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ABSTRACT Molecular dynamics (MD) simulations involve computations of forces between atoms and the
total energy of the chemical systems. The scientific community is dependent on high-end servers for such
computations that are generally sequential and highly power hungry, thereby restricting these computations
in reaching experimentally relevant large systems. This work explores the concept of parallelization of the
code and accelerating them by exploring the usage of high level synthesis (HLS) based Field Programmable
Gate Array (FPGA). This work proposes a hardware and software based interface to implement parallel
algorithms in an FPGA framework and communication between the software and hardware interface is
implemented. The forces of Au 147 obtained through the ANN based interatomic potentials in the proposed
model shows an acceleration of 1.5 times compared with an expensive server with several nodes. Taking this
work forward can result in a lab-on-a-chip application and this would potentially be applied onto several
large experimentally relevant chemical systems.

INDEX TERMS FPGA accelerator, high performance computing, molecular dynamics.

I. INTRODUCTION
With several advancements in the electronic hardware indus-
try, High Performance Computing (HPC) applications uti-
lize HPC servers. These servers use several conventional
processors and graphical processing units (GPUs) [1]–[3].
These advancements play a significant role in increasing the
computational power which is very essential for many critical
HPC applications. Field ProgrammableGateArrays (FPGAs)
have been explored as a possible alternative to HPC servers
for quite some time and has been successful in many
attempts [4]–[9]. With the recent developments, currently
available FPGAs would allow usage of floating-point oper-
ators with abundant on-chip resources and hence been intro-
duced as a hardware element in HPC servers [10]–[12].

Despite these advancements, FPGAs were not utilized
to their full potential for HPC applications. One reason is
that HPC developers usually think that FPGAs are hardware
devices that require specific hardware development tools.
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Even otherwise, HPC developers try to simply run their
algorithms on the FPGA framework to parallelize the code
using the readily available tools. Although this results in rapid
development, it does not provide the complete acceleration
one can get from FPGAs [13].

It is well-known that FPGAs can provide upto 100 times
acceleration compared to a conventional processor [14], [15].
However, directly using tools to parallelize the code would
result in inordinate resource requirement, thereby failing to
compete with other HPC alternatives. This work aims at
taking up a high performance computational algorithm to
determine the structural and dynamical properties of gold
nanoparticles using Artificial Neural Network (ANN) based
molecular dynamic (MD) simulations. ANN, a machine
learning technique, is applied to significantly reduce the
computation. Then a hardware-software co-design archi-
tecture is proposed to implement the computation through
FPGA [16]–[18].

ANN MD simulations involve computations of forces
between the atoms and the total energy of the chemical system
using ANN based Inter Atomic Potential (IAP). Using the
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knowledge of force acting on atoms, the time trajectories of
atoms can be determined by numerically solving Newton’s
equations of motion. In the last decade, ANNMD simulations
were applied to study properties of variety of chemical sys-
tems [19], [20]. Recently, it has been shown by our group that
structure and dynamics of Au147 nanoparticles [21] can be
accurately predicted by ANNMD simulations. This approach
minimizes the computation so that application of MD can
reach real-world systems. Despite these advancements, the
ANN based approach still requires HPC servers to run these
computations a million times to obtain the properties of
materials that are of experimental relevance. Hence, there is
a dire need for enhancing the computational power from the
hardware perspective.

The objectives of the proposed work are:

• Investigating a hardware-software co-design to perform
ANN based MD simulations

• Leveraging FPGA to parallelize the code to reduce com-
putation time

• Optimizing the resources in the FPGA to maximize the
performance

In this proposed work, ANN based MD program is divided
into two parts, a) calculations of IAP based Intellectual Prop-
erty (IP) block for energy and atomic forces that will be
implemented on FPGA and b) integration of Newton’s equa-
tions of motion that will be executed on a computer (CPU).
Besides, there exist several dependencies in the algorithm
which restrict concurrent computation. Identifying each and
every step of such processes and paving way for efficient
parallelization involves detailed analysis of timing diagrams
and proposing alternative programming options without com-
promising precision and resource utilization. A deep under-
standing of the code and breaking down into different steps
for concurrent computation are novel elements of this work.

