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ABSTRACT Our paper investigates complex modified function projective lag synchronization with
fixed-time stability guarantees for hyperchaotic systems via a FxTC proposal. The synchronization of
complex hyperchaotic systems and the desired performance are definitely guaranteed within a period of
bounded time. The synchronization interval can be predefined without demanding the information of the
initial conditions from the systems where the synchronization is performed. Furthermore, the fixed-time
stability guarantees of the control scheme are achieved according to the Lyapunov principle and the
settling time is calculated by solving the differential equations. In MATLAB/SIMULINK environment,
synchronization performance from two simulation examples is performed in many cases with the change
of initial values and time delay of the system to reveal the feasibility and the efficacy of the control proposal.

INDEX TERMS Fixed-time control theory, hyperchaotic complex systems, complex modified function
projective lag synchronization.

I. INTRODUCTION
Synchronization of chaotic or hyperchaotic systems is a very
important nonlinear behavior. This behavior is the consistent
motion of two or more chaotic units originating with initial
conditions discrepancy, it is formally defined in general,
such as anti-synchronization, complete, phase or phase lag
synchronization, and other forms of synchronization. This is a
favorably appreciated research subject, initially formalized in
theory and verified experimentally through the implementa-
tions of circuits [1]. Therefore, research on dynamic behavior
and synchronization of the hyperchaotic systems with real
variables has been popular in the scientific community. Their
application potential is very large, the fields that have been
successfully applied such as cryptography, biology, robotic,
traffic forecasting, electrical engineering, quantum physics,
and so on [2]–[5]. However, there exist several important
scenarios of dynamic systems in which the state variables
are complex values. Therefore, attention should be focused
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on the study of chaotic and hyperchaotic nonlinear systems
with complex variables. Some complex hyperchaotic systems
have been introduced and analyzed their chaotic behaviors.
For examples: In the study [6], the synchronization method
has been applied for communication problem in which the
time-delay was fully considered; In the paper [7], a complex
set of Lorenz equations has been obtained from baroclinic
instability and laser optics; A synchronization method has
been introduced in paper [8] via passive synchronization of
the HCSs for the improvement of secure communications.
In addition, some other types of synchronizations of these
systems have been studied including AS [9] or LS [10], [11].
All kinds of the mentioned synchronization can be consid-
ered for dynamical systems with real variables or complex
variables. In addition, literature has also introduced several
types of synchronization, including CoS [12], CoLS [13],
PS [14], MPS [15], MPLS [16], and MFPS [17]. In recent
years, various new synchronization types are only considered
for chaotic complex nonlinear systems such as module-phase
synchronization [18] and CPS [19]. In studies [18], [19], the
behaviors of module and phase are fully considered. Besides,
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in order to succeed in the synchronization of both module
and phase, some different types of synchronization have been
proposed by using complex scaling factors [20], [21]. This
idea was first formed in research [22]. Then, it was extended
and applied to many other studies, such as CCoS [23],
CMPS [24], CFPS [25]. By using the scaling factors as
functions or complex numbers, the unpredictability and com-
plexity are extensively increased in those synchronization.
Therefore, those factors significantly contribute to enhanc-
ing communication security [25]. From a practical point of
view, the types of the presented synchronization are only rare
scenarios of CMFPS. They are not general to all cases that
can be found. Moreover, the time delay may occur between
the master system and response system. In comparison with
the types of the mentioned synchronization, the CMFPLS is
a more general scenario [26], [27]. The type of this system
is infrequently considered or not declared in recent studies.
Therefore, our motivation is to handle CMFPLS problem of
hyperchaotic systems via the new FxTCmethod in this paper.

In the literature, several control approaches such as
Lyapunov-based active control methods [28], [29], pas-
sive control methods [30], [31], FnTC methods [32], [33],
adaptive controllers [34] have been proposed so far to
achieve suchlike complex synchronization of HCSs. Eval-
uating closely at the synchronization methods mentioned
above, it is easy to see that synchronization methods such
as [32], [33], or [34] have convergence time that depends
on both the initial states and the control design parameters.
The remaining synchronization methods can only guarantee
an asymptotic convergence of synchronization errors. There-
fore, achieving synchronization in a finite-time or fixed-
time period is certainly a desirable goal for the next studies.
As we know that FnTC approaches have been valuable and
effective methods. The FnTC methods provide fast conver-
gence in finite-time, robustness cope with uncertain terms
or disturbances, and high tracking accuracy [35]. However,
the drawback of the FnTC methods is related to the system’s
initial states. This can be an impediment to application to
real systems when these initial states are unknown. To inherit
the advantages of FnTC methods while overcoming their
disadvantages, some scientists have introduced an improve-
ment of finite-time stability theory. The main concept of
the fixed-time stability theory is to design the control laws
which can offer the desired convergence within a limited
time [36]–[38]. That means the state trajectories of the system
will be converged or stabilized to the origin in some finite
time cases. Finite-time convergence is concerned with the
controlled system’s initial states, but fixed-time convergence
is independent of those initial states. Therefore, the desired
convergent time is completely established in advance through
designed parameters.

