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ABSTRACT As the usage of mission-critical mobile applications increases in Industry 4.0, such as smart
manufacturing and self-driving cars, the cloud computing paradigm and its supporting data centers have
become more crucial. However, a common practice in the cloud data center computing industry tends
to supply a surfeit of computing resources mainly for a robust quality-of-service (QoS). In this paper,
we propose a simple real-time algorithm which combines a power-aware job assignment policy for a
centralized job dispatcher and a power- and QoS-aware dynamic speed scaling policy for each physical
machine (PM). The job assignment policy is called “Join the Least Power Consuming (LPC) Server” that
routes an incoming cloud job to a server spending minimum power upon request. The server-side adaptive
speed scaling policy expedites energy efficiency and satisfies response time-associated QoS condition.
We call this policy “Minimizing Earliness (ME)” since it manages the server speed towards finishing jobs
at their deadlines as precisely as possible, reducing the earliness of job completion. The design principle of
LPC-ME combination supports both energy efficiency and service quality required in cloud data centers.
Numerical experiments compare the proposed algorithm’s power consumption and response time with those
of existing popular policies and demonstrate better energy efficiency with negligible degradation of service
quality.

INDEX TERMS Cloud computing, data centers, energy efficiency, queueing analysis, resource management.

I. INTRODUCTION

Energy efficiency in data centers has become an essential
issue as most computing today happens within cloud data
centers, which consume a tremendous amount of electric
energy [1]. Describing the environmental impact, data centers
consume over 3% of the global electricity and produce over
2% of the total global greenhouse gas emissions [2]. While
the harmful effect due to large-scale data centers has been
pointed out for the last decade, typical resource utilization is
still known to be 30% or less [3]; there is still huge room for
improvement to reduce energy consumption.
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For those who manage large-scale data centers, proper
job assignment for load balancing is a fundamental prob-
lem because it is directly related to service quality [4]-[6].
There are well-known job assignment policies based on dif-
ferent types of congestion information, such as round-robin
(no information), shortest queue length (number of jobs),
and least workload (load estimation). They are sim-
ple, easy to implement, and effective in terms of load
balancing [1], [6]-[8].

Inside data centers, servers are considered as main
energy-consuming equipment [9]-[11]. Servers are reported
to consume about 80% of the total energy while networking,
and storage devices possess the remaining 20% [10]. Typi-
cally, CPU has been the most significant contributor to the
power consumption in servers, as depicted in Fig. 1. As such,
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FIGURE 1. Breakdown of power consumption in a server [10].

researchers in the various fields have been developing novel
technologies for pursuing more efficiency in CPU usage, for
example, dynamic voltage/frequency scaling (DVFS), wake-
on-LAN (WoL), and virtualization.

Alongside various energy-saving technologies, recent
studies focused on achieving two contradicting objectives:
energy efficiency and quality-of-service (QoS) (see [5], [9],
[12]-[16] and references therein). Most of them require solv-
ing complicated optimization problems, and the solution may
not be easy to interpret and implement. To this end, this
paper focuses more on developing a simple algorithm that
explicitly considers computer servers’ power usage behavior
and time-sharing concept with a response time-related QoS
condition which is one of the most important performance
metrics regarding service level agreements (SLAs).

Our work contributes to the green cloud computing liter-
ature by proposing a simple but powerful algorithm easily
applicable to data centers. The algorithm consists of a new job
assignment policy (least-power-consuming, LPC) and a new
dynamic speed scaling policy (minimizing earliness, ME)
to save energy and satisfy service quality simultaneously;
the joint algorithm is called LPC-ME. To the best of our
knowledge, this is the first work that proposes and combines
two simple power- and QoS-aware policies each of which is
designed for job dispatcher and physical server, respectively.
The main contributions of this paper are summarized as
follows:

o We propose a power-aware job assignment policy to
achieve high energy efficiency. The policy utilizes the
real-time power usage information of each server.

« We suggest a power- and QoS-aware speed scaling pol-
icy that takes into account the QoS condition on job
response time and physical machines (PMs) with time-
sharing processors. The policy utilizes the real-time
information on jobs’ deadlines, workloads, and current
speed.

o Combining the job assignment policy with the speed
scaling policy, we design a simple power- and
QoS-aware real-time algorithm called LPC-ME. The
energy saving effect of LPC-ME combination is sup-
ported by a short proof, numerical examples, and per-
formance evaluation.
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We note that we purposely maintain a macroscopic view
of the system to focus on energy conservation and service
quality. In this regard, we avoid discussing different areas of
cloud systems details such as security and network topology
that are out of the scope of this study.

The remainder of this paper is organized as follows.
We provide a literature review of the existing green cloud
computing studies in Section II. Section III describes the
target system. Section IV states a mathematical model and
formulation. In Section V, we propose our algorithm and
explain the underlying design principle. Section VI intro-
duces some numerical examples that account for the working
mechanism and energy efficiency of the proposed method.
Section VII provides the performance evaluation results and
interpretation. Finally, Section VIII concludes and suggests
possible extensions of the study.

Il. RELATED WORK

Research studies have addressed energy conservation prob-
lems for computational tasks in different ways, from physical
to logical, hardware to software, depending on their interests
and objectives. People in computer systems have provided
solutions based on DVFS adaptively scaling the process-
ing capacity of CPUs. On the other hand, architectural and
platform-level researchers have developed segmentalized lev-
els of cloud virtualization that significantly enhance resource
utilization in data centers. Also, many kinds of consolidation
techniques have become feasible thanks to the cutting edge
virtualization technologies, e.g., Containerization [17].

This study belongs to the literature on how to efficiently
utilize those novel technologies in the right place. A large
volume of related work has been published in the past decade,
so we even reached a survey on surveys of energy efficiency
in cloud-related environments [18]. As we largely divide the
decision types for green cloud computing into server con-
solidation and real-time operation (see Fig. 2), the surveyed
literature is arranged into the following two subsections.