The structure of the paper is as follows: Section 2 provides
the hardware description followed by the explanation of the
HPC algorithm in Sec. 3. Section 4 details the optimizations
implemented to get latency improvement. Section 5 shows the
optimum usage of resources through algorithm restructuring.
Finally, the hardware architecture is explained along with the
results obtained in Sec. 6.

II. ACCELERATOR: A HARDWARE DESCRIPTION
In this Section, FPGA based reconfigurable hardware is intro-
duced for high performance computation. Generally, high
performance computation algorithm contains several loops.
In a conventional processor, the entire computation would be
performed through loops in a sequential manner. Since FPGA
is a reconfigurable device, these computations can be com-
pletely parallelized. This is achieved through multiple replica
of the hardware required for performing the computations.
Each and every computing cell (CC) would utilize several
multiplier adder/accumulator (MAC) blocks, designed in the
FPGA. This would provide a very good improvement in
the latency. The biggest challenge is that variables stored

FIGURE 1. Proposed hardware-software co-design using FPGA
accelerators.

in arrays would be multi-dimensional, thereby increasing
memory requirements. Since FPGAs contain limited mem-
ory, this would restrict full use of FPGA accelerators. The
second drawback is that often HPC algorithms would have
high data dependency. Our proposed approach is to have
a hardware-software co-design where the HPC algorithm
would be divided into several parts. Each part would use mul-
tiple computing cells termed as computing units as shown in
Fig. 1. In this way, the frequently used output variables would
be stored in DDR memory. Similarly, multi-dimensional
arrays are broken down to smaller elements to provide easy
access.

III. MATHEMATICAL FORMULATION OF ANN BASED IAP
Here, we will describe the algorithm for constructing the
ANN based IAP for gold nanoparticles along with details of
functional forms used to derive the ANN based IAP energy
and calculations of force acting on atoms.

In Fig. 2, the flowchart describes the algorithm, starting
from getting Cartesian coordinates of all the atoms in the
nanoparticle and converting them to generalized coordinates.

A set of generalized coordinates or descriptors (Dij) for ith

atom in the molecules forms input for ANN. Two layer feed-
forward ANN architecture will be used to construct ANN
potentials. Energy of individual atom is evaluated as shown
in equation below.

Ei

=

Nnh∑
a=1

W 23
a1 .f

2
a

Wb2a+ Nnh∑
b=1

W 12
ba .f

1
b

Wb1b+Ninp∑
s=1

W 01
sb .Dis


(1)

where, Ei is energy of ith atom and Nnh is number of hidden
nodes. Dis is input descriptor functions of length Ninp for ith

atom.W 01
sb ,W

12
ba andW 23

a1 are weights connecting from input
layer to hidden layer one, hidden layer one to hidden layer
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FIGURE 2. Flowchart for serial processing.

two and hidden layer two to output layer respectively. Wb2a,
Wb1b are bias weights in hidden layer one and hidden layer
two respectively. f 2a and f 1b represents sigmoid function for
activation of network. If we use 30 nodes in each hidden
layer(this can vary) and 59 input functions (this can vary)
then the network comprises of 2520 weights(Nw). The total
energy (E) of a nanoparticle is computed by summation all
the atomic energies.

E =
∑
i

Ei (2)

For correct representation of forces, along with energy,
we also fit 3N components of forces using Eq. (3) below.

