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ABSTRACT Recently, the rapid advancements in Deep Learning and Computer Vision technologies have
introduced a new and exciting era in the field of skin disease analysis. However, there are certain challenges
in the roadmap towards developing such technologies for real-life applications that must be investigated.
This study considers one of the key challenges in data acquisition and computation, viz. data scarcity.
Data scarcity is a central problem in acquiring medical images and applying machine learning techniques
to train Convolutional Neural Networks for disease diagnosis. The main objective of this study is to
explore the possible methods to deal with the data scarcity problem and to improve diagnosis with small
datasets. The challenges in data acquisition for a few lamentably neglected skin conditions such as rosacea
are an excellent instance to explore the possibilities of improving computer-aided skin disease diagnosis.
With data scarcity in mind, the possible techniques explored and discussed include Generative Adversarial
Networks, Meta-Learning, Few-Shot classification, and 3D face modelling. Furthermore, the existing studies
are discussed based on skin conditions considered, data volume and implementation choices. Some future
research directions are recommended.

INDEX TERMS Artificial intelligence, dermatology, generative adversarial networks, image analysis, meta-

learning, neural network, rosacea, skin disease diagnosis, teledermatology.

I. INTRODUCTION

Skin is the largest organ of the human body which plays an
important role in protecting the body from harsh chemical and
environmental conditions. Skin diseases affect one third of
the world’s population [1]. According to a report published by
the National Centre for Biotechnology Information (NCBI)
in 2017, skin diseases are the fourth leading cause of non-
fatal diseases worldwide [2]. Skin diseases cause discomfort
in day-to-day life. They get worse with time, reduce produc-
tivity in the daily regime and, if not treated at the early stage,
can be deadly. Skin diseases are not only a problem for indi-
viduals but for the world population posing an increasing eco-
nomic threat to national healthcare systems worldwide [3].
According to one of the latest survey report published in
2013 by European Dermatology Health Care, the 10 countries
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with longest waiting times for regular dermatological visits
from 40 days to 133 days are: Germany, Malta, Austria,
Luxembourg, Sweden, Poland, Norway, UK, Slovenia and
Ireland [4]. Likewise, there are only a few dermatologists per
100,000 population in many countries. Table 1 highlights the
limited number of dermatologists in six different countries
gathered from the official sources. Given the low number
of dermatologists and long waiting times, it is essential to
expand the scope of skin treatment through computer-aided
diagnosis.

To complement the work of qualified dermatologists,
skin disease diagnosis using Computer Vision and Machine
Learning is important in contributing to the early diagnosis
process performed by healthcare professionals such as Gen-
eral Practitioners and Dermatologists. From the early 90s,
dermatologists have been collectively working via digital
platforms to communicate and diagnose skin diseases of
patients by utilising skin disease images and additional health
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TABLE 1. Number of dermatologists in six different countries.

Country No. of Dermatol- | Source

ogists per 100,000

population
United 1.4 British Association of Dermatol-
Kingdom ogy, 2013 [5]
Ireland 1 Health Service Executive

(HSE), Ireland, 2014 [6]

Canada 0.47 (rural) Royal College of Physicians and

1.96 (urban) Surgeons of Canada, 2019 [7]
USA 34 Journal of American Medical

Association (JAMA), American
Academy of Dermatology (AAD),
2016 [8]

Australian Government,
Department of Health, 2016 [9]
Chinese Medical Journal,

2019 [10]

Australia 1.9

China 1

data. In medical literature, this technique of collecting, moni-
toring, storing, and sharing data in order to help diagnose skin
conditions is termed ‘“Teledermatology”” [11].

There are various ways of diagnosing skin diseases through
imaging. The three most common kinds of skin image data
are: histopathological, dermoscopic, and clinical images.
A few existing studies on skin disease diagnosis using tra-
ditional machine learning algorithms have been done using
histopathological images for cancerous skin conditions. Most
of the work on skin diseases has been done using dermo-
scopic images, primarily cancerous skin lesions. However,
only a few studies have been done on clinical images of
common and chronic skin conditions such as acne, rosacea,
eczema, lupus, seborrheic dermatitis, and a few other condi-
tions. Hence, there is a need for attention to these diseases
in medical image analysis using advanced machine learning
and computer vision techniques. However, there are specific
challenges to be dealt with due to the nature of these diseases
and the availability of datasets. For example, a specific skin
condition called rosacea will be looked at in this review.
In the case of rosacea (as for the other conditions), there is
only a limited amount of image data available. In this review,
we explore the following approaches to dealing with limited
data.

1) Data Augmentation, i.e. generating synthetic data with
slight modifications to complement the real data.

2) Transfer learning and fine-tuning i.e. adapting a neural
network model, which has been pre-trained on another
much larger dataset, to classify rosacea.