Research focus of this study

Decision Type I:
Server Consolidation "
Deployment

Decision Type II:
Real-time Operation

VM Selection Policy
VM Placement Policy

Job Assignment Policy
Speed Scaling Policy

t T

Managerial Insight, Practical Know-hows

FIGURE 2. Decision types for green cloud data center computing.

A. SERVER CONSOLIDATION

In cloud data centers, servers are consolidated by virtu-
alization and containerization technologies with efficient
management of virtual machines (VMs) running on PMs.
Literature on this resource management problem proposes
various strategies regarding VM migration comprised by
VM selection (decision on which VM to be migrated)
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and VM placement (decision on which PM to host the
selected VMs).

Ye et al. [13] investigated how to assign VMs efficiently
to available PMs. The authors proposed a many-objective
VMs placement model considering energy consumption,
resource utilization, and load balancing. The suggested
method showed better performance than the previous stud-
ies with the accompanied metaheuristic algorithm named
EEKnEA (Energy-Efficient Knee Point-Driven Evolutionary
Algorithm). Mustafa et al. [9] proposed joint resource alloca-
tion techniques considering the issues of energy consumption
and SLA violation. Their methods mainly focused on allo-
cating and migrating VMs based on the dynamic threshold
mechanisms that exploit servers’ capacity and power infor-
mation. Simulation results have shown that exploiting the
real-time energy state and CPU capacity led to an effective
resource management scheme. Remesh Babu et al. [19] pro-
posed an SLA-aware VM allocation strategy for load balanc-
ing based on a load prediction model. The paper considered
various SLA types and showed effectiveness in reducing SLA
violations and load balancing. Buchbinder et al. [20] studied
VM scheduling problem in both offline and online settings.
They designed novel algorithms that exploit certain predic-
tions about the workload and showed that the extra informa-
tion gives significant improvements regarding the problem.
While most related studies pursued energy efficiency utiliz-
ing migration approaches, Khan et al. [21] pointed out that
migration itself is expensive in terms of energy consump-
tion and performance degradation. Proposing an energy-
performance-aware allocation and migration techniques that
take migration cost into account, they found that not using
dynamic consolidation could be more cost-efficient.

In a more macroscopic viewpoint, a body of stud-
ies focused on drawing useful managerial insights and
supporting decision-making by investigating the solution
structure of mathematical optimization models. Gallego
Arrubla et al. [22] suggested a unified mixed integer pro-
gramming (MIP) model that incorporates virtualization,
workload routing, DVFS, and powering on/off servers simul-
taneously. Using the MIP model, they answered eight
research questions on data center energy efficiency. Several
heuristic algorithms were accompanied to provide solution
methods to solve relatively large-sized problems. However,
scalability remained an issue since the algorithms still cannot
handle the realistic-sized problem. Cho and Ko [23] remod-
eled the unified MIP model developed in [22] for revisiting
some of the doubtful research conclusions about operating
practices in data centers. As a result of fixing the original
model, they drew different insights to the previous study.
While mathematical models in [22], [23] simplified stochas-
tic nature in cloud computing workloads using average and
majorizing approaches, Kwon [16] explicitly introduced a
modern uncertainty quantifying concept to the mathemati-
cal models based on two-stage stochastic programming with
a chance- and risk-constrained optimization. Compared to
the too conservative solutions from the previous studies,
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it suggested a more reasonable server provisioning strategy
that guarantees a certain level of QoS.

B. REAL-TIME OPERATION

Studies on this phase care the operational aspects of cloud
data centers to which our paper belongs. The main concern in
this phase includes appropriate job assignment (or dispatch-
ing) to servers for load balancing, demand-adaptive speed
scaling of computing servers, and their joint optimization.

The research problems of job assignment in distributed sys-
tems started in the late 1970s. One of the most related studies
among the oldest literature was conducted by Bonomi [24].
The author investigated the well-known Join-the-shortest-
queue (JSQ) policy for parallel PS servers and demonstrated
that it offers a good solution to the load balancing prob-
lem, although not necessarily optimal. Both academic and
industrial attention regarding load balancing topics then has
moved to cloud data centers for the past decades. Alongside,
Bose and Kumar [4] provided a survey on load balancing in
terms of computational workload, whereas Zhang et al. [5]
presented another survey in terms of network load balancing.

For jointly optimizing the load balancing and server-side
resource scheduling considering energy efficiency and ser-
vice quality, Liu et al. [25] presented an integer program
accompanied with a heuristic solution approach called “Most
Efficient Server First.” While the study was meaningful as
they formally stated the problem and suggested a rough solu-
tion sketch, it has limitations that load balancing becomes
arbitrary for servers with the same efficiency (i.e., identical
servers). Ko and Cho [12] proposed a new load balancing and
speed scaling framework that combined a distributed opti-
mization algorithm with modern queueing theoretic analysis
for taking into account the tail probability of response time.
Despite the novelty in terms of methodological aspect, some
technical requirements such as known a priori stationary
workload processes restricted its practicality.

While the literature mentioned above mostly concentrated
on the practical issues in cloud data centers, another body
of literature has pursued theoretically meaningful results
inspired by the industry problems. Wierman et al. [26] exam-
ined fundamental energy-performance tradeoff in computer
speed scaling in the three metrics: optimality, fairness, and
robustness. Wentao et al. [27] studied optimal load balancing
for a certain type of cloud architecture that well reflects
machine learning applications. Kwon and Gautam [28] and
Cho and Ko [29] investigated methods to time stabilize the
performance of stochastic service systems that well-model
cloud data centers. Anton et al. [30] first showed that a redun-
dancy system (e.g., MapReduce) could help improve the
performance of data center computing in case the servers’
capacities are sufficiently heterogeneous. Recently, Harchol-
Balter [1] published a seminal paper that examines the open
problems in queueing theory inspired by data center com-
puting industry. The paper presented new queueing models,
workload characteristics, and performance metrics that are all
helpful for improving the operations of cloud data centers.
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FIGURE 3. An abstracted cloud data center (descriptive case: 4 applications and 7 servers).

