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ABSTRACT This paper presents the Modified Brain Emotional Controller (MBEC) technique for the
minimization of torque and flux ripples of sensorless Induction Motor (IM) drive. In low-speed operation,
IM is very sensitive due to variations in torque and flux ripples. These variations inert low order harmonics
in stator currents that adversely affect the performance of the IM drive. The drive’s performance can be
improved by integrating a controller that not only minimizes harmonic presence but also increases the drive’s
performance. In this paper a biological inspired intelligent speed controller namely, MBEC is proposed to
obtain improved performance from the drive. The input to the MBEC is an error of the reference speed and
the actual speed of the motor that is estimated using the Model Reference Adaptive System (MRAS). SVM
based topology is used to develop the inverter and IM is operated in sensorless DTC technique. Stability
analysis of MBEC based IM drive is presented in this paper to hold the effectiveness. The proposed control
configuration is tested with different operating conditions and obtained results are verified through real-time
experimentation using Opal-RT OP5600. The performance of the proposed control algorithm is compared
with the BEC and PI techniques to hold the effectiveness in terms of low flux ripples and torque ripples in
different operating conditions.

INDEX TERMS Modified brain emotional controller, model reference adaptive system, sensorless IM drive,
direct torque control, space vector modulation.

I. INTRODUCTION
Artificial intelligence (AI) techniques have become popular
and found in wide variety of industrial applications. Brain
Emotional Controller (BEC) is one of the AI techniques more
suitable for applying in wide range of control engineering
applications [1]–[5]. The design of BEC is inspired by the
emotional system of mammalian brain using limbic system,
Orbitofrontal cortex and their associative parts. In BEC there
is dual learning process one in the amygdale another in the
orbitofrontal cortex that involves in taking swift decisions.
The learning methodology of BEC is encouraged to apply in
various industrial applications.

Industrial systems are mostly dependent on Induction
motors (IM) due to their advantageous features and char-
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acteristics similar to a DC motor. IM while operating in
process industries, submarine systems, chemical industries,
and many more sensors are absent in which the motor
variables need to be estimated during this process since the
internal characteristics of IM are deteriorated.

In adjustable speed drive applications [6] the performance
of the IM can be improved using one of two control tech-
niques vector control and Direct Torque Control (DTC) [7].
The vector control approach is modeled using stator currents
and flux whereas DTC technique with two individual
controllers using flux and torque that embedded directly. The
major drawback of the vector control technique is sensitivity
to motor parameters, coordinate transformation, and power
regulator setup. These variations adversely affect particularly
in low-speed operation of IM drive. DTC technique can
overcome the drawbacks of vector control IM drive. DTC
structure provides rapid dynamic response and robustness to
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the parameters of the rotor and has a significantly reduced
inverter control structure. DTC has certain limitations such
as excessive torque and flux ripples. Conventionally, the
inverter topology applied in the DTC technique is based on
the hysteresis band to obtain switching pulses. The prescribed
band in the hysteresis controller gives limited switching
pulses that affect the torque and flux ripples during the
change in load and speed respectively. In [8] presented
Space Vector Modulation (SVM) in DTC to minimize torque
and flux ripples. SVM substitutes the hysteresis model of
inverter switching with dwell time-based switching that
retains the fixed frequency of switching and the effects of
torque ripples on decreasing flux [9]–[12]. Though SVM-
based DTC strategy gives satisfactory results, to achieve
high performance from the drive, the position information of
the rotor and speed information are required to get refined
switching pulse to the inverter. The speed and rotor position
information can be collected using a controller, the speed
controller smoothens the torque component, and in turn the
torque ripples are minimized.

The MRAS technique is used to estimate the speed
and rotor position of IM to operate under sensorless. The
configuration of MRAS contains reference and adjustable
models with a controller, generally a proportional-integral
(PI) controller. The estimated speed received from theMRAS
is termed as the actual speed of the machine compared
with the reference speed and process in to the speed
controller to obtain torque information [13]–[15]. Many
researchers have been developed different speed controllers
namely the classical PI controllers, predictive controllers,
sliding mode controllers, and AI based controllers such as
fuzzy logic controllers, artificial neural networks and many
more. The confined performance of the existing classical
and AI based controllers switched to modern intelligent
controllers that not only contain simple architecture but
also easy implementation. The modern intelligent controllers
can be developed using the decision-making process of
a human. The limbic system is responsible for emotional
behavior and to take quick decisions. In control engineering
applications, Caro Lucas introduces the computational net-
work model for limbic systems as BEC. This controller is
employed in general-purpose embedded systems [16]–[19].
The BEC was implemented for PMSM drive-by M.A.
Rahman et al. [20]. The main features of BEC are enhanced
self-learning capability, provision of the model-free control
algorithm, robustness, and ability to respond as a swift
controller.