3) Generative Adversarial Networks (GANs) i.e. generat-
ing high quality synthetic faces with rosacea.

4) Meta-Learning and Few-Shot classification i.e. learn-
ing faster with fewer examples.

5) 3D Morphable Face Models i.e. creating a 3D model of
human face with various subtypes of rosacea from a set
of 2D images.

In this literature review, we are investigating skin diseases,
especially the importance of rosacea diagnosis using machine
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learning and computer vision. In Section I.A., skin diseases,
types of medical diagnosis, types of images used in com-
puter vision and machine learning tasks for diagnosis of skin
conditions are discussed. In Section I.B., the motivation for
rosacea image analysis is discussed. Section II is focused on
a few existing studies carried out on rosacea using machine
learning and computer vision. In Section III, we discuss how
the amalgamation of big data, deep learning and computer
vision has brought some breakthroughs in the field of medical
diagnosis. This discussion is followed by the challenges of
having a smaller dataset in the field of medical diagnosis and
how to leverage a smaller dataset using various techniques of
machine learning and computer vision. Hence, in section IV,
we discussed various publicly available datasets.

Section V provides a brief overview of skin disease
analysis from traditional machine learning and computer
vision techniques to the modern deep learning algorithms.
Section V contains four subsections in which four techniques
in machine learning and computer vision are discussed,
a few existing studies using Data Augmentation and Transfer
Learning in Section V.A, Generative Adversarial Networks
in Section V.B, Meta-Learning and Few-Shot Classification
in Section V.C, 3D Face Modelling in Section V.D. The
challenges and major takeaways are mentioned in each sub
section of these four techniques. Furthermore, based on a
few key points from the literature review, the implementation
possibilities of GANs, Meta-learning, and 3D Face Modelling
in the limited data scenario are discussed in Section VI. Based
on the options for implementation, some future directions are
recommended.

A. A BRIEF INTRODUCTION TO SKIN DISEASES

Skin diseases are one of the most challenging fields in
medical diagnosis due to their observational and analytical
complexities. Diagnosis of skin diseases requires years of
experience and expertise. Skin diseases are diagnosed visu-
ally, with an initial screening followed by dermoscopic anal-
ysis, biopsy and histopathological analysis. However, this
process of diagnosis is time-consuming and costly. Chronic
inflammatory skin diseases which may not be fatal in most
situations, may still need lifelong engagement with dermatol-
ogists. Chronic skin conditions need regular check-ups, up to
date medications, surgical or laser treatments, if required.
This way of treatment requires a significant amount of time
and are often costly. However, detecting chronic skin condi-
tions at the early stages allows for an intervention and preven-
tion of further complications. Several technically advanced
hospitals in the world follow a dynamic process for treating
skin diseases. This requires patient record-keeping, including
images of the skin diseases and basic information about the
patients, which helps monitor the progress of the treatment
over time.

One of the traditional and common techniques to collect
patient data for diagnosing skin diseases is dermoscopic
imaging. Dermoscopic images are collected through high
quality magnifying lenses (mainly through a dermatoscope)
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FIGURE 1. Clinical images vs. Dermoscopic images. The images used in this figure are taken from DermnetNZ [13].

with powerful lighting. The most common types of images
captured by the dermatoscopes are micro and macro images
of individual lesions which lose the anatomical details of
the body. Further, these dermoscopic images are captured
and examined by specialist dermatologists. Hence, dermo-
scopic images are very useful when diagnosing individual
skin lesions such as malignant and benign lesions on the body.
However, it is not possible to capture dermoscopic images
for every skin condition at the initial stage of the disease.
For this purpose, using a good quality digital camera or
smartphone can facilitate capturing images of common skin
diseases making smart phones or other digital photographic
devices an accessible alternative for capturing skin conditions
at the early stage of the diagnosis. The skin images captured
by smartphone or other photographic devices are referred to
as “clinical” images in the world of medical science research.
As a result, clinical images are gaining popularity in skin
disease diagnosis [12] and there are many medical research
platforms that encourage collecting clinical images. Fig. 1,
illustrates a few samples of clinical and dermoscopic images.

1) MOTIVATION FOR ROSACEA IMAGE ANALYSIS
Rosacea is a chronic facial skin condition that goes through a
cycle of fading and relapse [14]. It is also a cutaneous vascular
disorder [15]. It is a common skin condition in native people
from northern countries with fair skin or Celtic origins [16].
Rosacea is often characterized by signs of facial flushing
and redness, inflammatory papules and pustules, telangiec-
tasias, and facial edema. Rosacea’s symptom severity varies
greatly among individuals [17]. In the medical diagnostic
approach, rosacea is classified into four subtypes — Subtype 1
(Erythematotelangiectatic rosacea), Subtype 2 (Papulopustu-
lar rosacea), Subtype 3 (Phymatous rosacea) and Subtype 4
(Ocular rosacea). Each subtype is diagnosed based on the
severity of condition e.g. mild, moderate, or severe [14], [18].
According to an article published by the National Rosacea
Society (NRS) (United States) in 2018, there are nearly
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415 million people affected by rosacea worldwide [19].
This condition has a higher incidence in women than men,
although it tends to be more severe in men [16]. Rosacea is
often an underdiagnosed condition. Given the fact rosacea is
often characterized by signs of facial redness and flushing,
this leads to frequent misdiagnosis as seborrheic dermatitis,
although seborrheic dermatitis and rosacea are unrelated [20].
Rosacea is also frequently mistaken as psoriasis, lupus, acne,
and eczema [20].