IlIl. PROBLEM DESCRIPTION

Fig. 3 describes a cloud data center consisting of a central-
ized job dispatcher and heterogeneous processor-sharing (PS)
PMs (i.e., servers) having time-sharing processors. A number
of user equipments (UEs) running various cloud computing
applications send their requests to the data center. At the
entrance, there is a centralized job dispatcher that assigns the
incoming jobs to proper servers.

We consider the virtualization technology that enables a
single PM to process cloud job requests from multiple appli-
cation types; server 6 in Fig. 3 shows an illustrative situation
in which a single server is associated with two applications
(App 2 and App 3). Regarding the virtualization, we empha-
size that deploying an energy-efficient consolidation strategy
is another important research topic on green cloud computing.
Throughout this paper, however, we concentrate on a specific
timings during which the association between the applica-
tions and servers is fixed; we assume no VM migration within
the time horizon.

On the physical level resource management for each
server, we consider the Dynamic Voltage/Frequency Scaling
(DVES). DVES is an off-the-shelf technology that enables
the adaptation of CPU’s performance to workload [31], moti-
vated by the need to achieve higher utilization of computing
resources. Thanks to the DVFS feature, modern CPU has
ability to scale up and down its processing speed dynamically.

Given the system described above, two decision points to
be chosen are (i) the job assignment policy for the centralized
job dispatcher and (ii) the speed scaling policy for the servers.
The ideal decision should reduce the power consumption at
the lowest level capable of processing all the user requests
while guaranteeing the desired QoS. Throughout this paper,
we adopt a popularly used performance metric, response time,
to quantify the QoS required in cloud data centers, i.e., the
servers should give the best effort to finish every job within a
prespecified time budget.

In the next section, we begin by interpreting the system
using the queueing-theoretic viewpoint as it provides a strong
tool to describe the shape of dynamic systems. This will
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abstract out the important characteristics of data center oper-
ating decisions.

IV. MODEL AND FORMULATION
This section formally states the problem using mathematical
notations based on the queueing-theoretic interpretation.

A. NOTATION
Table 1 provides a summary of main notations that help
explain the system dynamics mathematically.

1) PREDEFINED SETS

We consider a set of applications .4 indexed by i (i.e., i € A)
that need to run on a set of servers S indexed by j
(i.e.,j € S). The subscripted sets .A; and S; denote the associ-
ation between application types and servers. More precisely,
the set A; comprises the indices of applications that server j
is hosting; the jobs of applications in .4; can be dispatched
to server j. Inversely, the set S; consists of the indices of
the servers that are hosting the application i, i.e., a job of
application i can be dispatched to one of the servers in S;.

2) SERVER RELATED PARAMETERS

We have deterministic parameters that specify a cloud data
center. The servers are heterogeneous in terms of their power
consumption behavior. To be more specific, we adopt a
well-defined polynomial function that is convex on the pos-
itive real line used in many previous studies [11], [26], [31];
server j has a power function p;(u;) = a; + m/u;l'i where p; is
the speed of server j and «;, m;, n; are predefined constants
with aj,m; > 0 and n; > 2. The instantaneous speed of
each server u;(z) (will be explained below) is assumed to
be continuously controllable between the lower and upper
bounds: uj(t) € [y;, I';]forj € S and at any time ¢. Regarding
the QoS, let R;(¢) be the response time of a job that joins
server j at time f. Since we have assumed that an user’s
satisfaction is attained by the response time that is not longer
than a constant §;, the system operator should try to keep
Ri(t) < ¢;forallj € Sandt > 0.
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TABLE 1. Main notations used in our formulation.

Sets:

A set of applications ( = 1,..., |A|)

S set of servers (5 =1,...,|S])

A; set of applications hosted by server j

Si set of servers hosting application ¢

Server related parameters:

p;(p;)  instantaneous power consumption of server j when running at speed pi; (unit: Wh/time)
;i speed lower bound of server j (unit: bits/time)

I; speed upper bound of server j (unit: bits/time)

R;(t) response time of server j for the job joined at time ¢ (unit: time)

Jj
Workload related parameters:

response time budget for each job in server j (unit: time)

Ai(t) time-varying arrival rate of application 4’s job (unit: #job/time)

T; base inter-arrival time of application 7’s job with mean 7; (unit: time)

Si size of application 4’s job with mean 3; (unit: bits/job)

w; (t) time-varying workload of application ¢ (unit: bits/time)

Decision variables:

ri;(t) ratio of application ¢’s workloads designated to server j at time ¢ (range: [0,1])
4 () speed of server j at time ¢ (unit: bits/time)

3) WORKLOAD RELATED PARAMETERS

Though most ingredients in Table 1 look straightforward,
the parameters that quantify cloud workload characteristics
include some tricky concepts. As described in Section III,
we consider a time-dependent arrival rate accompanied by
a (nonexponential) random job size. The nonstationary non-
Poisson process (NSNP) is one of the well-known stochastic
processes that capture the properties. An NSNP arrival pro-
cess is defined by a time-dependent arrival rate function A(¢)
and a base inter-arrival time 7 that is a random variable hav-
ing mean t and the squared coefficient of variation (SCV) C, 3
Together with a random job size S with mean g and SCV C 3
the workload process w(¢) can be expressed by w(r) = BA(%).
Attaching the subscript 7, the application-specific workload is
now expressed by w;(t) = BiAi(t). See Cho and Ko [29] for
more details about the NSNP and GI;/GI;/1/PS model.