In this paper, by integrating the Sensory cortex into the
BEC structure, the sensory signal is processed quickly and
accumulated with other limbic system components, allowing
for very quick intervention. In order to reach a high efficiency
compared with the existing BEC, the modified BEC (MBEC)
is configured to control the IM drive. Further, to get speed
as a feedback signal, The MRAS approach is used in
sensorless IM drive to predict rotor position and speed [21].

The proposed MBEC based AI method improves the IM
drive’s dynamic performance [22], [23]. In the design of
speed controllers, the development of the DTC strategy,
parameter variance issues, non-linear nature of the drive,
and load toque disruption effects on motor efficiency are
burgeoned with a broad emphasis on computational AI
techniques.

They have a good dynamic performance, but when
practically applied they add complexity to the architecture
and need the use of fast digital signal processors to execute
various controller computations [24]–[27]. Simulation and
experimental findings are investigated and PI-based SVM
DTC strategies evaluate the output of the proposed controller.
In the hardware-in-loop mechanism, closed-loop testing of
the proposed DTC strategy is carried out. The motor receives
the Op-RTDS control output signals, and the Op-RTDS
receives the DTC control scheme feedback signals in real
time [28]–[30]. After that, the simulation and experimental
synthesis take place, and the test system connects with the
Op-RTDS simulation. Fig.1 shows MBEC based IM drive
in which sensorless DTC technique is used to estimate the
motor speed and to control the speed of IM. MBEC is applied
to design the sensorless technique, the MRAS structure is
adopted. The stability analysis of MBEC-IM is performed in
this paper and developed the adaptive law for the estimation
of motor parameters.

FIGURE 1. Block diagram of MBEC based IM drive.

This paper is organized as follows: Section II presents
SVM DTC based sensorless IM drive and also speed esti-
mation technique using MRAS is described here. Section III
explains the development of MBEC and it is implemented in
SVM DTC based sensorless IM drive. Section IV deals with
stability analysis for MRAS. Section V contains the results
of the experiments and test cases used to evaluate the pro-
posed MBEC architecture in high-performance applications.
Finally, in Section VI there are some conclusions.

II. SVM-DTC BASED SENSORLESS IM DRIVE
Electric drive based industry is increasing enormously that
encourages to develop newer techniques to obtain high
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performance. The developed techniques required to be
tested on benchmark applications. The newly developed
techniques cannot be applied directly on real-time models,
must be evaluated in different conditions using simulation
environment. In simulation, the system characteristics can be
analyzed using mathematical model of the system.

In this paper, an IM drive is operated in a sensorless
DTC scheme using SVM based inverter. The mathematical
model of IM drive is developed initially and for sensorless
operation Model Reference Adaptive System is developed
later.

A. MATHEMATICAL MODELLING OF DTC BASED
INDUCTION MOTOR DRIVE
The mathematical model of an IM is unique with respect to
the reference frame. The mathematical model referred to as
stationary reference frame is used in the DTC strategy. The
impedance based induction motor is expressed in (1), shown
at the bottom of the page, where,

I =
[
1 0
0 1

]
and 2:2× 2 null matrix

X∗ml =
1

1
Xm
+

1
Xls
+

1
Xlr

ωb : motor angle base frequency
ωr : rotor angular speed
9ds : stator flux linkage
9qs : stator flux linkage
9dr : rotor flux linkage
9qr : rotor flux linkage
Xls : stator leakage reactance
Xlr : rotor leakage reactance
Xm : mutual reactance
vdsvqs : stator voltages
vdrvqr : rotor voltages

In real-time, the estimated stator flux through the voltage and
current signals at each sampling signal ts the stator flux and

actual stator flux can be written in the d,q components of the
discrete form as in (2), (3) and (4). Using the transformation,
d-q axis stator flux linkages at each sampling period can be
obtained as in (2) and (3) these are used to estimate stator flux
as given in (4)

9ds (k + 1) = 9ds (k)− tsRsids (k)+ tsVds (k) (2)

9qs (k + 1) = 9qs (k)− tsRsiqs (k)+ tsVqs (k) (3)

9s (k + 1) =
√
92
ds (k + 1)+92

qs (k + 1) (4)

The torque developed in the IM is expressed as

Te =
3
2

(p
2

) Lm
LrLs

(
E9s × E9r

)
(5)

Using d-q stator flux and currents, the torque of the motor is
estimated as

Te (k + 1) = Te (k)−
3p
4

(
9ds (k) iqs (k)−9qs (k) ids (k)

)
(6)

In DTC, the estimated flux in (4) and estimated electromag-
netic torque in (6) are compared with reference commands.
The errors of torque and flux are used to determine inverter
switching states either by switching table based SVM strategy
or dwell-time based SVM strategy.