Encouraged by the mentioned analysis, the core objective
of this paper is to propose a new FxTC algorithm to achieve
fixed-time CMFPLS of HCSs. Through the proposed con-
trol system, the CMFPLS errors converge to origin in an
estimated period regardless of initial states, which means,

synchronization and stabilization will be achieved in the
fixed-time period. The upper bound of the convergence time
is estimated by assigning the design control parameters. The
proof of synchronization and fixed-time stabilization has
been fully verified through the Lyapunov theory. The impor-
tant values of this paper can be summed up as follows:
• The CMFPLS of HCSs is considered. Applying this
system, a new FxTC method is proposed to guarantee
synchronization and the desired performance.

• Synchronization is not only achieved within a prede-
fined limit of time regardless of initial values but the
error states also are achieved finite-time convergence
faster than some existing methods.

• The settling time is calculated by solving the differential
equations and proof of stability and synchronization has
been rigorously verified through Lyapunov theory.

• Two simulation examples are performed in many cases
with the change of initial values and time delay of
the system to verify the effectiveness of the designed
method.

The organization of the paper is arranged as follows: some
preliminaries, problem presentation, and motivations are
presented in Section 2. Next, a new FxTC methodology
is introduced to obtain the desired CMFPLS of HCSs.
Section 4 presents two descriptive examples that are per-
formed to validate the benefits of the proposed control
method with detailed analysis. Finally, our paper ends with
the remarkable conclusions in Section 5.
Annotations: The space of real number and complex num-

ber are symbolized R and C, respectively. a block-diagonal
matrix is indicated diag(·). For simplicity of expression, the
following notation is defined as [35] x[φ] = |x|φsgn(x)
with x ∈ R and φ > 0. As φ > 1 the derivative of the
notation x[φ] is described as d

dt x
[φ] = φ|x|φ−1ẋ. If x ∈ C

i.e. in which j =
√
−1, superscripts r and c denote the

real and imaginary elements of the state complex vector x.
x = [x1, x2, . . . , xn]T ∈ Rn and x = [x1, x2, . . . , xn]T ∈
Cn denote a state real vector and a state complex vector,
respectively. T denotes transpose. x̄ = xr − jxc denotes the
complex conjugate of x. The following notation is adopted
that x[φ] = (xr )[φ] + j(xc)[φ].
Remark 1: Besides some of the synchronization types

declared, the CMFPLS investigated in this analysis also
included several other special cases including LAS, PLS,
FPLS, MFPLS, CLAS, CFPLS, CMPLS, CLAS, CPLS, and
CCoLS. Table 1 describes several types of synchronization.

II. PRELIMINARIES AND PROBLEM PRESENTATION
A. PRELIMINARIES
The following subsection states some theories belong to
finite-time stability, fixed-time stability, and lemmas. Fur-
thermore, synchronization and system description are also
described, which is necessary for the next analysis.

The following system is given as

ẋ = 9(t, x), x(0) = x0 (1)
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TABLE 1. Several categories of synchronization.

whereas x ∈ Rn and 9: R+ × Rn
→ Rn is a nonlinear

function, it can be discontinuous. Suppose that the origin is
an equilibrium point of the system (1).
Remark 2: The differential equation (1) is the expression of

most of the familiar chaotic (hyperchaotic) complex systems.
They can be listed as Lü systems, Lorenz, and chaotic (hyper-
chaotic) complex Chen, etc.
Definition 1 [39]: The equilibrium point of Eq. (1) is con-

sidered to be globally finite-time stable in case it is globally
asymptotically stable and any solution x(t, x0) of Eq. (1)
converge to the equilibria within the finite-time period, i.e.
x(t, x0) = 0,∀t > T (x0), where T : Rn