4) DECISION VARIABLES

Two real-numbered decision variables r;;(t) and u;(¢) indicate
decisions on job routing and speed scaling, respectively. First,
rij(t) decides the proportion of workload of application i
that is assigned to server j at time #; ZJ- rij(t) = 1 for all
application i and at any time ¢. Second, w;(#) determines the
real-time speed of each server j at time 7.

B. MATHEMATICAL FORMULATION

Using the notations explained above, we formulate an
optimization problem (P1) for minimizing global power
consumption in a cloud data center during a planning
horizon [0, T]:

T
min () dr y
(0. 1(1) /o jEXS:pJ 0) (1a)
S.t. Z rt]'(t) =1, VieA VvVte[0,T], (1b)
JEA;
0=rgn) <1, Vie A VjeS, viel0,T],

(Io)
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T T
/ > wityr(de < / wi(t)de,
0 0

i€S;
VieS,Vee[0,7T], (1d)
v <ujt) <T;, VjeS, Vtel0,T], (le)
Ri(H) <8, VjeS, vtel0, Tl (1f)

The objective function (1a) minimizes the total power con-
sumption over the planning horizon. Constraints (1b) and (1¢)
ensure the sum of splitted workloads is equal to the original
input workload. Constraint (1d) guarantees each server does
not explode during the planning horizon. This corresponds to
the stability condition for a time-varying queue:

t
im —'3 {0 Ms)ds <1
t—>00 f() w(s)ds

Constraint (le) restricts the range of server speed. Lastly,
the service level in terms of response time is specified by
constraint (1f).

1) NEED FOR WORK-AROUND APPROACH

If we are given the optimal values r; (t) and ujf"(t), one of
the natural usages of them to achieve asymptotically optimal
energy efficiency is to apply the following operating scheme:

« Job assignment policy (probabilistic routing): For an
arriving job of type i at time ¢, dispatch it to server j with
probability r;(t).

o Dynamic speed scaling policy (continuous
updating): For server j, adjust the speed at Mj’-"(t).

time

However, finding the optimal solutions to r;(t) and p;(t)
in real-time is limited due to the complicating factors such
as nonlinear functional objective, nonstationarity, and uncer-
tainty; it requires to solve similar problems in [12], [25].
Instead, we come up with heuristic approaches that we
call least-power-consuming (LPC) job assignment policy
and minimizing earliness (ME) speed scaling policy, jointly
called LPC-ME, to find a high quality solution for r;(z)
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and p;(7). In the next section, we explain the design principle
of LPC-ME to achieve our goal.

V. ALGORITHM DESIGN
We adopt a generic formed power function for each server as
discussed in [11], [31]:

p(u) = a +mu”, where @, m > 0 and n > 2. 2)

With this convex polynomial power function, our design
principle starts from the following simple question: Shorter
job completion time with higher processing rate or longer
Jjob completion time with lower processing rate, which one is
more energy-efficient? To answer the question, we state the
following proposition.

Proposition 1: For a power function in equation (2) and a
workload of size s, there exists a most energy-efficient speed
w* to finish the workload given by u* = [m/(n — Da ]/,

Proof: Define a function f'(u; s) = (s/u)p(w) to be the
total power consumption required to finish a workload of size
s using a constant speed w. The total power consumption is
calculated by the power function p(u)—power consumption
per unit time—multiplied by time to finish the workload (s/ ).
Then, the first derivative of the function in terms of w is

if(u; 5)=s [—% +m(n — 1)#”2} ,
du s

with its minimizer u* = [a/m(n — 1)]'/". [ ]

Proposition 1 implies two insights. First, an optimal server
speed exists in terms of total power consumption given a
constant job size. Hence, even if the job is not urgent, run-
ning the server at speed u* is optimal due to the energy-
performance tradeoff. Second, when the server should run
faster than u* because of the imminent job, fully utilizing
the given response time budget is more energy-efficient than
finishing it hastefully.

Our goal now is to manage the servers’ speeds towards
just meeting the jobs’ deadlines but faster than the most
energy-efficient point w*. To explain, we introduce the fol-
lowing queueing theoretic notations:

o Jj(1): Index set of jobs in server j at time ¢ (we use k for
indexing the jobs, i.e., k € {1,..., [J{(H]})

. Slk (#): Remaining workload of job k in server j at time ¢

o AK(r): Arrival time of job k in server j at time ¢

e Qj(t): Number of jobs in server j at time ¢

Note that the above notations are stochastic processes in
the sense that their values are randomly varying as time
evolves. What we want is to finish all the jobs in a server
within their due time. Each job’s deadline is determined upon
arrival by the server-specific completion time deadline §;.
Now, we propose the following real-time algorithm, which
is the main result of this paper.

In the following two subsections, we explain the derivation
of Algorithm V. The sequence of explanation is from ME to
LPC as we regard this order will be more effective in clearly
delivering the rationale behind the idea.
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Algorithm 1 Operate a Cloud Data Center By the Combina-
tion of the Following Two Policies
1) Job assignment policy: Join the least power consum-
ing (LPC) server

¢ Dispatch an arriving job to the instantaneously
least power consuming associated server. That is,
choose a server j for a job of application i at time ¢

such that
J < argmin p; (Mj(t)) .
J€S
2) Dynamic  speed scaling policy: = Minimize
earliness (ME) of the work-in-process jobs’
completions

o Update the processing rate of each server towards
minimizing the jobs’ earliness. That is, keep the
speed uj(r) of each server j in the following
manner:

i} Q18] (1)
keJj(t)

Sl )

where the M,* is as defined in Proposition 1.

wj(t) < max |:,uj* ma

— If the set of configurable processing speeds is
discrete (e.g., P-States of modern CPUs [32]),
choose the smallest value larger than the value
calculated by expression (3).