Fk = −
∂Enanoparticle

∂k
= −

atoms∑
i=1

∂Ei
∂k

(3)

= −

atoms∑
i=1

input∑
s=1

∂Ei
∂Dis

∂Dis
∂k

(4)

Fk is the force of an atom at coordinate k , where k ∈ {x, y, z}.
The generalized coordinates(Dis) or descriptors in (1) con-

sists of angular or power spectrum (Pnl) parameters and radial
parameters. We can obtain Pnl , a rotationally and permuta-
tionally invariant descriptor, from the coefficients of the basis
expansion as given below.

Pnl =
4π

2l + 1

l∑
m=−l

c∗nlmcnlm (5)

The coefficients cnlm in Eq. (5) are obtained as

cnlm =
∑
i6=j

e−ξr
2
ij fc(rij)Y ∗lm(r̂ij) (6)

where Y ∗lm(r̂ij) are the spherical harmonics and fc(rij) is the cut
off function defined as

fc(rij) =
1
2

[
cos

(
πrij
rc

)
+ 1

]
(7)

where, rc is the cut off radius. Along with the descriptor Pnl
for the angular information of an atom, radial environment of
the atom is required for binding the system such that correct
representation of energy and forces is done. Radial functions
of an atom i consists of a two body interaction term summed
over all the possible neighbors (j).

F iR =
∑
i6=j

e−ηr
2
ij fc(rij) (8)

Flowchart in Fig. 3 shows a parallel version of the above
described algorithm that allows us to run the code in multiple
CPU’s.

IV. HPC ALGORITHM OPTIMIZATION
A. HARDWARE ANALYSIS: CONVENTIONAL PROCESSOR
VS. FPGA
It is important to understand the difference between the hard-
ware working principles of a conventional processor and an
FPGA. A small code comprising ANN for calculating the
energy of the system, is taken as an example to explain the
hardware analysis.

The feed forward ANN, shown in Fig. 4 consists of all
the input variables taken from the input buffer. The input
values will be multiplied,‘‘×’’, to first set of weights. The
summations,‘‘+’’, of all multiplications give values that will
go through a sigmoid function,‘‘o’’, to check whether the
value is activated or deactivated. The value is then sent to the
next layer as an input variable. This process will be repeated,
each time using different sets of weights, until we obtain
the number of inputs required (a predetermined number) in
the next layer. In the present work, we used a 59-30-30-1
setup of feed forward ANN for calculation of energy. It means
that the network consists of 59 input values for every atom,
which are mapped to energy of the atom, through two hidden
layers each of size 30. In this way, the energy of each atom
in the molecule is computed and this is repeated for all the
147 atoms sequentially.

In order to convert these computation into the reconfig-
urable hardware of the FPGA, the algorithmwill be converted
into multipliers and adders that go along several loops. In a
conventional processor, the algorithm would use multipliers
and the results will be stored in First in First Out (FIFO)
memory that would later be used for the next round of
summation.

Since this computation involves several loops, several
nodes are required in a HPC server for the same. In contrast,
in a FPGA fabric, hardware elements can be re-configured
to compute many of these loops concurrently through
approaches such as unrolling, pipelining etc. This work
explores utilizing the FPGA fabric to perform the HPC algo-
rithm and improving the throughput of the computation (in
terms of clock cycles). This is performed through the Vivado
HLS tool [22].
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FIGURE 3. Flowchart for parallel processing using MPI.

B. OPTIMIZATION USING VIVADO HLS
Hardware acceleration is the key in an FPGA fabric and
that is essential for improvement in the HPC applica-
tion in hand. We chose Vivado HLS tool as a solution
to our problem. HLS is a tool that takes up algorith-
mic description written in C-based design flow into RTL
schematic, finally exports into an IP block. In order to lever-
age the use of FPGA’s concurrent programming, several
optimization tools can be applied. These tools are called
directives.