→ R+ ∪ {0} is the
settling–time function.
Definition 2 [39]: The equilibrium point of Eq. (1) is

considered to be a fixed-time stable equilibrium point in
case it also is globally finite-time stable within bounded
settling-time function T (x0), i.e. ∃Tmax > 0 : T (x0) 6
Tmax, ∀x0 ∈ Rn .
Lemma 1 [40]: For any real numbers ρ1, ρ2 > 0 and

0 < β < 1, an extended Lyapunov function condition of
finite-time stability is presented in the form as L̇(x)+ρ1L(x)+
ρ2Lβ (x) 6 0, where convergence time is calculated and
bounded by the following inequality:

T 6
1

ρ1(1− β)
ln
ρ1V (x(0))1−β + ρ2

ρ2
(2)

Lemma 2 [41]: That is termed Jensen’s inequality:(
m∑
i=1

zθ2i

)1/θ2
6

(
m∑
i=1

zθ1i

)1/θ1
, 0 < θ1 < θ2 (3)

where zi > 0 and 0 6 i 6 m.

B. PROBLEM PRESENTATION
In this study, two different n-dimensional HCSs are described
as follows. Master system and slave system are described by
the following expressions, respectively.

ẋ(t) = f (x(t), x̄(t), t) (4)

ẏ(t) = h (y(t), ȳ(t), t)+ u(t) (5)

where x(t) and y(t) are the state complex vector. ẋ(t) =
ẋr (t) + jẋc(t) and ẏ(t) = ẏr (t) + jẏc(t). f (x(t), x̄(t), t) and
h (y(t), ȳ(t), t) are the vector of nonlinear complex functions
of the master system and the response system, respectively.
u(t) is the vector of control inputs.

The CMFPLS errors between the master system and the
slave system is defined by the following equation:

e(t) = y(t)− ξ (t)x(t − τ ) (6)

where ξ (t) = ξ r (t) + jξ c(t), ξ (t) =

diag ($1(t),$2(t), . . . ,$n(t)) stands for scaling function
matrix. All factors $i(t) = $ r

i (t) + j$ c
i (t) ∈ C, (i =

1, . . . , n) should be continuously differentiable bounded
function and $i(t) 6= 0 for all t > 0. τ is positive time
lag, e(t) = er (t) + jec(t), e(t) = [e1(t), e2(t), . . . , en(t)]T ,
er =

[
er1, e

r
2, . . . , e

r
n
]T , and ec = [ec1, ec2, . . . , ecn,]T .

Taking time derivative of Eq. (6), one has:

ė(t) = ẏ(t)− ξ̇ (t)x(t − τ )− ξ (t)ẋ(t − τ )

= h (y(t), ȳ(t), t)+ u(t)− ξ̇ (t)x(t − τ )

−ξ (t)f (x(t − τ ), x̄(t − τ ), t − τ) (7)

A set of the following differential equations is rewritten
from Eq. (7):

ėi(t) = hi (y(t), ȳ(t), t)+ ui(t)− $̇i(t)x(t − τ )

−$i(t)fi (x(t − τ ), x̄(t − τ ), t − τ) (8)

Definition 3 [42]: The CMFPLS errors between the master
system (4) and the slave system (5) will be converged to zero
within a period of fixed-time if there exists a time moment
T > 0, which does not depend on the system’ initial error
states, e (t0), such that ‖e (t)‖ = 0,∀t > t0 + T .
The central motivation of the paper can be summed up as

follows.
This article proposes the new control laws ui(t), (i =

1, . . . , n) to achieve fixed-time CMFPLS of HCSs. Through
the proposed control laws, the CMFPLS errors converge
to origin in an estimated period of time regardless of ini-
tial states, i.e., synchronization and stabilization will be
achieved in the fixed-time period according to the meaning of
Definition 3.
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III. CONTROL DESIGN APPROACH
To attain the main control objective with the desired per-
formance, a suitable feedback control algorithm is designed
based on Eq. (8) and the FxTC theory as follows.

ui(t) = uri (t)+ ju
c
i (t)

= −hi (y(t), ȳ(t), t)+ $̇i(t)x(t − τ )

+$i(t)fi (x(t − τ ), x̄(t − τ ), t − τ)

− κ1ie
[2−αi]
i − κ2i

(
[ē]λi|e

r
i |eri + j[ē]

λi|eci |eci
)