B. SENSORLESS SVM-DTC BASED IM DRIVE
The MRAS structure is displayed in Fig.2. It contains two
structures, one is the Reference Model (RM) and the other is
an Adjustable Model (AM). An adaptive mechanism remains
currently present. The error out of RM and AM are fed
directly into the adaptive mechanism. The parameters from
the RM are fixed and the parameter values from AM are
varied, therefore the error between two models AM and
RM becomes zero. MRAS is one of the most common and
favored schemes for sensorless IM drives, as they are simple
to implement to achieve good results.

When the speed is precisely evaluated, both the RM and
AM outputs are equal to zero. Both the outputs 9x

r and 9y
r

estimates rotor flux space vector in the stationary reference


9̇qs
9̇ds
9̇qr
9̇dr

 =



0
Rsωb
Xls

[
X∗ml
Xls
− 1

]
0

Rrωb
Xlr

[
X∗ml
Xls

]
Rsωb
Xls

[
X∗ml
Xls
− 1

]
0

Rrωb
Xlr

[
X∗ml
Xls

]
0

0
Rsωb
Xls

[
X∗ml
Xlr

]
−ωr

Rsωb
Xlr

[
X∗ml
Xlr
− 1

]
Rsωb
Xls

[
X∗ml
Xlr

]
0

Rsωb
Xlr

[
X∗ml
Xlr
− 1

]
−ωr




9qs
9ds
9qr
9dr



+ωb

[
I 2

2 2

]
vqs
vds
vqr
vdr

 (1)

40874 VOLUME 10, 2022



S. Savarapu et al.: MBEC-Based Ripple Minimization for SVM-DTC of Sensorless IM Drive

FIGURE 2. MRAS structure for speed estimation of IM drive.

frame.

usn = Rsin +
d9s

dt
(7)

0 = Rr ir +
d9r

dt
− jωr9r (8)

Equations for stator and rotor in the stationary frame
as the rotor speed affects the computation of flux,
Eqns. (7)-(8) represent the AM of Fig.2. Following are the
rotor flux components as seen in the stationary reference
frame

p
[
9x
r

9
y
r

]
=

Lr
Lm

[[
U x
sn

U y
sn

]
−

[
(Rs + σLsρ) 0

0 (Rs + σLsρ)

]
×

[
iαs
iβs

]]
(9)

p
[
9x
r

9
y
r

]
=

[
−

1
Tr

−ωr

ωr −
1
Tr

][
9x
r

9
y
r

]
+
Lm
Tr

[
iαs
iβs

]
(10)

where σ = 1 − (L2m
/
LsLr ) and p = d

dt ωr is rotor angular
speed and Tr is the rotor time constant. The rotor speed
estimation algorithm is adjusted by the speed tuning signal,
which transforms the error signal to zero.

ωEsti = KPε + K ∫ εdt (11)

The input of the PI controller as

ε = 9̂x
r9

y
r + 9̂

y
r9

x
r (12)

The PI controller parameters are Kp and Ki

C. STATOR CURRENT BASED MRAS SPEED ESTIMATOR
DESIGN

d
dt
îsβ =

1
σLs

(Vsβ − Rs îsβ −
L2

LrTr
+

Lm
LrTr

φ̂rβ

+
Lm
Lr
ω̂r φ̂rα) (13)

d
dt
îsα =

1
σLs

(Vsα − Rs îsα −
L2

LrTr
îsα +

Lm
LrTr

φ̂rα

+
Lm
Lr
ω̂r φ̂rβ ) (14)

d
dt
φ̂rβ =

Lm
Lr
îsβ −

1
Tr
φ̂rβ + ω̂r φ̂rα (15)

d
dt
φ̂rα =

Lm
Lr
îsα −

1
Tr
φ̂rα + ω̂r φ̂rβ (16)

Lyapunov function candidate considered as V = eTPe
Let ẋ = Ax + B EVs and y = Cx where system matrix A is

written as follows (17)–(22), as shown at the bottom of the
page.

Let εiα = iαs − îαs and εs = is − îs Where

is =
[
iαs
iβs

]

A =



−
1
σLs

(Rs +
L2m
LrTr

) 0
1
σLs

Lm
LrTr

1
σLs

Lm
Lr
ω̂r

0 −
1
σLs

(Rs +
L2m
LrTr

) −
1
σLs

Lm
Lr
ω̂r

1
σLs

Lm
LrTr

Lm
Tr

0 −
1
Tr

ω̂r

0
Lm
Tr

ω̂r −
1
Tr


(17)

B =
1
σLs

CT
; (18)

C =
[
1 0 0 0
0 1 0 0

]
(19)

dv
dt
= εT

(
AT + A

)
ε − 2(ωr−ω̂r )