To optimize latency and throughput of the HPC algo-
rithm, unrolling, pipelining and array partitioning directives
were applied. Unrolling any loop unrolls the loop thereby
allowing concurrent computation, by increasing the hardware
resources. Pipelining is a technique where multiple instruc-
tions are overlapped during execution. The third directive is
array partioning which enables multiple memory access to
enable data flow operations. One such snippet of code with
the applied directives is provided below.

float A[147] [30];
float B[31] [30];
#pragma HLS ARRAY_PARTITION variable=A
block factor=15 dim=2
#pragma HLS ARRAY_PARTITION variable=B
block factor=16 dim=1
for(jj=0; jj<natoms; jj++)
{
for(i=0; i<30; i++)

{
#pragma HLS PIPELINE

result = 0.0f;
for(p=0; p<30; p++)
{
term = A[jj] [p]*B[p] [i];
result += term;
}
}

}
In above code, ith loop is to be pipelined and pth loop is to

be unrolled. Unrolling pth loop will create 30 parallel copies
of it and will require all the 30 values of pth dimension of
arrays A and B in single clock cycle. pth dimension of arrays
A and B are partitioned so that it is possible to retrieve all the
30 values of both the arrays in single clock cycle. We have
partitioned the second dimension of array A[147][30] by a
factor of 15, so that it will result in 15 separate arrays. These
15 smaller arrays can give all the 30 elements of second
dimension of array IO1 in single clock cycle, as maximum of
two elements can be read from a single block RAM. Likewise,
first dimension of array B[31][30] is partitioned by a factor
of 16 so as to get all the 30 elements in parallel.

Table (1) shows the latency and resource utilization
of the above code snippet with and without array par-
titioning directive. It is clear from this Table that using
directives would improve latency and this comes with the
increase in hardware. The attempt would be to maximize the
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FIGURE 4. Design of ANN algorithm for the calculation of energy of systems.

TABLE 1. Latency/resources with and without applying array partitioning
directive (Kintex FPGA family is used for this simulation.

FIGURE 5. Complete design flow for IP Block creation.

resources available in the FPGA to decrease the computa-
tional time of the algorithm. This is the subject of the next
section.

The excercise would be to take up the entire algorithm in
the HLS tool, apply directives and optimize them. The final
solution would be made as an IP as illustrated in Fig. 5.

V. PERFORMANCE OF THE ACCELERATOR AND
TRADEOFFS ADDRESSED DURING OPTIMIZATION
A hardware-software co-design architecture has been chosen
and the necessary accelerator IP blocks have been imple-
mented in the FPGA board through the VHDL hardware
implementation. As discussed earlier, the best optimiza-
tion algorithm that we implemented would not fit into the
resources of the board. Hence a detailed analysis of the algo-
rithm has been performed to provide appropriate acceleration
for the board used. This section explains the different attempts
made before the results of the accelerator are presented.

A. COMPLETE ACCELERATION OF THE ALGORITHM
As a first step in any design, different directives were imple-
mented to obtain the maximum acceleration possible. After
applying unrolling, pipelining and array partioning directives
under the HLS tool, there is an improvement in the latency.
However, this comes with a huge increase in the FPGA
resources. This summary was obtained from HLS summary
report as illustrated in Table (2). It is worthwhile to note
that BRAM usage has shot up to 4401% which is extremely
high and it is very difficult to look for a FPGA board that
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TABLE 2. Resources on pre-optimizing of algorithm simulated on a
Kintex KC705 FPGA platform.

can contain such large capacity memory elements. Hence,
it is very important to optimize the code to reduce the con-
sumption of these resources for effective implementation on
a FPGA board. The following subsections address how to
optimize the algorithm to suit to the limited resources.