− κ3ie
[αi]
i − 0iei (9)

where λi, 0i > 0, 0 < αi < 1, κ1i, κ2i, κ3i are positive
constants that are designed to be bounded condition 4κ1iκ3i >
κ22i, (i = 1, . . . , n) and [ē] stands for the Euler’s number.
The following theorem is synthesized for control design

and proof of fixed-time stability.
Theorem 1: If the CMFPLS errors between the master

system (4) and the slave system (5) are controlled by the
proposed control system in Eq. (9), then the error dynamics
given by Eqs. (6) – (8) are forced to move from initial values
to the origin with a globally fixed-time stable, T , determined
by the following equation:

T =
1

(1− αi)
2√

4κ1iκ3i − κ22i

×

π
2
− arctan

κ2i√
4κ1iκ3i − κ22i

 (10)

Proof of Theorem 1 is verified in the two following steps.
Step 1: We prove that under the drive of the control

laws (9), system (8) will achieve asymptotic stability, which
means that the equilibrium of Eq. (8) is indeed a is globally
asymptotically stable based on the Lyapunov theory as the
meaning in Definition 2.

Proof:Applying the proposed controller designed in Eq.
(9) to error dynamics (8), one has:

ėi = ėri + jė
c
i

= −κ1ie
[2−αi]
i − κ2i

(
[ē]λi|e

r
i |eri + j[ē]

λi|eci |eci
)

− κ3ie
[αi]
i − 0iei (11)

Remark 3: The role of each part in Eq. (9) or dif-
ferential equation (11) is expressed as follows. When
|ei| > 1,

∣∣∣−κ1ie[2−αi]i − κ2i

(
[ē]λi|e

r
i |eri + j[ē]

λi|eci |eci
)
− 0iei

∣∣∣
plays the principal function that provides a fast convergence
rate from any initial condition to 1. When |ei| is much smaller
than 1,

∣∣∣−κ3ie[αi]i

∣∣∣ expresses the main function that offers

finite-time convergence. Once synchronization errors
∣∣eri ∣∣ or∣∣eci ∣∣ converge to the neighborhood of zero then the gains

κ2i[ē]λi|e
r
i | and κ2i[ē]λi|e

c
i | will be reduced to a small value.

It infers that the role of
∣∣∣−κ3ie[αi]i

∣∣∣ is very robust in the phase
of the finite-time convergence.

Then, the result in Eq. (11) can be rearranged with the
following expression:

ėri = −κ1i
(
eri
)[2−αi]

− κ2i[ē]λi|e
r
i |eri

−κ3i
(
eri
)[αi]
− 0ieri

ėci = −κ1i
(
eci
)[2−αi]

− κ2i[ē]λi|e
c
i |eci

−κ3i
(
eci
)[αi]
− 0ieci

(12)

Selecting a positive definite function as a Lyapunov func-
tion candidate as:

L =
n∑
i=1

(
eri
)2
+

n∑
i=1

(
eci
)2 (13)

Calculating time derivative of Lyapunov function candi-
date in Eq. (13) yields:

L̇ = 2
n∑
i=1

eri ė
r
i + 2

n∑
i=1

eci ė
c
i (14)

Substituting the trajectories in Eq. (12) into Eq. (14) gives:

L̇ = 2
n∑
i=1

eri

(
−κ1i

(
eri
)[2−αi]

− κ2i[ē]λi|e
r
i |eri

−κ3i
(
eri
)[αi]
− 0ieri

)

+ 2
n∑
i=1

eci

(
−κ1i

(
eci
)[2−αi]

− κ2i[ē]λi|e
c
i |eci

−κ3i
(
eci
)[αi]
− 0ieci

)

= 2
n∑
i=1

(
−κ1i

(
eri
)[3−αi]

− κ2i[ē]λi|e
r
i |
(
eri
)2

−κ3i
(
eri
)[αi+1]

− 0i(eri )
2

)

+ 2
n∑
i=1

(
−κ1i

(
eci
)[3−αi]

− κ2i[ē]λi|e
c
i |
(
eci
)2

−κ3i
(
eci
)[αi+1]

− 0i(eci )
2

)
(15)

From Eq. (15), it is seen that [ē]λi|e
r
i |
(
eri
)2
≥

(
eri
)2,

[ē]λi|e
c
i |
(
eci
)2
≥
(
eci
)2, and (−κ2i − 0i < −κ2i). Therefore,

L̇ ≤ 2
n∑
i=1

(
−κ1i

[(
eri
)[3−αi]