[
K
(
εrαφ̂rβ − εrβ φ̂rα

1
r
d
dt
ω̂r

)]
(20)

εT
(
AT + A

)
ε ≤ Q (21)

y = Cx̂ (22)
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εiβ = iβs− îβs and εω = ωr − ω̂r V = V1+V2 Let V1 = εT ε

and V2 =
ε2ω
r and the derivative of this Lyapunov candidate

function written as x − x̂ The derivative of this Lyapunov
candidate function written as Q = ρIn and ρ ≥ 0 and it is an
identity matrix. To prove Lyapunov stability two conditions
as to be satisfied (i) The Eigenvalues of the estimator must
have negative real parts (ii) The terms factor must be zero
i.e., (ωr − ω̂r ) = 0

K (εα îsβ − εβ φ̂rα)−
1
r
d
dt
ωr = 0

d
dt
ω̂r = rK (εαφ̂rβ − εβ φ̂rα) (23)

ω̂r = M ∫(εαφ̂rβ − εβ φ̂rα)dt

(24)

By adjusting the value of M the adaptive law for M is
obtained.

ω̂r = Ki ∫
(
εαφ̂rβ − εβ φ̂rα

)
dt + Kp(εαφ̂rβ − εβ φ̂rα)dt

(25)

where Ki and Kp are adaptive gains for the speed estimator

III. DEVELOPMENT OF MODIFIED BRAIN EMOTIONAL
CONTROLLER (MBEC) BASED DTC IM DRIVE
The BEC is developed by extracting the functional process
from the limbic system, in which, emotions are generated
in the mammalian brain by associating information from
different parts, then it sends a response as a specific action.
Emotions are basic components that play an important
role in human intelligence and decision-making. Sensory
cortex, Amygdala, Thalamus and Orbitofrontal cortex are the
primary components of the limbic system. The intelligent
emotional response is extremely fast compared to traditional
control systems; the same comparison is applied to control
engineering implementations to illustrate rapid decision
making.

TheMBEC can be used to control the speed of an IM drive.
The Sensory cortex, which analyses sensory signals and sends
them to Amygdala and the Orbitofrontal cortex, is used in the
modeling of MBEC. The learning weights of the Amygdala
and Orbitofrontal cortex are adjusted with the inclusion of the
sensory cortex. It can improve in the speeding up of the signal
conditioning of Amygdala and Orbitofrontal cortex signals to
produce final emotional output whereas in the existing BEC
Sensory cortex signals are not available.

In MBEC architecture sensory cortex is included, accord-
ing to anatomy of brain Sensory cortex is responsible for five
major senses namely smell, sound, taste, vision and touch
as well as the proprioceptive sensory information. It is to
be noted that in the mammalian brain there are distinct and
specialized modules for each of the senses and these modules
are spatially distributed over the cortical and sub-cortical
regions of the brain. For the sake of simplicity we lumped
all these senses into a module called Sensory cortex (SC) in

theMBEC architecture. The sensory information is integrated
with components of the limbic system i.e., amygdala and
OFC, to generate necessary action/response in a given task.
The inclusion of SC modifies the learning rate of amygdala
and OFC and enables processing of information very rapidly
and with accuracy.

A. MODELLING OF MODIFIED BRAIN
EMOTIONAL CONTROL
The Sensory Cortex (SCk) and Thalamus in the BEC design,
have not been considered in the existing BEC design. The
inclusion of SCk and Thalamus can bemodified in this article,
so modified BEC can be proposed. The combination of
SCk with the limbic system would improve decision-making
by producing sufficient emotional signals, allowing for a
quick response. The amygdala and Ok learning mechanisms
are modified with SCk inclusion. A MBEC computational
model is made up of sensory input stimuli nodes Sk , sensory
cortex nodes SCk , and thalamus nodes Ath. The amygdala is
represented by Ak , the orbitofrontal cortex by Ok , and the
output node by E . A MBEC computational model made up
of sensory input stimuli nodes Sk , sensory cortex nodes Sck ,
and thalamus nodes Ath. The amygdala is represented by Ak ,
the orbitofrontal cortex by Ok , and the output node by E.
Fig. 3 depicts the mechanism of emotional signal output. The
controller’s feedback is transformed to a sensory signal Sk
(26) with the function f , which is then analyzed to produce
an emotional signal from the thalamus as

Sk = f (ew, zc) (26)

f = K1ew + K2. ∫ zcdt (27)

The thalamus built in this paper is to enable sensory signals
to enter the Sensory Cortex SCk and the amygdala Ak in a
superficial manner. In SCk , the sensory signal is analyzed
with function g, and the sensory cortex’s output is sent to the
Amygdala.