1) BLOCK RAM USAGE
The algorithm implementation in a conventional fashion
requires the implementation of several three-dimensional
arrays. These arrays would typically use BRAMs and take
up all the resources in the FPGA board. One way to optimize
is to store all these arrays in the DDR memory which gets
transferred from the IP to the DDR through AXI protocol.
While this has been implemeted for multi-dimensional arrays
that are used repeatedly at different locations of the algorithm,
there are other instances where it is not possible to imple-
ment 3-D arrays in the DDR (e.g., storing in DDR would
compromise heavily on the efficiency of the latency of the
algorithm). One such example of a code snippet is as follows:
Conventional implementation of the algorithm for variables
diffx , diffy, diffz would result in 3-D arrays obtained from
differentiation of cnlm, Fourier coefficients of the algorithm.
These arrays would occupy huge memory in the FPGA sys-
tem as shown in code snippet (a) of table 3. In order to reduce
the dimensions of these array variables, a simple interchange
of loops was implemented as shown in code snippet (b) of
table 3. The resultant algorithm has reduced these variables
into one dimensional arrays. Implementation of this strategy
at several such locations has reduced the usage of resources
to a very significant level (Pre-optimization, the usage of
BRAM was 39175 and after this optimization, the number
has come down to 266).

cnlm =
∑
i6=j

Gn(rij) ∗ Ylm(rij) (9)

where,

Gn(rij) = e−ξr
2
ij fc(rij), rij = (xij, yij, zij) (10)

dx =
∂cnlm
∂xij

=

∑
i6=j

Gn(rij)
∂Ylm(rij)
∂xij

+
∂Gn(rij)
∂xij

Ylm(rij)

(11)

Similarly,

dy =
∂cnlm
∂yij

=

∑
i6=j

Gn(rij)
∂Ylm(rij)
∂yij

+
∂Gn(rij)
∂yij

Ylm(rij) (12)

TABLE 3. Snippets for multi-dimensional array and it’s reduction.

TABLE 4. Snippets for variable loop bounds.

dz =
∂cnlm
∂zij
=

∑
i6=j

Gn(rij)
∂Ylm(rij)
∂zij

+
∂Gn(rij)
∂zij

Ylm(rij) (13)

The multi-dimensional arrays can be replaced with sin-
gle variables by just interchanging the jth and nth loop as
shown in code snippet (b) of table (3). This requires a
careful interchange of all the variables of the code in the
loops.

2) VARIABLE LOOP BOUNDS AND LOOP DEPENDENCIES
In a nested loop, as shown in code snippet (a) of Table 4,
unrolling of the inner loop is not possible as the bounds of the
inner loop are dependent on the outer loop. Unrolling would
increase the efficiency of the computation. To work around
this problem, the dependent variables inside the inner loop
were converted into temporary variables. This would acertain
the HLS to unroll the inner loops which would reduce the
latency of the algorithm.

Similarly, data dependencies would also restrict the effi-
ciency of pipelining. Data dependencies are avoided using
temporary variables, rather than using arrays in order to
reduce the dependencies. One such example is provided in
the following code snippet.
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TABLE 5. Snippets for loop dependencies.

TABLE 6. Changes in resources on optimizing loop dependencies.

In code snippet (a) of Table 5, the result,P[m], is dependent
on its previous values P[m+1] and P[m+2]. Each iteration of
the loop must finish before the next iteration starts. By using
temporary variables, access to these registers are available as
and when their computation is performed, hence increasing
the efficiency of pipelining as shown in the code snippet (b) in
Table 5.
After performing these optimizations at different parts of

the algorithm, the same table for optimization is re-visited.
Table 6 shows the resource information. It is clear that the
resources have increased considerably and this is the main
reason for getting an improvement in latency. Therefore,
optimization of the algorithm is necessary for taking this
application forward for any lab-on-a-chip application.

VI. RESULTS AND DISCUSSION
The optimized algorithm has been implemented with other IP
blocks in Vivado software [23] and the RTL implementation
has been obtained and programmed on the Kintex - 7 KC705
FPGA board. [24] The board contains 16 MBits of BRAM
and 840 DSP slices to implement several floating point oper-
ations and other operations in an efficient manner. The clock
frequency of the board is 100 MHz.