Besides the clinical complications, rosacea can affect
patients’ overall wellbeing, social life and work life. Accord-
ing to a survey carried out by National Rosacea Society of
Canada, among 700 patients with rosacea in the working
group, 66% were affected in their professional interactions,
33% had cancelled or postponed business meetings, 28%
had missed work, 28% felt rosacea may have negatively
influenced their chances of a promotion. In another survey
with 660 patients with severe cases of rosacea, 86% of par-
ticipants reported that they had to limit their social lives due
to rosacea [21].

‘British Association of Dermatologists’ reported that
rosacea is a facial dermatosis and therefore easily visi-
ble. It can cause extreme discomfort to those who suf-
fer from it [18]. According to another study conducted by
Spoendlin et al. [22] based on data collected in the period of
1995-2009, rosacea was diagnosed in 80% of cases after the
age of 30 years, in which 61.5% patients were women.

According to the ‘Acne and Rosacea Society of Canada’
more than 3 million Canadians suffer from rosacea [23]. It is
anticipated to become one of the most common health prob-
lems in Canada. One study in Sweden found that women with
rosacea are more likely to experience migraine headaches
than those with healthy skin conditions [24]. In 2019, accord-
ing to a Market Analysis Report published by Grand View
Research [25], the rosacea treatment market will be worth
$2.6 billion by 2025, proving one of the fastest growing drug
classes. In April 2021, a report published by the National
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Rosacea Society [26], states, “New treatments continue to
expand therapy options, but a cure remains elusive”’. The rea-
sons behind the continued growth of rosacea cases in recent
years are: lack of awareness in dermatologists, misdiagnosis,
cost of treatment etc. [26].

In a recent article published by US News Health, “rosacea
is often misdiagnosed, and many don’t seek treatment
because they don’t realize it’s rosacea,” says Jeffrey Fro-
mowitz, MD, FAAD, a dermatologist based in Boca Raton,
Florida [27]. Frequent news on rosacea awareness and treat-
ment appears regularly in the Irish times [28], Irish Examiner,
and a few other newspaper organisations in Ireland. This
indicates the global scale of the problem of rosacea. As the
concern rises, the treatment of rosacea is not only the respon-
sibility of expert dermatologists, but Machine Learning can
also be a potential pathway towards the early diagnosis of
rosacea with state-of-the-art methodologies. A fast, accurate
and low-cost assistive diagnostic system could significantly
contribute to medical treatment plans, particularly in devel-
oping countries. Early and accurate detection of skin lesions,
inflammation and facial skin conditions, such as rosacea,
is vital for developing precise and effective treatment and
medication. In this review we provide a critical literature
review and an analysis on skin disease diagnosis using various
methodologies of machine learning and computer vision.

Il. RELATED WORK ON ROSACEA
In recent years, medical image diagnosis has progressed
rapidly due to the advancement of Artificial Intelligence (Al)
models and the availability of a large amount of data pro-
vided by medical professionals. Thanks to the advanced
machine learning and deep learning techniques in computer
vision, different types of disease diagnosis have become very
widespread in the scientific and medical research community.
An extensive amount of work has been done on skin cancer
diagnosis. According to a study published by Stanford Uni-
versity in 2017 [29], Dermatological (dermoscopic) images
play an important role in diagnosing skin cancer using Deep
Convolutional Neural Networks (DCNNs) [30]. The work
by Esteva et al. [29]suggests that the diagnosis technique
could be used outside the clinic as an initial screening step
for cancer to a level of competence comparable to 21 board-
certified dermatologists. Since then, computer vision and
deep learning research has attracted a lot of attention for
skin cancer lesion classifications by proposing various kinds
of state-of-the-art methodologies and techniques. However,
most of the work on skin disease analysis and classification
so far has been done is on dermoscopic images, in which a
particular region of interest of the skin is focused on, as shown
in Fig. 1; while there are very few studies on facial skin
conditions such as rosacea, rosacea acne, eczema, psoriasis
lupin and other related skin conditions. Table 2 presents an
overview of studies conducted on rosacea along with other
skin conditions.