+
(
eci
)[3−αi]])

+ 2
n∑
i=1

(
−κ2i

[(
eri
)2
+
(
eci
)2])

+2
n∑
i=1

(
−κ3i

[(
eri
)[αi+1]

+
(
eci
)[αi+1]]) (16)

Applying Jensen’s inequality stated in Lemma 2, one has:

L̇ ≤ 2
n∑
i=1

−κ1i[(eri )2 + (eci )2]
3−αi
2


+ 2

n∑
i=1

(
−κ2i

[(
eri
)2
+
(
eci
)2])

+ 2
n∑
i=1

(
−κ3i

[(
eri
)2
+
(
eci
)2] αi+12

)
≤ −2κ1iL

3−αi
2 − 2κ2iL − 2κ3iL

αi+1
2 (17)
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FIGURE 1. Block diagram of the proposed control system.

According to Eq. (17), it is clear that L̇ ≤ 0 and L > 0.
Therefore, we can conclude that origin of Eq. (8) or Eq.
(12) is globally asymptotically stable under the proposed
controller (9) based on the Lyapunov theory.
Step 2: We keep indicating that the convergence can be

obtained in finite-time.
Based on Eq. (17), the following differential equation is

considered.

ϑ̇ = −2κ1iϑ
3−αi
2 − 2κ2iϑ − 2κ3iϑ

αi+1
2 , ϑ (0) = ϑ0 ≥ 0

= −2
(
κ1iϑ

1−αi + κ2iϑ
1−αi
2 + κ3i

)
ϑ
αi+1
2 (18)

Eq. (18) is corresponding to the following expression:

dt = −
dϑ

2
(
κ1iϑ1−αi + κ2iϑ

1−αi
2 + κ3i

)
ϑ
αi+1
2

(19)

We have dϑ
1−αi
2 =

1−αi
2 ϑ−

αi+1
2 dϑ ⇒ dϑ =

2dϑ
1−αi
2

1−αi
ϑ
αi+1
2 . Hence, Eq. (19) is rewritten as:

dt = −
1

1− αi

dϑ
1−αi
2(

κ1iϑ1−αi + κ2iϑ
1−αi
2 + κ3i

) (20)

Taking the integral of both sides of Eq. (20), we have:

tei∫
0

dt =
1

1− αi

ϑ(0)∫
0

dϑ
1−αi
2(

κ1iϑ1−αi + κ2iϑ
1−αi
2 + κ3i

)

=
1

(1− αi)
2√

4κ1iκ3i − κ22i

 arctan 2κ1iϑ
1−αi
2 (0)+κ2i√

4κ1iκ3i−κ22i
− arctan κ2i√

4κ1iκ3i−κ22i


(21)

The calculated result in Eq. (21) is explained in Appendix
in detail.

Eq. (21) shows that ϑ(0) will converge to zero in finite time
Tϑ as follows:

Tϑ

=
1

(1− αi)
2√

4κ1iκ3i − κ22i

×

arctan
2κ1iϑ

1−αi
2 (0)+ κ2i√

4κ1iκ3i − κ22i

− arctan
κ2i√

4κ1iκ3i − κ22i


(22)

According to the comparison principle [43], we can obtain
that L(t) ≤ ϑ(t) when L(t = 0) ≤ ϑ0, it follow that L(t),
and therefore the origin of (9), reach zero within a period of
finite-time TL ≤ Tϑ , with

TL

=
1

(1− αi)
2√

4κ1iκ3i − κ22i

×

arctan
2κ1iL

1−αi
2 (0)+ κ2i√

4κ1iκ3i − κ22i

− arctan
κ2i√

4κ1iκ3i − κ22i


(23)

Based on definition 1 and the result in Eq. (23), we can
conclude that the equilibrium point of Eq. (12) is globally
finite-time stable.

It can be easy to show that TL is bounded by:

TL ≤ T =
1

(1− αi)
2√

4κ1iκ3i − κ22i

×

π
2
− arctan

κ2i√
4κ1iκ3i − κ22i

 (24)

The convergence time T is only reliant on the design
parameters as shown in Eq. (24). Therefore, the origin of
error dynamics (12) is concluded by definition 3 as glob-
ally fixed-time stable. In other words, through the proposed
control laws (9), synchronization and stabilization have been
achieved in the fixed-time period according to the meaning
of Definition 3. The evidence of theorem 1 has been fully
confirmed.