SCk = g(Sk ) (28)

g(Sk ) = eSk (29)

Ak = SkVk (30)

1Vk = αmax (0,EC − Ak) SCk (31)

Ok = WkSk (32)

1Wk = β(E ′ − EC) SCk (33)

E ′ = Ak − Ok (34)

Amygdala receives Thalamus, Sensory Cortex and elevated
stimulation values as an emotional cue. The model of
amygdala learning contains a sensory signal connection. The
relationship of amygdala gain is formed by learning rate
(α) and emotional cue (EC). The result of the amygdala
is helped to resolve the unsuitable and noisy strengthening
of the amygdala, which generates the required emotional
stimulus for a complete response. The Orbitofrontal Cortex,
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FIGURE 3. Structure of MBEC.

FIGURE 4. MBEC based SVM-DTC of IM drive.

FIGURE 5. Existing BEC characteristics for IM drive (a) Sensory and reward signal (b) control signal.

Ok gets Sensory Cortex input, amygdala input and high
emotional indication. The OFC learning model is con-
nected with the β and E’ learning rates. The emotional
cue is produced by the function h and the emotional

signal (36).

EC = h(e, zc) (35)
E = A− O (36)
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FIGURE 6. Modified BEC characteristics for IM drive (a)Sensory and reward signal (b)Sensory cortex signal (c) Control signal at no
load (d) Control signal at full load applied at step time 0.8 sec.

The following algorithm is used to design the MBEC.
Step 1 The BEC architecture begins with the initialization

of the sensory stimuli function, Sk as defined in (26).
To interact with the amygdala and orbitofrontal
cortex, this signal is processed in the sensory cortex
and thalamus.

Step 2 In the sensory cortex, the sensory input is evaluated as
seen in the functional equation SCk (28). The signal
is then generated and distributed to the amygdala and
orbitofrontal cortex.

Step 3 Choosing the correct reward creates a signal link and
increases learning in the amygdala and orbitofrontal
cortex, enabling you to achieve the optimal response.
The signal is sent to the amygdala and orbitofrontal
cortex, and its general equation is modeled as in (35).

Step 4 Using equation (30), the amygdala is constructed,
and amygdala learning is obtained using reward and
learning rate ‘‘α’’ as seen in (31). The amygdala
output is always a high value attributable to the
maximum term in the learning equation.

Step 5 The reaction of the amygdala, adjusted by the
orbitofrontal cortex learning model (32), is modeled
with the emotional cue and sensory cortex, with a
learning rate of ‘‘β’’, as seen in (33).

Step 6 In the output node, the amygdala and orbitofrontal
cortex signals are processed to produce an emotional
response using equation (36). If the emotional signal

generated corresponds to the desired response of the
plant, the process is interrupted otherwise it starts
again from step 1.

B. MBEC FOR DTC BASED IM DRIVE
The torque ripple of the DTC motor is predicted to be
significant in this paper, thus speed control is made based on
the torque error, and it is regarded as an Emotional cue (EC)
or reward signal to decrease torque ripples. In Fig.4. shows
the block diagram of MBEC based DTC IM drive. The
motor speed and the approximate reference torque are the
other functions in the incentive. In the reward types, both of
these signals are used as adverse feedback from the scheme.
Then the stimuli, Sk and emotional cue, EC of this proposed
controller as

Sk = few (37)

EC = h(et ,wr , zp) (38)

Where,

eω =
(
ω∗r − ωr

)
, speed error

et =
(
T ∗e − Te

)
, Torque error from DTC controller

ωr = Speed of the motor

The weighted sensory stimuli, that is input function, f is
defined as

f = (Kpew + Ki

∫ t

0
ewdt) (39)
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FIGURE 7. Simulation results of PI-based sensorless IM drive under no load condition: Reference speed = 157 rad/sec (a) Torque
(g) Speed (h) with different speed. At 0.8 sec, a 0.36 N-m step change in load is applied: (b) Torque (c) Zoomed torque (d) Stator
flux (e) d-q axis stator flux (f) d-q axis stator flux locus (i) Speed (j) three phase stator currents.
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FIGURE 7. (Continued.) Simulation results of PI-based sensorless IM drive under no load condition: Reference speed =

157 rad/sec (a) Torque (g) Speed (h) with different speed. At 0.8 sec, a 0.36 N-m step change in load is applied: (b) Torque
(c) Zoomed torque (d) Stator flux (e) d-q axis stator flux (f) d-q axis stator flux locus (i) Speed (j) three phase stator currents.

where f is considered as a proportional-integral (PI) function
and it has kp and ki as its gains and it is used to fine-
tune the controller gains by trial and error basis. An online
tuning mechanism for controller parameters should be built
at every sample time in the design of self-learning-based
controllers. As shown in (29), (31) and (32), the predicted
reward function controls the self-learning process in MBEC
(33). In, DTC torque ripple varies with inverter switching
actions. The learning rule in the amygdala as