As it can be seen from Table 2, most of the studies which
have been carried out on rosacea and related skin conditions
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using machine learning and computer vision/deep learning
algorithms date from the year 2019 and onwards. Most of the
works which have shown great results using deep learning
have used at least nearly 10,000 images. A few studies con-
ducted by Thomsen et al. [31], Zhao et al. [32], Wu et al. [33]
and Zhu et al. [34], employ a significant quantity of data.
However, the datasets used in these studies are entirely con-
fidential. Hence these studies are not entirely reproducible
and therefore there is a motivation for other researchers to
try to deal with the skin disease problem using limited data.
Most of the work done so far using transfer learning and data
augmentation has used weights pre-trained on ImageNet [35],
which is considered a non-medical dataset. However, these
studies provide a useful insight into a few common techniques
which can be applied in this research. A few studies have
shared their GitHub repository, which may provide references
for publicly available datasets.

Goceri [36] presented a novel modified Mobile-Net archi-
tecture [37] along with a mobile app with user-friendly
interface. In this work, 725 images of seborrheic dermatitis,
rosacea, hemangioma, psoriasis and acne vulgaris were used
for classification tasks. There were 145 images in each dis-
ease class. The modified Mobile-Net model was developed
based on the original Mobile-Net architecture but with the
receptive field expanded, with dilated convolution and com-
bined hybrid loss functions.The experimental results in this
study have shown that the proposed modified Mobile-Net
[36] has outperformed other network architectures for each
disease class.

Thomsen et al. [31] presented a dataset and a classifi-
cation task with 5 categories of skin conditions i.e. Psoria-
sis, Eczema, cutaneous t-cell lymphoma, acne and rosacea.
As part of the pre-processing before the classification task,
K-means clustering was used to remove the noise and
unnecessary details from the images. There were 4 types of
modified VGG-16 [38] CNN architectures with and without
Spatial Transformer Network (STN) are listed in the Table2.
According to the results discussed in this study, these 4 types
of VGG-16 architecture performed differently in terms of
Area Under the Curve (AUC) and accuracy scores for each
disease class. However, VGG-16P is proven to be the best
performing model after the performance measured through
specificity, sensitivity, Positive Predictive Value (PPV), and
Negative Predictive Value (NPV). Additionally, the overfit-
ting due to the small datasets and selection bias for acne and
rosacea is an issue and was discussed in this study.

Goceri [39] proposed a segmentation method called Fully
Automated Detection of Facial Disorders (F-ADFD). This
method has shown better segmentation accuracy, specificity,
and precision due to active contouring which is set automat-
ically using a binary image that is obtained with a K-means
clustering after denoising and intensity normalization steps.
Among 10 Deep Neural Net (DNN) architectures that were
used in this work, DenseNet201 [40] with modified loss
function (cross-entropy and Tversky similarity) was claimed
to have shown results with maximum accuracy (95.24%) and
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minimum loss (0.5). The second highest performance was
obtained by InceptionResNet-v2 [41]. This study suggests
that DNN techniques can extract features automatically at
low, middle and, high levels by increasing depth and by
performing classification for skin lesions. All the DNN archi-
tectures used in this work were pretrained on ImageNet [35].

Zhao et al. [32] carried out a study on three subtypes of
rosacea lesions i.e. Erythematotelangiectatic rosacea (ETR),
papulopustular rosacea (PPR), and phymatous rosacea (PhR).
The accuracy of the CNN to classify one subtype against the
others was 83.9%, 74.3%, and 80.0% for ETR, PPR, and
PhR, respectively. This work also included other types of
skin conditions such as acne, facial eczema and seborrheic
dermatitis, lupus erythematosus, chronic solar dermatitis,
corticosteroid-dependent dermatitis, lupus miliaris dissemi-
natus faciei; which may look like rosacea. A total of 24,736
images were used in this study. However, there is no infor-
mation provided regarding the source of the dataset and the
dataset used to obtain the results is not publicly available.
This study also discussed the need for exploring the ways of
decision-making in deep CNNs, which may help in improv-
ing the accuracy and specificity for the detection of diseases.

Wau et al. [33] performed a classification among psoriasis
(Pso), eczema (Ecz), Atopic dermatitis (AD) and Healthy
skin. This work did not use any rosacea images, and instead
relies on hand and facial images. The study involved 4,740
images collected from the Department of Dermatology, The
Second Xiangya Hospital, Central South University, China.
However, this dataset is confidential. Google’s EfficientNet-
b4 [42] was used with an extra 7 auxiliary classifiers at
the end of each intermediate layer to make the model learn
classification information from different levels of features.
This work was built as a smart phone mobile application.