A. ME: SERVER’s DYNAMIC SPEED SCALING POLICY

The term earliness, by definition, means the quality of com-
ing early or earlier. With the meaning of earliness in mind,
consider the k™ job in server j at time 7. Its allowed time to
stay in the server at time ¢ is §; — (z — A]’.‘ (t)) by the response

time requirement. That means we must scale the server speed
towards finishing every k™ job within its remaining time,

d — (t —Aj’f(t)), to keep the response time less than §;.

Regarding the PS scheduling policy—all jobs in the system
evenly share the processor at any given time, and multiple
jobs that are supposed to be completed by their deadlines,
server j’s earliness-minimizing speed at time ¢ must be chosen
by the following expression:

i (t -—S’k(t) <8 — (1t — Ak 4
i Y0 e <h= (o) @

Then, the expression (3) in Algorithm V is obtained by
manipulating the terms in expression (4) and Proposition 1.
Note that this speed scaling reduces the earliness of the job
completions as smallest as possible when the job requires
higher speed than uj’.k.

B. LPC: DISPATCHER's JOB ASSIGNMENT POLICY
The LPC routing policy is motivated both by Proposition 1

and well-known greedy heuristics such as Join-the-shortest-
queue (JSQ) and Least-Work-Left (LWL) [7]. The underlying
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idea of LPC is as follows. Assuming the speed scaling of each
server is done by ME as in Algorithm V, dispatching a job to
a server increases the server’s speed. The following remark
explains this behavior.

Remark 1: For a processor sharing server under minimiz-
ing earliness speed scaling, receiving a job increases the
server speed monotonically.

Proof: Let N;(t) be the number of jobs being processed
in a server j at time ¢, i.e., Nj(t) = |J;(¢)|. Then, the scaled
speed of a server right after receiving a job can be expressed
as follows:

. (0 +1) S}(r)
max | u;, max T Te— s (5)
T ke T/ 5,-—;+Ajf(r)

where /(1) = Jj(t) U {Nj(1) + 1}. Since Qj(r) < Qj(r) + 1
and J;(t) € jj’ (), we notice that the expression (5) is greater
than or equal to the expression (3). ]

Recalling that the server’s power function is convex poly-
nomial, increment of speed also results in increment of power
consumption. Under this condition, an energy-efficient dis-
patcher should find a server which will increase its power
consumption as small as possible upon receiving a job.

If the servers are homogeneous, dispatching a job to the
server with minimum speed must be the most energy-efficient
decision. Practically, however, servers are heterogeneous in
terms of the power function. Hence, we just choose the server
with the instantaneously least power consumption, which the
proposed algorithm remains a greedy heuristic decision.

1) HOW IS THE LOAD BALANCED THROUGH LPC-ME?
Similar to Proposition 1, we may consider the opposite case
where a job completion event decreases the instantaneous
power consumption. By this mechanism, job arrival and com-
pletion dynamically scale up and down the server speed.
Since LPC policy always assigns an incoming job to a server
with the least power consumption, we notice that load bal-
ancing in a cloud data center is attained under LPC-ME
combination.

In the next section, we will introduce a numerical exam-
ple with graphical description to explain how the proposed
method is working towards improving energy efficiency
while keeping QoS condition and also balancing loads.

VI. NUMERICAL EXAMPLE

This section provides two illustrative examples with specific
numbers to help understanding the concept of the proposed
policies. We adopt the specific values from Tables 4, 5 which
will be introduced in Section VII for performance evaluation.

A. WORKING MECHANISM

Graphics in Figs. 4, 5 describe the working mechanism
of LPC-ME combination. We assume a situation that two
consecutive job requests of application 4 arrive to a cloud
data center. Fig. 4 depicts the operations for the first job
and Fig. 6 describes the ones for the second job. The
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left half (i.e., drawings) of each figure shows the opera-
tional description whereas the right half shows server-specific
instantaneous power usage according to processing speed
(i.e., graph) and information about the work-in-process
jobs: job index, remaining workload, and arrival time
(i.e., table).

The following enumeration explains step-by-step opera-
tions of job dispatcher and servers (refer also to the sky blue
colored stickers in Figs. 4, 5).

@ Fig. 4(a): A job request of application 4 arrives at time
T = 302.35 with job size 30.

@ Fig. 4(a): A job dispatcher tries to find the least
power consuming server among the associated servers
with application 4. Since servers 8 and 9 are associ-
ated and server 8 is currently consuming less power
(19779.11 per unit time) than server 9 (21092.66 per unit
time), the dispatcher chooses server 8 as the least power
consuming server.

® Fig. 4(a): The dispatcher assigns the job to server 8 by
LPC policy.

@ Fig. 4(b): Since the processor is time-sharing and a
new job is added, server 8 needs to update its speed
to satisfy the QoS condition for each job. Based on the
remaining workload and arrival time for each work-in-
process job, server 8 changes its speed to 45.16 by ME
policy in expression (3) and the power usage is increased
to 46404.18 per unit time accordingly. Then, each job
will be processed with the rate of 11.29 (= 45.16/4) per
unit time and hence all the jobs will be completed within
their deadlines. Note that the processing speed will be
dynamically updated regularly as well as whenever their
is a new job request or a job completion.

® Fig. 5(a): Another job request of application 4 arrives at
time T’ = 302.36 with job size 30, which is 0.1 unit time
after the previous job.

® Fig. 5(a): The dispatcher again tries to find the least
power consuming server among the associated servers.
Since server 9 is consuming less power (21092.66 per
unit time) than server 8 (46404.18 per unit time), the dis-
patcher chooses server 9 as the least power consuming
server.

@ Fig. 5(a): The dispatcher assigns the job to server 9 by
LPC policy.

Fig. 5(b): Based on the remaining workload and arrival
time for each work-in-process job, server 9 changes its
speed to 58.59 per unit time by ME policy and the
power usage is now increased to 40481.28 per unit time
accordingly.