Block diagram of the proposed control system is summar-
ily described in Fig. 1.
Remark 4: The proposed control algorithm stated in this

paper could be applied to every one of the chaos control
systems or types of synchronization between hyperchaotic
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systems which have non-square scaling factor matrices and
different orders.
Remark 5: The advantage of our method in compari-

son with some existing methods [44]–[49] for synchroniza-
tion problems is to guarantee that as long as the control
design parameters are accounted for, synchronization can
be achieved within a finite time. In other words, the con-
vergence (settling) time is calculated based on the unique
design constants without any dependence on the initial state
of the systems. This article provides an algorithm that a priori
guarantees any desired value of the convergence time for the
synchronization. Based on a careful review of the mentioned
works, we discover that the works [46], [48] achieve synchro-
nization within a finite-time; however, the convergence time
is affected by both the designed control parameters and the
initial conditions of the systems; the works [44], [45], [47],
[49] only guarantee to obtain asymptotic synchronization
( lim
t→+∞

|ei| = 0). Recent developments have emphasized

the importance of finite-time synchronization and it is more
expected.

The proposed method provides robust stabilization per-
formance. However, we have not considered the effects of
the changing (time-varying) uncertainties and external distur-
bances in this paper. We know that the strong ability of SMC
algorithms is against time-varying uncertainties and external
disturbances, our next work is to research the CMFPLS of
HCSswith thementioned uncertain terms by proposing a new
fixed-time SMC.

IV. NUMERICAL SIMULATION
In this section, two descriptive examples are performed in
MATLAB/SIMULINK environment to validate the bene-
fits of the proposed control method with detailed analysis.
To solve differential equations, the fourth-order Runge-Kutta
method is employed with a time step size of 10−3s in all the
simulations.

A. THE FIRST ILLUSTRATIVE EXAMPLE
The first illustrative example presents the CMPS between
two hyperchaotic systems under the pressure of the pro-
posed controller. The CMPS performance from the proposed
method is compared to the existing algorithm [50] to evaluate
its effectiveness. For a reasonable evaluation, the compared
chaotic complex systems and their control parameters were
directly taken in the study [50].

We assumed that the chaotic complex Lorenz sys-
tem is used as the master system with the following
equation:

ẋ(t) = f (x(t), x̄(t), t) (25)

where ẋ(t) =
[
x1, x2, x3

]T
and f (x(t), x̄(t), t) =

 14 (x2 − x1)
35x1 − x2 − x1x3

1
/
2 (x̄1x2 + x1x̄2)− 3.7x3

.

The slave system is selected as the chaotic complex Lu
system described in the below equations:

ẏ(t) = h (y(t), ȳ(t), t)+ u(t) (26)

in which ẏ(t) =
[
y1, y2, y3

]T ,
h (y(t), ȳ(t), t) =

 40 (y2 − y1)
22y2 − y1y3

1
/
2 (ȳ1y2 + y1ȳ2)− 5y3

,
and u(t) =

[
u1, u2, u3

]T .
The master system (25) and the slave system (26) have the

initial conditions x (0) and y (0) selected accordingly as in
Table 2. To obtain the CMPS, the time delay τ and the fac-
tor scaling function ξ are respectively selected according to
Table 1 and they are stated in Table 2. The proposed controller
parameters are assigned as in Table 2 for the first illustrative
example. From the controller parameters in Table 2, we can
calculate the upper bound of convergence time with T1 ≈
2.0154(s), which is based on Eq. (24). This upper bound value
only depends on design constants and does not depend on
the initial states of the synchronized system. To reinforce this
point, the first illustrative example is performed in two cases.
The initial conditions of both systems set up for the two cases
are presented in Table 2.

For the first illustrative example, the root-mean-square
errors are calculated in 12 seconds, as reported in Table 3.
The convergence time of the CMPS error states under the two
different control methods are shown in Table 4.