Zhu et al. [34] performed a classification among 14 skin
diseases with 13,603 images labeled by two dermatol-
ogists with a minimum of 5 years of experience. This
data was collected from the Department of Dermatology,
Peking Union Medical College Hospital, China, from April
2016 to April 2020. In this work, EfficientNet-b4 [42]
was used with pre-trained weights from ImageNet. There
were 14 classifiers with 14 output neurons used instead
of the final fully connected classification layer of the net-
work. This modified model of EfficientNet-b4 is compared
with Inception-v3 [43], ResNet-101 [44] and the original
EfficientNet-b4 [42]. The comparative outcomes are mea-
sured by AUC, ROC, Sensitivity, Specificity and Accu-
racy. The modified EfficientNet-b4 has outperformed other
CNN models with an AUC of 0.985 and with the highest
ROC. The performance of modified(proposed) EfficientNet-
b4 was also compared with dermatologists, in which per-
formance is measured using the Kappa coefficient. This
performance measure comparison showed that the diagno-
sis of Rosacea by dermatologists is significantly better than
the proposed model. In comparison, the diagnosis of viral
warts by the proposed model was significantly better than the
dermatologists.

VOLUME 10, 2022

Aggarwal [45] looked at 5 skin conditions: acne,
atopic dermatitis, impetigo, psoriasis, and rosacea. A total
of 938 images were considered for classification using
Inception-v3 with pre-trained weights of ImageNet [35]. Data
Augmentation was incorporated during the training process
to reduce the possibility of overfitting. The performance
of the model was measured through sensitivity, specificity,
positive predictive value (PPV), negative predictive value
(NPV), Mathew’s correlation coefficient (MCC), and F1
score. A comparative result illustrated how each model per-
formed with and without data augmentation. From the confu-
sion matrix, the performance scores for rosacea are relatively
low (0.60 with data augmentation) compared to the other four
skin conditions. The number of images of rosacea considered
in this study was 90.

Binol ef al. [46] presented a study using rosacea images
collected from the Division of Dermatology at Ohio State
University. There were 41 images collected using a DSLR
camera, in which images were taken from left, right, front and
upsides of the faces. There were two CNN models considered
for classification i.e. Inception-ResNet-v2 [41] and ResNet-
101 [44] with the pre-trained weights from ImageNet [35].
A few pre-processing tasks were performed, such as creating
labelled patches on the facial images. These patches were
labelled by expert dermatologists based on the anatomical
details of the face. The anatomical parts of the face regions
more than 75% affected by rosacea were labelled as positive
rosacea patches and less than 25% rosacea affected regions
were labelled as negative rosacea patches. The patches with
various resolutions such as 64 x 64, 128 x 128, 256 x
256 were obtained for the data augmentation and transfer
learning process. Hence there were nearly 65,649 tiles with
different resolutions crafted on the 41 images. The accuracy
of the models was measured using Dice Coefficient and
false-positive rate. A specific kind of post-processing was
proposed in this work called Anthropometric Post-Processing
(APP) with a landmarks-based Region of Interest (ROI)
mask. The Inception-ResNet-v2 [41] with APP provided a
higher performance score compared to other models such as
ResNet101 [44] and Bag of Features with Support Vector
Machine (SVM).

Xie et al. [47] presented a dataset and classification task for
541 skin conditions. The image dataset was collected using
4 types of digital cameras, and these images were annotated
by 20 professional dermatologists from the Xiangya Hospital
of Central South University, China. However, in this study,
80 categories of skin conditions were considered for clas-
sification. The disease categories considered had more than
100 images and the categories with more than 1000 images
were discarded to keep a balance during the classification
process. There were 4 types of CNN architectures considered
for the task i.e. InceptionResNet-v2 [41], Inception-v3 [43],
Densenet121 [40] and Xception [48]. According to the
results drawn from the confusion matrix, InceptionResNet-
v2 outperformed the other three CNN architectures with
0.764 accuracy.
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Ill. LEARNING - FROM “Big DATA” TO “Small DATA”
The concept of visual data — ‘image datasets’ started gaining
popularity in 1999 through the release of an official stan-
dard database i.e. the MNIST database (Modified National
Institute of Standards and Technology database) by Yann Le
Cun and his colleagues [49], [50]. The MNIST database is a
collection of handwritten digits. It has a training set of 60,000
example images and a test set of 10,000 images.

In 2009, Deng et al. [35] introduced ImageNet, one of the
largest image datasets available containing around 3.2 million
images. Based on the numbers recorded on the ImageNet
homepage, there are more than 14 million images in the
dataset with just over 21 thousand synsets (groups/classes).

The real-world artefacts which humans can recognise have
now become recognisable by computers through efficient
algorithms and large sets of images, which was a difficult task
a decade earlier. These advancements have become possible
due to the availability of large volume datasets like Ima-
geNet [35], which can be fundamentally called ’Big Data’.
Having bigger datasets is one of the key prerequisites for
Deep Learning models to perform well.