To run the HPC algorithm on the FPGA, a hardware-
software co-design has been proposed. The hardware archi-
tecture of the accelerator is shown in Fig. 6. The entire
accelerator is divided into threemodules. The first module is a
software module, present in the computer which provides the
different XYZ coordinates to the FPGA fabric. For the FPGA
fabric, Xilinx Kintex-7 FPGA KC705 evaluation kit [24] was

FIGURE 6. Architecture of the accelerator.

used for this application. This FPGA board is used because
of its high performance serial transceiver applications, end
to end PCIe configuration, advanced memory interface with
DDR3 memory and higher number of available block RAM
and DSP slices. [24] The communication between the soft-
ware and hardware accelerator is through PCIe communi-
cation. DMA subsystem for PCIe enables host computer to
access memory that resides in the FPGA board [25]. While
performing the computations in the FPGA, there are certain
quantities that require huge floating point arrays. This lim-
its the availability of RAM for concurrent operations. For
example, Eq. (9) lists one of the Fourier coefficients, cnlm,
as a quantity to be calculated. This quantity, if implemented
in FPGA, would result in huge usage of BRAMs. Moreover,
these quantities are repeatedly used by several other equa-
tions. Care has been taken that these can be pre-calculated
(Fourier module) and stored in the DDR memory. Multiple
IPs (e.g., shown in red in Fig. 6 can access these quantities
directly from the DDR RAM. The communication protocol
used for the same is AXI protocol which is a standard high
speed communication between different parts of the chip. The
Force module would calculate forces and energy and again
stores them in the DDR memory. Upon completion of the
task, an interrupt would trigger the software module (located
in PC) to transfer all these values to the computer through
PCIe communication. The software module takes up these
forces and calculates the next set of XYZ values which are
again fed back to the FPGA fabric. This forms a loop that can
run for several thousand times. The entire architecture uses a
32 bit IEEE 754 format [26] floating point numbering system.
This format is chosen based on the precision required in the
computations and also with the availability of the resources.

For checking, whether the results obtained from FPGA
are identical to those obtained from HPC server, we plot-
ted potential energies and norm of gradients of structures
along the MD trajectories in Figs. 7 & 8, respectively. From
these figures, it is evident that potential energy and norm of
gradient for each structure on the MD trajectory obtained
from FPGA is identical to that obtained from HPC server.
The HPC server(35 nodes), used in this study, is running
at 2600MHz onGenuine Intel processor. Thememory in each
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FIGURE 7. Potential energy of Au147 vs. number of MD steps calculated
on HPC server and FPGA.

FIGURE 8. Norm of gradient of Au147 vs. number of MD steps calculated
on HPC server and FPGA.

TABLE 7. Latency/resources utilization for implemented design with and
without optimization for Au147.The values in parenthesis are for Au309.

node is 600GB. The computation is performed for both Au147
and Au309 structures and a performance comparison is done.
Latency (shown in terms of number of clock cycles taken
for the entire computation) would be a suitable metric for
determining the acceleration obtained through the application
of directives (parallelization) on FPGA platform. Table 7
provides a comparison between a conventional code and a
parallelized code through directives on FPGA platform.

From Table 7, it can be seen that the latency drops to
48 times using optimization directives for Au147 and the
resources utilization, espesially block RAM’s and DSP’s, did
not increasemuch.Whenwe increase the size of the system to
309 atoms, the latency drops to 56 times using optimization
directives without any big change in block RAM and DSP
slices.