1Ka = K1.max (0,EC − Ao) ≥ 0 (40)

That ka represents the weight in the Amygdale link. k1 is
the Amygdala’s learning rate, while EC is the Emotional Cue
Function or reward signal. In addition, the learning rule in the
orbitofrontal cortex

1Koc = K2.(MO− EC) (41)

If (38) and (39) are combined, we have

MO = (Ka − Koc)Si (42)

The emotional signal of EC shows that the system is operating
well, and it may adjust for both primary and secondary
system goals, such as torque ripple reduction. In this work,
we consider EC as

EC = C1.ew + C2.MO+ F(torque ripple) (43)

That C1 and C2 are constant.
The gain parameters are assigned on a trial and error basis

which are shown in APPENDIX-II.

IV. STABILITY ANALYSIS OF MRAS
The mechanical model of the system at stationary reference
frame is as follows

d
dt
ω̂r =

3ρLm
4JLr

(9αr iβs −9βr iαs)−
f
J
ωr −

f
J

(44)

Using small signal analysis

1y = c1x = (SI − A)−11Axo (45)

1ẋ = A1x +1Axo where 1x =
(
x − x̂

)
and

xo = [ids0 iqs0 φdr0 φqr0]T (46)

The system matrix A is expressed as

1A =


0 0 0 a
0 0 −a 0
0 0 0 −1
0 0 1 0

1ωr
where

a =
1
σLs

Lm
Lr

(47)

1y =
[
iαs −îαs
iβs −îβs

]
(48)

adj(SI − A) =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 (49)


1ias
1ωr
1iβs
1ωr

 = C (SI − A)−1


0 0 0 a
0 0 −a 0
0 0 0 −1
0 0 1 0


× [ids0 iqs0 φdr0 φqr0]T (50)

substitute (49) into (50) and solve from the mechanical model
the transfer function of the machine ε(s) obtained. From
equation(49) and the adj of (SI-A)

ε = −
(a24 − a22)
|SI − A|

9̂αr01ωr

ε(s)
m(s)

=

{
−
(a24 − a22)
|SI − A|

1
CS + f (j)

p
2j
φ̂2αr0

}
ωr

ω̂r
=

{
(G(s)(KPmras + (KImras/s)))

1+ (G(s)(KPmras + (KImras/s)))

}

V. IMPLEMENTATION OF SVM DTC IM DRIVE USING
MBEC
In order to validate the proposed method, let us consider the
parameter as given in Appendix – I. The overall MBEC based
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FIGURE 8. Simulation results of MBEC based sensorless IM drive under no-load condition. The reference speed = 157 rad/sec
(a) Torque, (g) Speed, (h) with different speed tracking. At 0.8 sec, a 0.36 N-m step change in load is applied: (b) Torque (c) Zoomed
torque (d) Stator flux (e) d-q axes stator flux (f) d-q axis stator flux locus (i) Speed (j) Estimated speed with MRAS (k) Three phase stator
currents (l) Phase voltages.
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FIGURE 8. (Continued.) Simulation results of MBEC based sensorless IM drive under no-load condition. The reference
speed = 157 rad/sec (a) Torque, (g) Speed, (h) with different speed tracking. At 0.8 sec, a 0.36 N-m step change in load is
applied: (b) Torque (c) Zoomed torque (d) Stator flux (e) d-q axes stator flux (f) d-q axis stator flux locus (i) Speed (j) Estimated
speed with MRAS (k) Three phase stator currents (l) Phase voltages.

FIGURE 9. Frequency spectrum analysis of stator current using (a) MBEC based IM drive (b) PI based IM drive.

DTC motor drive is shown in Fig. 4. The proposed method
is implemented through simulation and validated through
experimentation. The performance of the proposed scheme
is presented in the following subsections.

A. SIMULATION RESULTS
The performance of the existing BEC and MBEC are pre-
sented in Fig. 5(a), 5(b) and Fig. 6(a), 6(b), 6(c) respectively.
It can be seen from the figures that the reaction of the sensory

input signal is reduced to a considerable level. As compared
to the MBEC, the sensory signal value in the existing BEC is
extremely high, which has an impact on the system’s overall
performance. The incorporation of sensory cortex signal to
the MBEC decreased the scale of the amygdala and OFC
learning models in comparison to the existing BEC design.
As a result, the characteristics show thatMBEC canminimize
signal processing when compared to BEC. The simulation
findings were achieved using a 157 rad/sec speed reference
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FIGURE 10. RCP based experimental setup photograph for SVM DTC IM drive.

FIGURE 11. Simulated MBEC based sensorless IM drive in RT-LAB HIL setup (a) Speed and Torque, (b) Zooming output of
speed and Torque, (c) d-q axes flux, (d) stator flux.