A. BIG DATA IN COMPUTER-AIDED MEDICAL DIAGNOSIS
Medical image analysis using deep learning has become
popular among research communities due to the collective
concept of 'Big Data’. According to the studies reviewed in
this work, the volume of the data used for medical diagnosis
is three to four times smaller than the number of images in
ImageNet [35].

One of the influential works by Esteva et al. [29] on skin
disease analysis with dermoscopic images for diagnosing
skin cancer created a new trend for skin disease analysis using
deep learning and computer vision. In total 129,450 clinical
images were used in [29] to train a deep convolutional neural
network to classify the most common deadliest skin cancer.
Advances in medical image analysis techniques have also
been used for other conditions. For instance, Ting et al. [51]
utilised a dataset of 494,661 retinal images to diagnose Dia-
betic Retinopathy and related eye diseases from visual scans.
In order to detect bone fractures in radiographs, a deep learn-
ing model trained on 135,845 radiographs of a variety of
body parts was proposed with a diagnostic accuracy similar
to that of senior subspecialized orthopedic surgeons [52].
This work claims that, given enough training data and a
suitably designed model, it is possible to detect any condi-
tion on radiographs that a human clinician could identify.
A deep learning model, DeepSeeNet [53] was developed
to classify patients with Age-related Macular Degenera-
tion (AMD). DeepSeeNet was trained on 58,402 training
images and 900 testing images collected from 4549 partic-
ipants. In another attempt, a deep learning model was trained
for automatic Magnetic Resonance Imaging (MRI) cardiac
multi-structure segmentation and diagnosis [54]. It used the
“Automatic Cardiac Diagnosis Challenge” dataset (ACDC),
the largest publicly available and fully annotated dataset
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for Cardiac MRI (CMRI) assessment. The dataset contains
CMRI recordings obtained from 150 devices, with reference
measurements and classification from two medical experts.

B. IMPORTANCE OF THE ‘small DATASETS’ IN MEDICAL
DIAGNOSIS

Although deep learning models have exhibited prodigious
performance in computer vision tasks such as automated
diagnosis of medical conditions (diabetes, retinopathy, bone
fractures, age-related macular degeneration, cardiac MRI and
skin cancer, etc.), they heavily rely on a large volume of
the labelled dataset [55]. While these models are helping
to achieve breakthrough state-of-the-art performance, their
accuracy downgrades severely on datasets with only a few
labelled instances [56]. In various cases of rare diseases,
it is difficult to acquire and annotate an adequate number
of samples for large-scale training assignments. As a con-
sequence, these models end up with poor generalization for
novel classes given the low number of instances per class.
Training a deep learning model in a low-data scenario results
in a long-tailed and imbalanced classification, which is a
challenging task in both computer vision and medical imag-
ing [57]-[59].

Acquiring a large amount of labelled data for real-world
problems including medical imaging and clinical diagnosis,
is an exhaustive and expensive task. Therefore, it would be
highly desirable to improve the learning strategies with the
limited amount of available data. In this work, we explore
the strategies to leverage the existing approaches for learn-
ing from limited data and build generalised models from
relatively small samples. The main motivation to deal with
the limited data in this research is the limited availability of
datasets for rosacea.

IV. AVAILABILITY OF SKIN DISEASE DATASETS AND
CHALLENGES

As deep learning models require a large amount of data for
training, it is essential to benchmark the available datasets
for skin disease analysis. In this study, we utilise datasets
containing various skin disease images. These 17 datasets are
also used in further sections where different types of deep
Learning architectures and models are discussed in detail.
The main purpose of this section is to provide an overview of
the available skin image datasets, categorised by name, data
source, disease category, imaging modality, dataset volume,
number of classes, data accessibility, and the frequency of
rosacea in existing datasets.

As shown in Table 3, there are only about 200 images of
rosacea in publicly available datasets. Among the available
images of rosacea, there is only a small number of images
with the full-face visibility. Compared to the studies pub-
lished based on skin cancer images, there is a very limited
number of annotated rosacea images and that introduces a
significant challenge in dataset split (train, validation and
test) for training deep learning models. Hence, this study
is focused on examining various deep learning techniques
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TABLE 2. Overview of studies conducted on rosacea along with other skin conditions.