For both cases, the synchronization performances includ-
ing the CMPS errors and the state trajectories under vary-
ing time from the master system and the slave system are
illustrated in Fig. 2 and Fig. 3, respectively. As described in
Figs. 2, 3 and Table 4, the time convergence of the CMPS
errors can be obtained within a period of limited time that is
lesser than T1 ≈ 2.0154(s). While the CMPS errors under
the method in [50] only obtain an asymptotic convergence
and stabilization, as shown in the enlarged images of the
CMPS errors, i.e., lim

t→+∞
|ei| = 0. From the performance

exhibited in Fig. 2 and Fig. 3, it is easy to see that the fixed-
time CMPS has been completely achieved between the two
presented systems. The proposed control system not only pro-
vides fixed-time synchronization but also achieves synchro-
nization much faster than the compared method, as reported
in Table 4. Therefore, it can be concluded that the proposed
control law provides better synchronous performance than the
synchronous performance from the study [50].

B. THE SECOND ILLUSTRATIVE EXAMPLE
The second illustrative example describes the achievement of
CMFPLS in the fixed-time period from two HCSs to validate
the proposed theoretical result further and fully. The hyper-
chaotic complex Lu system is applied as the master system
and the hyperchaotic complex Lorenz system is performed as
the response system.
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TABLE 2. Control parameters and system parameters.

TABLE 3. RMSE under the two different control methods.

TABLE 4. Control parameters and system parameters.

TABLE 5. RMSE under the proposed control method.

Description of the master system is given as the following
equations:

ẋ(t) = f (x(t), x̄(t), t) (27)

whereas

ẋ(t) =
[
x1, x2, x3, x4

]T
,

f (x(t), x̄(t), t) =


42 (x2 − x1)+ x4
25x2 − x1x3 + x4

1
/
2 (x̄1x2 + x1x̄2)− 6x3

1
/
2 (x̄1x2 + x1x̄2)− 5x4

 ,

and description of the slave system is given by:

ẏ(t) = h (y(t), ȳ(t), t)+ u(t) (28)

whereas

ẏ(t) =
[
y1, y2, y3, y4

]T
,

h (y(t), ȳ(t), t) =


14 (y2 − y1)+ jy4

40y1 − y2 − y1y3 + jy4
1
/
2 (ȳ1y2 + y1ȳ2)− 5y3

1
/
2 (ȳ1y2 + y1ȳ2)− 13y4

 ,
and u(t) =

[
u1, u2, u3, u4

]T .
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FIGURE 2. The time histories of the state variables and the CMPS error states between the master system and
the slave system under varying time in Case 1.

It is interesting to note that the system (27) and the
system (28) have been used for the description or simu-
lation of the physics in the thermal convection of liquid
flows or the detuned lasers [51]. The system parameters

used in Eq. (27) and Eq. (28) were exactly cited from the
paper [23].

To demonstrate that the upper bound of convergence time
does not depend on initial states of the synchronized system,
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FIGURE 3. The time histories of the state variables and the CMPS error states between the master system and the slave
system under varying time in Case 2.
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FIGURE 4. The time histories of the CMFPLS error states under varying time.

six different cases have been simulated in the second illustra-
tive example as follows. Six cases correspond to six different
values of σ , as reported in Table 5. In addition, all six cases
are considered with the two different time delays (τ1 and τ2),
as shown in Table 5.

The master system (27) and the slave system (28) have the
initial conditions x (0) and y (0) selected accordingly as in
Table 5. To achieve the CMFPLS, the time delay τ and the
factor scaling functions ξ are respectively selected according
to Table 1 and they are reported in Table 5. The proposed
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controller parameters are also assigned as in Table 2 for
example 2. From the controller parameter, we can calculate
the upper bound of convergence time with T2 ≈ 1.94s, which
is based on Eq. (24). At a time t0 = 3s, the proposed control
inputs are assumed to be impacted to the response system.
Therefore, the upper bound of the total convergence time can
be calculated as t0 + T2 ≈ 4.94s.
For the second illustrative example, the RMSEs in all

cases are calculated at the time when the control signals are
activated, as shown in Table 5.

For all cases, the time responses of the CMFPLS errors are
exhibited in Fig. 4. The CMFPLS errors reach zero within the
period of the fixed-time despite initial conditions. The time
convergence of the CMFPLS errors can be obtained within
a limited time period that is lesser than t0 + T2 ≈ 4.94s,
as shown in Fig. 4. Those initial conditions could be set with
arbitrary different values. Obviously, the CMFPLS errors
could converge to zero the period of the fixed-time. Conse-
quently, synchronization and stabilization could be achieved
within a period of bounded time.