B. ENERGY EFFICIENCY
Fig. 6 shows a numerical example that explains why mini-
mizing earliness is energy efficient. We assume a situation in
server 9 and adopt numerical values from Table 5.

The figure consists of three parts. First, the upperleft table
contains an illustrative job information (job size and response
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(a) Operations before the first job assignment. A new job request is arrived and about to be assigned to

server 8 by LPC job assignment policy.
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(b) Operations after the first job assignment. Server 8 receives the job and updates the processing speed by ME speed scaling policy.

FIGURE 4. An illustrative situation where a job request arrives to a cloud data center at time 302.35. The numerical values are adopted from Tables 4, 5.

time budget) to be processed. Second, the upperright and
lowerleft tables and the graph want to show the varying power
consumption according to the following levels of earliness of
job completion:
o Non-Power-Aware (NPA): Does not care about the ear-
liness but gives best effort to process the job.
o 75% Early: Tries to complete a job within 75% of given
response time budget.
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o 50% Early: Tries to complete a job within 50% of given
response time budget.
e 25% Early: Tries to complete a job within 25% of given
response time budget.
o Minimizing Earliness (0% Early): Tries to complete a
job definitely at the deadline.
For each level of earliness, we calculate the scaled
speed and corresponding working time requirement
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(b) Operations after the second job assignment. Server 9 receives the job and updates the processing speed by ME speed scaling policy.

FIGURE 5. An illustrative situation where a job request arrives to a cloud data center at time 302.36 (0.1 unit time after the previous job arrival). The

numerical values are adopted from Tables 4, 5.

(see yellow-colored cells). Then, we notice that ME is the
most energy efficient compared to the others (see green-
colored cells and accompanied graph).

Here, we emphasize that ME policy is nothing but trying
to fully utilize the given response time budget hence results
in increment of response time. However, the slight response
time increment that does not violate the job deadline will
not be considered critical in terms of overall service quality,
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which we argue that ME policy is still reasonable as the new
speed scaling policy for the physical servers in cloud data
centers.

VIl. PERFORMANCE EVALUATION

In this section, we demonstrate the performance of the pro-
posed method on the large set of randomly generated cloud
workloads and a virtual cloud data center. All environments
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An arbitrary job to be processed Scaled speed and required working time to complete the job (for each policy)
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FIGURE 6. A quantitative analysis of energy efficiency according to the earliness of job completion. The server-specific numerical values are adopted from
server 9 in Table 5. In short, this figure shows that fully utilizing the given response time budget is most energy-efficient in terms of completing a job.

and policies are implemented in Julia programming lan-
guage [33] and run on Windows Server (Intel(R) Core(TM)
19-11900K @ 3.50GHz, 32GB of RAM). For fair compari-
son, we compare the performance with existing benchmarks
consist of well-known job assignment policies and off-the-
shelf dynamic speed scaling policies.

A. BENCHMARK

1) JOB ASSIGNMENT POLICIES

Table 2 summarizes the set of job assignment policies used
for performance comparison. It includes three well-known
practical policies and the proposed policy. Note that each
policy utilizes different information on congestion: no infor-
mation, number of jobs, workloads, and instantaneous power
usage.

2) DYNAMIC SPEED SCALING POLICIES

Table 3 summarizes the set of dynamic speed scaling policies
used for performance comparison. It includes three popular
policies and the proposed policy. The existing three policies
correspond to a linux kernel feature called CPUFreq Gover-
nors for state-of-the-art CPUs [34]. Here, we emphasize that
the processing performance of CPU can only be configured
to one of the predefined P-States, e.g., PO, P1, ..., Pn [32].
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TABLE 2. Benchmarking job assignment policies. Each policy utilizes
different congestion information.

Job Assignment Policy
Round-Robin (RR)

Join the Shortest Queue (JSQ)

Description
Choose an associated server in circular order.
Choose an associated server with the fewest
number of work-in-process jobs.
Choose an associated server with the least
total remaining workloads.
[Proposed policy] Choose an associated server
with the least instantaneous power usage.

Least-Work-Left (LWL)

Least-Power-Consuming (LPC)

Simply put, the proposed ME policy adaptively changes
a processor’s P-State to what corresponds to the smallest
speed larger than the value calculated by expression (3)
in Algorithm V.

B. SIMULATION ENVIRONMENT

1) WORKLOAD GENERATION

The pattern of cloud workloads has been analyzed to show
daily cycle [35]. That is, people tend to work more during
day time and less at night (for example, see Fig. 7). To mimic
the real-world workload characteristics that vary periodi-
cally with burstiness, we generate NSNPs for sampling the
job arrival epochs according to the simulation algorithm
developed in [36]. In short, NSNP is a generalization of
the well-known non-homogeneous Poisson Process (NHPP).
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TABLE 3. Benchmarking dynamic speed scaling policies. The policies correspond to existing DVFS governors implemented in linux kernel [34].

Dynamic Speed Scaling Policy

Description

Non-Power-Aware (NPA)

This correspnds to Performance governor. That is, the server is always running at maximum speed.

Power-Aware 1 (PA1)

This corresponds to Ondemand governor. That is, the server speed jumps to the maximum when it receives
a job request and decreases speed gradually when the server is approaching idle.

Power-Aware 2 (PA2) according to load estimation.

This corresponds to Conservative governor. That is, the server gracefully increases and decreases its speed

Minimizing-Earliness (ME)

[Proposed policy] This policy adaptively changes a processor’s performance state to what corresponds to
the smallest speed larger than the value calculated by expression (3) in Algorithm 1.

TABLE 4. Workload generating parameters.