In order to get the comparison of performance of MD
simulation on FPGA with respect to performance on HPC

TABLE 8. HPC server and FPGA timings for Au147 (Au309).

server, it is important to run the MD code, using optimiza-
tion techniques discussed above, on FPGA and compare it
with running the code that is parallelised using MPI on a
HPC server. We used MVAPICH2.2 open source software
for implementation of MPI standard on the HPC server.
In case of HPC server, the parallel MD code runs at opti-
mal level using 7 CPU’s. The time taken to complete 1,
100 and 500 MD steps for Au147 are tabulated in Table 8.
The values in parenthesis correspond to Au309 system. The
total time taken to run a complete MD calculations on FPGA
includes time taken to run force/energy calculations exclu-
sively on FPGA and the time time taken to integrate Newton’s
equations of motion on a single CPU. In Table 8, we report
the total time taken to run 1, 100 and 500 MD steps on FPGA
for Au147 and Au309.
From Table 8, it is clear that for Au147, the acceleration of

1.5 times is achieved using an FPGA in comparision to using
7CPU’s on aHPC server, irrespective of number ofMD steps.
As the size of the system increases to 309 atoms the accel-
eration increases to 1.7 times in comparison to HPC server.
To check the repeatability of the design, MD simulations for
Au147 and Au309 was performed for 5 times. The standard
deviation of the FPGA timings are tabulated in Table 8. The
values in parenthesis belong to Au309. We can see that no
big deviations are observed in both the cases, confirming
that our calculations are repeatable on FPGA board. Figure 9
shows a timing plot in which HPC server and FPGA timings
are plotted against number of MD steps for Au147. As the
number of MD steps increases, it take more time to run
the optimized code on HPC server in comparison to FPGA.
Acceleration achieved for running a optimized code using
FPGA is 20 mins for 1000 MD steps and there is a 3 fold
increase in acceleration when the MD simulations are run for
5000 steps. We can get reasonable increase in acceleration
if we run longer MD simulations. In figure (10) we are
plotting difference in HPC server and FPGA timings with
increase in number of MD steps for Au147 and Au309. We can
see that as the size of the system increases the acceleration
using FPGA increases five times. We can conclude that the
accleration using FPGA can be increased for larger systems
and for longer MD runs.

For the completeness of this discussion, FPGA based com-
putation is also compared with a very popular alternative,
GPU. A snippet of the algorithm, the Fourier module, has
been computed in a cloud based Tesla K80 GPU (562 MHz
frequency) with a 13 GB memory capacity. It took 416 ms
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FIGURE 9. Timings of FPGA and HPC server for Au147.

FIGURE 10. Difference in timings of FPGA and HPC server for Au147 and
Au309.

for the computation. While the same computation was run
on the Kintex KC 705 board, the Fourier module can be
completed in 375 ms. While there is a very good competition
between the two hardware platforms, FPGA would have an
advantage in enabling lab-on-a-chip application of several
complex computations leading to a product.

Finally, we calculated the speedup ratios for understand-
ing the effect of parallelization on MPI, GPU and FPGA
platforms respectively. The speedup ratio using MPI is the
ratio of time taken for the optimized algorithm to run on a
single processor to the time taken to run on 7 processors. It is
1.76 on a MPI platform. In case of GPU the speedup ratio is
3.13. For FPGA, speedup ratio is defined as the time taken
to run the optimized algorithm without using directives to the
time taken by using directives. The calculated speedup ratio is
approximately 37.84 on a FPGAplatform. It is clearly evident
that high speedup ratio for FPGA is due to its effective par-
allelization. It is also important to mention that the speedup
ratio for FPGA will increase with increase in size of system.

VII. CONCLUSION
ANN based IAP for Au147 and Au309 is developed and opti-
mized on Kintex-7 FPGA KC705 board using Vivado HLS.
Implementing designs in this way takes advantage of FPGA
parallel performance, low power, and low cost. Hardware
design running at 100 MHz clock frequency is much faster
than its software execution on 7 CPU’s each running at
2600 MHz on a HPC server. Au147 clearly shows the timing
difference between HPC server and FPGA for Au147 system.
Fully optimizedmodel for Au147(Au309) is about 48(56) times

faster in comparison to unoptimized version. Fully optimized
500 stepsMD simulations forAu147 running onHPCmachine
takes 17.43 minutes whereas its FPGA equivalent design
takes 11.53 minutes.
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