Author/ Skin Disease Dataset Name/ Dataset Problem steps Methodology Performance Deployment
Index/ Names Source/ volume measures
Year Availability
Evgin seborrheic DermWeb, Total no. Segmentation, | Pre-trained on ImageNet | Accuracy, 32 GB RAM,
Goceri dermatitis, DermNet of Im- | Classification | weights: Specificity, Intel i9-9900
[36], rosacea, Dermatoweb, ages=725, problem, SqueezeNet, ShuffleNet, | Sensitivity, processor unit
2021 hemangioma, DermQuest No. of | Mobile App MobileNet, RMNv2, | Precision, (3.10 GHz)
psoriasis and images MobileNetv2, F1 Score, | and 64-bit
acne vulgaris. for each LightWeight  Efficient | Matthew’s Windows-
class=145 Network (LWEN), | correlation 10.  Python
Look-Behind Fully- | coefficient 3.6, Java,
CNN (LB-FCN), | (MCC) Android
Light CustomNet2, Studio
ModifiedMobileNet2 (version
3.6.1),
TensorFlow
Thomsen | acne  (581) | Department of | Total Classification Pre-trained on ImageNet | AUC, N/A
et al. | rosacea Dermatology, images= problem, weights  with  VGG- | sensitivity,
[31], (16006), Aarhus University 16,543 Total | Region of | 16 (VGG-16P), No | specificity,
2020 psoriasis Hospital (AUH), | number of | interest using | pretrained VGG-16 | negative
(6,545), Denmark patients STN (VGG-16N), Spatial | predictive
eczema (Confidential included in Transformation Network | value (NPV),
(5,350) and | Dataset) the study = (STN) with a Pre-trained | and positive
cutaneous 2,342 VGG-16 Model (VGG- | predictive
t-cell (2,461) 16PS), No pretrained | value (PPV),
VGG-16  with  STN | Accuracy
(VGG-16 NS)
Evgin seborrheic DermWeb, N/A Segmentation, | Pretrained on | For Intel Core i7,
Goceri dermatitis, DermNet Denoising, ImageNet- VGGNetl6, segmentation- 8GB DDR4
[39], rosacea, Dermatoweb, Intensity VGGNet19, Google- | Area RAM, 3.6
2021 hemangioma, DermQuest. normaliza- Net, InceptionV3, | Error Rate | GHz CPU,
psoriasis and tion, Fully | Xception, ResNet18, | (AER), For | All networks
acne vulgaris. Automated ResNet50, ResNetl01, | classification- have been
Detection InceptionResNetV2, Accuracy, trained using
of Facial | DenseNet201with Precision, MATLAB
Disorders modified loss function | Specificity, F1 | (R2019b)
(F-ADFD) (Cross-entropy and | score, MCC on the same
method, Tversky (Tv) similarity) computer
Classification
Zhao et | 3 rosacea | NA, Confidential | Total= Feature Pretrained on Imagenet- | Accuracy, N/A
al. [32], | subtypes Dataset, Data | 24,736, extraction, ResNet-50, mini-batch | precision,
2021 (erythema- collection devices: | rosacea= Classification | gradient descent witha | Area Under
totelang- iPhone X, Huawei 18,647, momentum = 0.9, batch | the Receiver
iectatic P20 and digital | Acne, size = 32, Training | Operating
rosacea, camera Canon | Seborrheic epochs=100, Initial | Characteristic
papulo- Rebel 550 from 3 | Dermatitis, learning rate= 0.0001. | Curve
pustular different angles. eczema = (If validation loss did not | (AUROC)
rosacea, and 6089 decrease in continuous
phymatous 10 epochs, the learning
rosacea) acne, rate was divided by 5),
seborrheic minimum learning rate
dermatitis, =0.000001.
and eczema
Wu et | psoriasis Department of | Total = | Classification, | Five-fold cross- | Positive rate | Pytorch
al. [33], | (Pso), eczema | Dermatology, 4,740 Mobile App. validation to validate (TPR), false 1.1. CPU
2020 (Ecz), atopic | The Second | clinical the effectiveness, pre- | positive rate | - 18 Core
dermatitis Xiangya Hospital, | images trained  weights on | (FPR), ROC, | Intel Xeon
(AD), healthy | Central South ImageNet, EfficientNet- | AUC, T-SNE | E5-2697,
skin University, China, b4 (380x380) The | analysis, GPUs - 4
Confidential final fully connected | Confusion RTX 2080Ti
dataset classification layer was | matrix. NVIDIA.
replaced with 3 output
neurons. Also, added
7 auxiliary classifiers
at the end of each
intermediate layer
to make the model
learn classification
information from
different levels of
features.
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TABLE 2. (Continued.) Overview of studies conducted on rosacea along with other skin conditions.