Application (i) Job Request Frequency Job Size
PP Rate of Request: \;(¢) | Base Distribution: 7; | E[T;] | SCV[T;] | Base Distribution: S; | E[S;] | SCV[S;]
1 4 — 3sin (7t/1000) Lognormal 1 2 Lognormal 5 1.5
2 2 — 1.5sin (7¢/1000) Lognormal 1 1.5 Lognormal 10 2
3 4 — 2.5sin (7t/1000) Exponential 1 1 Lognormal 5 1
4 10 — 3 sin (7t/1000) Lognormal 1 0.8 Lognormal 2 0.8
5 5 — 4sin (7t/1000) Lognormal 1 2 Lognormal 3 0.5
TABLE 5. Server configuration.
Server Processing Speed per P-State Parameters for Power Usage Response Time Budget | Associated Apps
) PO(T)) P1 P2 P3 P4 () Param 1 | Param2 | Param 3 (65) (Aj)
J () (m;) ()
1 100 75.00 | 50.00 | 25.00 5 150 0.3333 3 3 {1}
2 102 76.50 | 51.00 | 25.50 7 250 0.2 3 3 {1}
3 99 74.25 | 49.50 | 24.75 6 220 1 3 3 {1,2}
4 105 78.75 | 52.50 | 26.25 5 150 0.6667 3 3 {1,2,3}
5 100 75.00 | 50.00 | 25.00 7 300 0.8 3 3 {2,3}
6 102 76.50 | 51.00 | 25.50 8 350 0.4 3 3 {2,3}
7 100 75.00 | 50.00 | 25.00 6 220 0.4286 3 3 {3}
8 105 78.75 | 52.50 | 26.25 7 350 0.5 3 3 {4,5}
9 102 76.50 | 51.00 | 25.50 8 400 0.6 3 3 {4,5}
10 105 78.75 | 52.50 | 26.25 10 700 0.4444 3 3 {5}
1600 aop 10 TABLE 6. Experimented benchmarking policy combinations.
PP
§ 1400 uApp 0 _
€ 1200 mApp 8 Index | Benchmark Description .
2 1000 wApp7 1 RR-NPA Best effort all the time
o B App 6 2 RR-PA1
5 80 =App 5 3 RR-PA2
& 600 @App 4 i JSQ-NPA
5 400 e 5 JSQ-PAT Combinations of
200 mApp 1 6 JSQ-PA2 state-of-the-arts
7 LWL-NPA
1234567 8 91011121314151617 18 1920 21 2223 24 8 LWL-PAI
Hour of a day 9 LWL-PA2
FIGURE 7. Real workload traces for 10 applications for one day collected 10 LPC-ME Proposed method

from publicly available source [22].

Appropriately choosing the input parameters of NSNP
(i.e., A;(t) and distributions of random variables 7; and S;
in Table 1) well describes the realistic cloud workload pat-
terns. Table 4 provides the explicit parameters for generating
synthetic workloads from five cloud applications.

‘We use gradual sine functions as time-varying arrival rates
and general probability distributions as job size distributions.
First, the time-varying arrival rates are used to reflect the daily
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cycle of workloads. Second, we mostly use Lognormal distri-
bution, which is heavy-tailed as well as nonexponential, for 7;
and S; as it will simulate quite variable property of data center
computing workloads. See [1] for the detailed discussion on
the workload property. We also emphasize that we pick the
function parameters towards representing elephants and mice
effect, i.e., few applications with high workload levels and
many others with low workload levels [5].
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FIGURE 8. Comparison of the total power consumptions for the benchmarking policy combinations. The cross dots mark outliers and the orange
colored line marks median. The numerical data is available from Table 7 in Appendix.
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FIGURE 9. Comparison of the violation rates of QoS conditions for the benchmarking policy combinations. The cross dots mark outliers and the
orange colored line marks median. The numerical data is available from Table 8 in Appendix.

2) SERVER CONFIGURATION

We implement a small cloud data center that comprises
ten heterogeneous servers for an illustrative purpose. Since
the proposed algorithm does not require solving compli-
cated optimization problems, scalability is not an issue.
For example, LPC job assignment policy can be applied
by implementing a real-time power usage monitoring fea-
ture a job dispatcher; each server periodically reports its
instantaneous power usage to the job dispatcher. When it
comes to the server’s dynamic speed scaling, it does not
require information exchange between servers and a dis-
patcher; each server estimates its instantaneous workload and
perceives current speed. Table 5 summarizes the configu-
ration of the 10 servers comprising the virtual cloud data
center.
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C. RESULTS AND DISCUSSION

We run 10,000 independent replications of 2,000 unit time
simulation for each benchmarking policy combinations enu-
merated in Table 6 to get large enough samples that prevents
misinterpretation due to outliers. We use 0.01 unit time for all
the servers’ regular speed updating intervals.

Fig. 8-10, and Tables 7, 8 (in Appendix) provide graphical
and statistical summaries of the simulation results obtained
from the 10,000 replications. As shown in the overall
plots, frequent outliers (cross dots in Figs. 8, 9 and spikes
in Fig. 10) are observed because we simulated quite variable
and heavy-tailed workloads as discussed in Section VII-B1.
In the following three subsections, we will discuss about
energy efficiency, service quality, and load balancing effect
of the proposed method.
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FIGURE 10. Real-time server status logged in a single replication of experiments under LPC-ME algorithm. The
dotted lines with y-axis on right side show the time-varying job request rates of applications which are
associated with each server.

1) ENERGY EFFICIENCY

Energy efficiency is the primary concern in this research
study. As regards, the box plot in Fig. 8§ summarizes the
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Job request rate Job request rate Job request rate

Job request rate

Job request rate

Job request rate

total power consumption data obtained from the 10,000

replications of simulation experiment for each benchmarks.
As expected, benchmarks with NPA speed scaling policy
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(i.e., RR-NPA, JSQ-NPA, LWL-NPA) consistently show
much higher power consumption compared to those with
power-aware speed scaling policies. On the other hand,
the policy combinations with power-aware speed scaling
policies (i.e., RR-PA1, RR-PA2, JSQ-PA1, JSQ-PA2, LWL-
PA1, LWL-PA2, and LPC-ME) show dramatic improvement
in energy efficiency. Notably, we found that the proposed
LPC-ME combination in average requires less than 10% of
power consumed by the other existing power-aware bench-
marks (see Table 7 in Appendix). Of course, we need to
think about the energy-performance tradeoff and the next
subsection will discuss about it.