V. CONCLUSION
From the main obtained results in the development of the pro-
posed algorithm, simulation performance results, and com-
parison with some existing methods, we conclude that the
important values of this paper can be summed up as follows:
1) The CMFPLS of HCSs was considered. Applying this
system, a new FxTC method was proposed to guarantee
synchronization and the desired performance; 2) Synchro-
nization was not only achieved within a predefined limit of
time regardless of initial values but also was achieved faster
than some existing methods; 3) The settling time has been
completely calculated by solving the differential equations
and proof of stability and synchronization has been rigorously
verified through Lyapunov theory. 4) Two simulation exam-
ples were performed in many cases with the change of initial
values and time delay of the system to verify the effectiveness
of the designed method.

However, it can be seen that the limitation of the paper
is that external disturbances have not been considered yet.
Therefore, our next work is to research the CMFPLS of HCSs
with external disturbances by proposing a new fixed-time
SMC to deal with the mentioned systems.

LIST OF ABBREVIATIONS
SMC Sliding Mode Control
HCSs Hyperchaotic Complex Systems
AS Anti-Synchronization
LS Lag Synchronization
CoS Complete Synchronization
HCSs Hyperchaotic Complex Systems
AS Anti-Synchronization
LAS Lag Anti-Synchronization
CAS Complex Anti-Synchronization
CLAS Complex Lag Anti-Synchronization

LS Lag Synchronization
CoS Complete Synchronization
CoLS Complete Lag Synchronization
PS Projective Synchronization
PLS Projective Lag Synchronization
CPLS Complex Projective Lag Synchronization
FPS Function Projective Synchronization
FPLS Function Projective Lag Synchronization
CFPLS Complex Function Projective Lag

Synchronization
MPS Modified Projective Synchronization
MPLS Modified Projective Lag Synchronization
MFPS Modified Function Projective

Synchronization
MFPLS Modified Function Projective Lag Synchro-

nization
CPS Complex Projective Synchronization
CCoS Complex Complete Synchronization
CMPS Complex Modified Projective

Synchronization
CMPLS Complex Modified Projective Lag

Synchronization
CFPS Complex Function Projective Synchroniza-

tion
CMFPS Complex Modified Function Projective

Synchronization
CMFPLS Complex Modified Function Projective Lag

Synchronization
CCoLS Complex Complete Lag Synchronization
FnTC Finite-Time Control
FxTC Fixed-Time Control
RMSE Root-Mean-Square Error

APPENDIX
First, we set q = ϑ

1−αi
2 , hence,

dϑ
1−αi
2(

κ1iϑ1−αi + κ2iϑ
1−αi
2 + κ3i

) = dq

κ1i

(
q2 + κ2i

κ1i
q+ κ3i

κ1i

)
=

d
(
q+ κ2i

2κ1i

)
κ1i

((
q+ κ2i

2κ1i

)
+

(
4κ3iκ1i−κ22i

4κ21i

)) (29)

Then, we setU = q+ κ2i
2κ1i

and a =

√
4κ3iκ1i−κ22i

2κ1i
. Therefore,

U = a× tan v→ v = arctan
(
U
a

)
→ dU = a×

(
tan2v+ 1

)
dv (30)

dU
U2 + a2

=
a×

(
tan2v+ 1

)
dv

a2 × tan2v+ a2
=

1
a
dv
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U =
1
a

arctan
(
U2
a

)∫
arctan

(
U1
a

) dv =
1
a
v

∣∣∣∣∣arctan
(
U2
a

)
arctan

(
U1
a

)

=
1
a

(
arctan

U2

a
− arctan

U1

a

)
(31)

Eq. (30) is corresponding to

=
2√

4κ3iκ1i − κ22i



arctan 2κ1i√
4κ3iκ1i−κ22i

×

(
ϑ

1−αi
2 (0)+ κ2i

2κ1i

)
− arctan 2κ1i√

4κ3iκ1i−κ22i

×

(
ϑ

1−αi
2 (0)+ κ2i

2κ1i

)



=
2√

4κ3iκ1i − κ22i


arctan κ2i√

4κ3iκ1i−κ22i

− arctan 2κ1iϑ
1−αi
2 (0)+κ2i√

4κ3iκ1i−κ22i

 (32)

Consequently,

Tϑ =
1

(1− αi)
2√

4κ3i − κ22i

×

arctan
2κ1iϑ

1−αi
2 (0)+ κ2i√

4κ3i − κ22i

− arctan
κ2i√

4κ3i − κ22i


(33)
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