Adam optimizer, the dropout technique was
used to prevent overfitting, and the maximum number of
iterations was set to 200.

To verify the recognition effect of the proposed method
for different grading electrode sediment thicknesses, each
entropy value without feature enhancement and with feature
enhancement was input as a feature vector into the Bi-LSTM

TABLE 2. Comparison of recognition accuracy of FDE, HMSEE and HE as
feature vectors in lstm and bi-lstm classifiers, respectively.

network model for training and recognition, respectively, and
the corresponding confusion matrix outputs are shown in
Figure 15 and Figure 16.

From Figure 15 and Figure 16, it can be seen that the recog-
nition rate of sediment thickness is low when the entropy
values in time domain or frequency domain alone are used as
the feature vector, and there is a problem that the recognition
rate of a single class of sediment thickness is less than 80%.
The recognition accuracy of all thicknesses is significantly
improved after the two types of entropies were combined to
comprise the hybrid entropy as the feature vector, and the
recognition accuracy reached more than 80%. This indicates
that the use of hybrid entropy as the feature vector results
in a better recognition effect for the sediment thickness of
the grading electrode. The recognition accuracy is further
improved after the entropy feature enhancement, and the
total recognition accuracy reached 94.25% when the feature-
enhanced hybrid entropy was used as the feature vector,
which further indicates that the multiscale hybrid entropy
in the time-frequency domain processed by the VMD-WFF-
IWT method is more effective for recognition of the grad-
ing electrode sediment thickness when used as the feature
vector. It has a better recognition effect in the detection
task of grading electrode sediment thickness in the range
of 0.1 mm-0.8 mm.

To verify the advantages of the Bi-LSTM model over the
LSTMmodel for recognition detection in this experiment, the
hybrid entropy value under feature enhancement conditions
was used as the feature vector and the LSTM network was
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used for verification comparison, Figure 17 shows the recog-
nition results of the LSTM model, and Table 2 shows the
accuracy comparison of the two recognition models.

As seen from Figure 17 and Table 2, use of the hybrid
entropy considering the time-frequency domain as the fea-
ture vector resulted in higher recognition accuracy compared
with use of the time-domain or frequency-domain entropy
features; the Bi-LSTM model can achieve better recognition
results compared with the LSTM model.

IV. CONCLUSION
To realize the intelligent detection of grading electrode
sediment in the converter valve cooling system of HVDC
converter stations, this paper proposes an intelligent iden-
tification method for grading electrode sediment based on
the multiscale hybrid entropy in the time-frequency domain
and Bi-LSTM. A cooling system for the converter valve of
the ±500 KV HVDC converter station was simulated and
verified experimentally, and the following conclusions were
drawn.

1) Multiscale hybrid entropy in the time-frequency domain
is proposed to achieve multiscale characterization of the sig-
nal in the time-frequency domain, and the entropy is input
into the Bi-LSTM network model as a feature vector for sed-
iment thickness identification. The experimental results show
that the proposed method has a good identification effect for
the sediment thickness of the grading electrode in the range of
0.1 mm-0.8 mm, and the total identification accuracy reached
94.25%. The recognition effect of the model was better than
that of the LSTM network model.

2) The weighted form factor index is proposed for the
selection of noise modes of the ultrasonic echo signals,
followed by extraction of their entropy values after noise
reduction of the noise modes, for entropy value feature
enhancement.

3) Use of the hybrid entropy in the time-frequency
domain consisting of fluctuation-based dispersion entropy
and Hilbert marginal spectral energy entropy as a feature
vector is proposed, which can fully extract signal features
from the time-frequency domainwith a better recognition rate
than the entropy value in the time or frequency domains alone.

Through the proposed method, the nondestructive detec-
tion and intelligent identification of the sediment of grading
electrode are realized for the first time, which avoids the prob-
lem of equipment failure caused by the traditional manual
detection method and is of great significance to the intelligent
detection of the sediment of grading electrode.

In this paper, the optimization of the VMD decomposition
parameters is performed by determining the mode number
through a simple criterion of the centre frequencymethod and
does not consider the optimization of the bandwidth control
parameters, which is still a challenging problem. A potential
solution is focused on optimizing the mode number and
bandwidth control parameters by methods such as intelligent
optimization algorithms and will be considered as a future
work..
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