2) SERVICE QUALITY

Service quality is another main concern in this research
study as well as the highest priority of the cloud data center
computing. As such, Fig. 9 depicts the violation rates of
predefined QoS conditions, i.e., the ratio of delayed jobs out
of all the completed jobs. As shown in the figure, we found
that the benchmarks with LWL job assignment policy
(i.e., LWL-NPA, LWL-PA1, LWL-PA2) outperform other
benchmarks including the proposed LPC-ME combination.
However, LPC-ME also demonstrates well-managed ser-
vice quality showing less than 0.001% of violation rates
in average and only 0.037% in worst case (see Table 8 in
Appendix). In fact, the performance degradation had been
predicted since the proposed ME speed scaling policy man-
ages the processing speed tightly in order to fully utilize
the given response time budget (recall the last paragraph
in Section VI-B). Regarding the significant improvement in
energy efficiency shown in Section VII-C1, we conclude that
the slight degradation of service quality does not seem to
be critical; it provides the contracted service level on the
response time with probability higher than 99.999% in most
cases.

3) LOAD BALANCING EFFECT

Figs. 10(a)-10(c) portray real-time server-specific status
(i.e., workload, number of jobs, and servers’ P-States)
logged in a single replication of experiments under LPC-ME
algorithm. Naturally, all the three measures tend to fol-
low the changing trends of applications’ loads. We find
here that the servers with the same associated applications
(e.g., servers 1, 2 and servers 8, 9) show the similar lev-
els of workloads and number of jobs, which verifies the
load balancing effect of the proposed algorithm. In addition,
Fig. 10(c) demonstrates the effectiveness of LPC-ME combi-
nation in terms of scaling the servers’ speeds in reaction to
the change of loads.

VIIl. CONCLUSION AND FUTURE WORK

This study proposes a simple but effective real-time
algorithm for cloud data center computing to achieve better
energy efficiency. We interpret the target system as a paral-
lel network of heterogeneous single-server PS queues with
multiple types of applications, time-varying job request
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processes, and controllable processing rates. We develop two
policies involving LPC job assignment and ME speed scaling
motivated by the convexity of processor’s power usage with
respect to speed. Numerical simulations have demonstrated
that LPC-ME combination consistently outperforms other
combinations of existing popular policies in terms of energy
efficiency without significant QoS degradation.

We suggest several future research directions based on
the issues not fully covered in this paper. First, we did not
directly solve the formulated problem since the exact solution
approach has not been available for such a problem to the
best of our knowledge. If an optimal solution can be found
in some ways, we can evaluate the performance gap between
our heuristic algorithm and the optimum. Second, incorpo-
rating the neglected lower-level computer systems details
(e.g., overheads between the executions of decisions) can
give another insight regarding cloud data center computing.
Third, we omitted the networking aspect in cloud data centers
to concentrate on the computing aspect. We believe that
jointly considering the two main aspects in cloud data centers
(i.e., computing and networking) will have a significant syn-
ergy effect in terms of end-to-end performance. Last but not
least, implementation on real-world cloud data centers should
reveal the uncovered issues not studied in this paper.

APPENDIX
STATISTICAL SUMMARY OF PERFORMANCE RESULTS
See Figs. 8-10, and Tables 7 and 8.

TABLE 7. Statistical summary of total power consumption for the
benchmarks.

Index | B k Mean Min Median Max
1 RR-NPA 11,347,618,785 | 11,347,576,490 | 11,347,633,213 | 11,347,633,213
2 RR-PAT 1,210,895,904 1,150,884,935 1,190,093,555 2,411,430,474
3 RR-PA2 1,051,107,347 991,201,595 1,029,382,157 2,500,457,506
4 JSQ-NPA 11,347,618,752 | 11,347,576,490 | 11,347,633,213 | 11,347,633,213
5 JSQ-PA1 1,262,894,917 1,112,359,249 1,231,521,452 2,930,781,081
6 JSQ-PA2 1,113,466,032 1,033,828,793 1,073,398,181 3,533,846,611
7 LWL-NPA 11,347,618,768 | 11,347,576,500 | 11,347,633,213 | 11,347,633,213
8 LWL-PA] 1,204,692,788 926,219,852 1,177,521,385 2,907,352,010
9 LWL-PA2 1,049,808,275 773,590,847 1,017,647,200 3,025,792,627
10 LPC-ME 68,602,499 61,099,697 67,149,536 298,481,616

TABLE 8. Statistical summary of QoS condition violation rate for the
benchmarks.

Statistics
Index | Benchmark Mean Min Median Max
1 RR-NPA 0.00001267 | 0.00000000 | 0.00000000 | 0.00018940
2 RR-PA1 0.00001267 | 0.00000000 | 0.00000000 | 0.00018940
3 RR-PA2 0.00001285 | 0.00000000 | 0.00000000 | 0.00018939
4 JSQ-NPA 0.00000739 | 0.00000000 | 0.00000000 | 0.00010310
5 JSQ-PA1 0.00000739 | 0.00000000 | 0.00000000 | 0.00010310
6 JSQ-PA2 0.00000746 | 0.00000000 | 0.00000000 | 0.00010310
7 LWL-NPA 0.00000694 | 0.00000000 | 0.00000000 | 0.00010310
8 LWL-PA1 0.00000694 | 0.00000000 | 0.00000000 | 0.00010310
9 LWL-PA2 0.00000702 | 0.00000000 | 0.00000000 | 0.00010285
10 LPC-ME 0.00000843 | 0.00000000 | 0.00000000 | 0.00037892
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