FIGURE 12. Simulated PI based sensorless IM drive in RT-LAB HIL setup (a) Speed and Torque (b) Zooming output of
speed and Torque (c) d-q axes flux (d) stator flux.

and a 0.36 N-m load step change at a step duration of 0.8 sec.
The torque response and its snapshot of the zoomed response
of PI and MBEC base SVM DTC strategy are observed in
Fig. 7(a), 7(b), 7(c) and Fig. 8(a), 8(b), 8(c). The Tmax and

Tmin are noted at the 1.2-second simulation period when
the torque ripple of SVM DTC is computed. The torque
ripple is determined using the averaging approach (51),
as indicated in the zooming response of the torque ripple for
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FIGURE 13. Simulated sensorless IM drive in RT-LAB HIL setup (a) d-q axis flux locus of MBEC based SVM DTC
strategy, (b) d-q axis flux locus of PI-based SVM DTC strategy.

FIGURE 14. Simulated MBEC based sensorless IM drive in RT-LAB HIL setup (a) phase voltage on 1:2 scale (b) stator
currents (c) pole voltage on 1:2 scale and (d) common-mode voltage.

FIGURE 15. Simulated PI based sensorless IM drive in RT-LAB HIL setup (a) phase voltage on 1:2 scale (b) stator
currents (c) pole voltage on 1:2 scale and (d) common-mode voltage.

three sets of data tips. The torque ripple is calculated by the
averaging method as expressed (51), shown at the bottom of
the page.

Compared with MBEC-based SVM DTC with PI-based
DTC, fewer torque ripples are observed. These are shown in
Fig. 7 (d), 7 (e), 7 (f) and 8 (d), 8 (e), 8 (f) respectively. The

%1T =
1
N

[
Tmax 1 − Tmin 1

TL
+
Tmax 2 − Tmin2

TL
+ . . . .+

TmaxN − TminN

TL

]
× 100 (51)
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TABLE 1. Comparative results.

flux ripple for the MBEC controller is 6.0% and for the PI
controller, it’s 10.9%. MBEC based SVM DTC reduces flux
ripple compared to a PI controller.

The MBEC settles smoothly and without oscillations at
157 rad/s with no load, as illustrated in Fig.8(g). When
employing PI controller speed, the command speed with
transient oscillations is obtained in Fig.7(g). WithMBEC and
PI controllers, the motor speed achieves its steady state in
0.1 and 0.6 seconds, respectively. OnMBEC based IM drives,
speed tracking capabilities are tested. Fig. 8(h) shows that
the speed of IM is tracking with command speed values of
50-150-250-300 rad/sec at intervals of 0-0.2-0.5-0.8-1 sec.
The SVM DTC of the IM drive exhibits a minor fall in
speed response when a rapid load is given to the MBEC
and PI controller-based SVM DTC in Fig.8(i) shows the
load disturbance that occurred at 0.36 N-M at step time of
0.8 sec is shown in Fig.8(i), and Fig.7(i) MBEC is able
to rapidly recover the command speed. Fig.8(j) indicates
the effects at a constant speed, there are some oscillations
during a start in both the real and estimated speeds and the
stator phase currents at startup draw a lot of current. The
actual and approximate positions of the rotor are paired.
The three-phase currents and voltages of both the MBEC and
PI control based DTC SVMs are shown in Fig. 7(j), 8(k),
and 8(l). From Fig.9(a),9(b) frequency spectrum of stator
current, it can be seen that the current waveform inMBEC has
less harmonic distortion than the current waveform in the PI
controller. According to the figures below, MBEC provides
better performance in all conditions, with a fast response,
low steady-state error, and sensitivity to the disturbing load.
Torque and flux ripples were minimized as well. The MBEC
overcomes the problems.

B. EXPERIMENTAL RESULTS
Experimental efficiency investigation of proposed MBEC
based SVM DTC technique for IM is performed by utilizing
Op-RTDS. The performance results are comparable to PI
based SVM DTC method. The Op-RTDS is used in the
hardware-in-loop (HIL) [28] mechanism, which creates

closed loop access in real time between plant and control
algorithms, and this type of configuration is known as
rapid control prototyping (RCP) [29], [30]. Using an RCP-
based experimental setup, the difficulties associated with
fast processing micro controllers and DSPs are removed,
and a reconfigurable system for validating control methods
is created. HIL is used to access DTC signals from the
mathematical Simulinkmodel as well as plant control signals.
The OP5142 FPGA card in Op-RTDS collects and executes
PWM operations on high-speed analog/digital signals. Soft-
line computed Simulink PWM signals are transformed into
power signals in real-time by the OP5142 FPGA card in
this task. The Op-RTDS is equipped with a multicore power
PC. The simulink.mdl computations are executed in one of
these cores. The Op-RTDS and the host PC are linked in
the hand-shake mode, as seen in Fig. 10. The experimental
photograph. The experimental results of speed, torque and
flux response of MBEC and PI based DTC SVM of IM
drive with a reference speed of 157 rad/sec are shown
in Fig. 11(a), 11(c) and 12(a), 12(c). A D.C generator is
linked to a reasonable number of bulbs as the drive’s load.
Fig. 11(b), 11(d), and 12(b), 12(d) show the rpm, torque, and
flux responses of the IM drive’s loaded-condition MBEC-
based SVM-DTC. Outgoing op-RTDS channels are used
to calculate the magnitude of speed and torque in voltage
terms. By observation, the actual torque ripple corresponding
to this 100mv is equal to 9.29 % under loaded conditions
when calculated using (51) The torque ripple is 15.6 % when
using a PI controller, as seen in Fig. 12(a), (b). On a 1:10
ratio, the voltage corresponding to the decrease in speed is
0.7 V. The real speed droop is 0.7 × 10 = 7 rad/sec in
this case. The d-q axis flux locus of both MBEC and PI
controller based SVM DTC is shown in Fig. 13(a), 13(b).
The three-phase voltages and three-phase currents are shown
in Fig. 14(a), 14(b), 14(c), 14(d).

The performance of SVM-DTC IM drive is shown
in Table 1, with PI controller and MBEC in terms of
speed settling time, torque ripples, flux ripples and stator
currents THD respectively. The speed settling time with
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PI based IM drive is 0.6s in simulation and 1.5s in real-
time experimentation whereas MBEC is recorded as 0.1s in
simulation environment and 0.9s in experimentation. Torque
ripples and flux ripples with PI based drive are recorded
as 14.8% and 10.9% as against to 7.89% and 6.9% in
MBEC based drive in simulation environment. In real-time
experimentation 15.6% of torque ripples and 12% of flux
ripples are recorded for PI based drive and with MBEC based
drive torque and flux ripples recorded as 9.29% and 8%.
The stator currents THDs are 10.89% for PI based drive
and 5.29% for MBEC based drive in simulation results.
In real-time stator currents THD is recorded as 13.47% for
PI based drive and 8.24% for MBEC based drive. The results
shows that theMBEC based IM drive gives high performance
compared to PI based drive in terms of fast settling time, less
ripples in flux and torque and lesser THD in stator currents.

VI. CONCLUSION
In this paper a modified brain emotional controller is
presented. It is inferred that this MBEC is very well
adaptive for tuning parameters and shows good self-learning
mechanism. The proposed controller is used for SVM based
DTC of induction motor drive, an efficient MBEC is used to
control the speed and ripple minimization of torque and flux
of sensorless IM drive. The effectiveness of MBEC is tested
in simulation environment and implemented in the Op-RTDS
and experimental results are analyzed. MBEC controller
achieves dynamic performance in terms of less settling time
without any reduced peak over shoots and significantly
decreases torque and flux ripples when compared with PI
controller.

APPENDIX–I
Parameters of Induction Motor:

Rating: Parameters:

Ps = 120W , Vs = 36V , Rs = 0.896�,

Lls = 1.94mH , 38− AC f = 120Hz Rr = 1.82�,

Llr = 2.45 mH , Is = 6A, P = 4 Lm = 69.3mH

APPENDIX–II
Parameters of BEC
α = 0.005 β = 0.002
Sensory signal gain parameters = 0.0455, 2 × 10−3, 6 ×

10−2.
Emotional signal gain parameters= 3.4×10−2, 4.8×10−3,

1× 10−3.
Speed signal gain = 0.05
Control signal gain = 0.09

APPENDIX-III
Stability analysis of Induction Motor

The transfer function of the Induction motor is represented
as

θs

Va(s)
=

Ka
JLaS3 + (RaJ + BLa) S2 + (BRa + KaKt )S

(A.1)

The motor parameters in Appendix-I is substituted in
Equation (A.1) Where

Ka =
3

2πns
= 0.000318

ns =
120f
p
= 1500

J (Inertia constant) = 0.225e−3 = 0.01120

La = 1.5394,

Ra = 1.82,

Kt = 0.5

Transfer function gives
θs

Va(s)

=
0.000318

0.172S3 + 0.0203S2 + 0.0001579

=
0.000318

S(S + 0.00788))(S + 1.172)
(A.2)

G (s) =
0.03443

S(1+ 126.9S)(S + 0.53S)
(A.3)

G (s) =
0.03443

108.24S3 + 127.75S2 + S + 0
(A.4)

The root locus is drawn for (A.4) and found that the plots of
induction motor are at left hand side of the R-H plane shown
in Fig. 16.

FIGURE 16. Root locus diagram of IM.
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