Author/ Skin Disease Dataset Name/ Dataset Problem steps Methodology Performance Deployment
Index/ Names Source/ volume measures
Year Availability
Zhu et | 14 diseases- | Department of | Total= Classification | Pre-trained weights on | Area under | Pytorch
al. [34], | lichen planus | Dermatology, 13,603 and ImageNet, Google’s | curve (AUC), | Scikit-learn
2021 (LP), rosacea | Peking Union | dermatologist{ Clustering EfficientNet-b4 Accuracy, 0222  and
(Rosa), viral | Medical College | labeled der- (380x380) The | Sensitivity, Numpy
warts (VW), | Hospital, China, | moscopic final fully connected | Specificity, 1.16.4.
acne vulgaris | Collected  from | Images, classification layer | ROC,
(AV), October 2016 | Rosacea=597 was replaced with 14 | compared
keloid and | to April 2020, | images output neurons. Also, | this model with
hypertrophic Confidential with added 7 auxiliary | 280 board-
scar (KAHS), | dataset The classifiers to each | certificated
eczema and | annotation process of the intermediate | dermatologists.
dermatitis was performed by layer groups. t-SNE
(EAD), 2 dermatologists (t-distributed Stochastic
dermatofi- with more Neighbor Embedding)
broma (DF), | than 5-years’
seborrheic experience. Data
dermatitis collection device-
(SD), MoleMax HD
seborrheic 1.0  dermoscope,
keratosis Digital Image
(SK), Systems, Vienna,
melanocytic Austria.
nevus (MN),
hemangioma
(Hem),
psoriasis
(Pso), port
wine stain
(PWS),
basal cell
carcinoma
(BCC).
Pushkar acne  (332), | DermNet NZ, | Total =938 Classification | Pretrained on ImageNet- | Sensitivity, TensorFlow.
Aggar- atopic Dermatology Inception v3 specificity,
wal [45], | dermatitis Atlas, Hellenic positive
2019 (92), Dermatological predictive
impetigo Atlas and value (PPV),
(138), downloaded negative
psoriasis images from the predictive
(280), rosacea | Google search value (NPV),
(96). results. Matthew’s
correlation
coefficient
(MCC), and F1
score.
Binol er | rosacea Ohio State | Total=41 Image Pre-trained on ImageNet | Dice co- | MATLAB
al. [46], | lesions University (OSU) | facial classification DCNNE: Inception- | efficient, False | R2018b using
2019 Division of | images, The | problem for | ResNet-v2, ResNet-101, | positive rate. the Deep
Dermatology size of each | rosacea and | Data Augmentation. Learning
(Using DSLR | image is | non rosacea | Anatomically directed Toolbox,
camera), 4608x3072 | lesions. post-processing  (APP) (HPC) with
Confidential (Anthropometric model) 128 GB RAM
dataset and 16 GB
NVIDIA
Tesla  P100
PCI-E GPU
Xie et | 80 skin | Xiangya Hospital | Total = | Classification. | Pretrained on ImageNet. | Top-1 and Top- | 3X NVIDIA
al. [47], | diseases of Central South | 47,075 Inception-ResNet- 3 accuracies | TITAN Xp.
2019 with each | University Dataset | images were v2  (for 80 skin | canreach0.588
class have | is annotated by | obtained diseases classification) | and 0.764.
more than | 20  professional | using 4 (Max training | 4-fold  cross
100 images. | dermatologists, types of epochs=5000, basic | validation.
(Includes Confidential digital learning  rates=0.001,
rosacea). Dataset, Data | cameras. batch size=25,
collection device: optimizer=Adam, and
SONY DSC- the loss  function=
HX50  (350dpi), categorical cross
CANON  IXUS entropy). Inception V3,
50 (180dpi), DenseNet121, Xception
NIKON D40 for comparative analysis.
(300dpi), NIKON
COOLPIX L340
(300dpi).
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which may be applied for skin disease diagnosis and poten-
tially suitable for dealing with a limited dataset.

V. A BRIEF OVERVIEW OF SKIN DISEASE ANALYSIS
USING MACHINE LEARNING AND COMPUTER VISION
METHODS

Considerable amounts of work on skin disease classification
tasks have focused on computer-aided skin cancer diagno-
sis and classification support systems [78]-[82]. These non-
invasive [80], [81], [83] methods, such as traditional image
processing techniques, have been very popular and achieved
notable results for skin disease diagnosis, particularly for
skin cancer. The image processing techniques have been
used to perform a broad range of image pre-processing, e.g.
lesion segmentation and domain-specific feature extraction
followed by classification tasks. Such diagnosis tasks use a
small number of datasets [81]-[83]. Generally, these datasets
contain less than a thousand sample images. Image classifi-
cation problems that utilise small datasets, do not generalise
well to new images i.e. a novel category of diseases or the
classes with very small datasets.

Over the past few years, medical image classification
has entered a new era thanks to the advancements of deep
convolutional neural networks [30], [84], machine learn-
ing [85]-[87] and deep learning techniques [88]-[90]. These
techniques do not require any hand-crafted features, but they
heavily rely on high computational power [35], [91]-[93].
They are trained end-to-end directly from the image labels
and raw pixels, with a single convolutional neural network
for dermoscopic and clinical images [29].

Another principle that has attracted a lot of attention
recently in the medical image analysis domain is transfer
learning. The core idea behind Transfer Learning is to deal
with fewer samples and is discussed in Section V.A.

Another approach is GANs. There have been a few studies
on using GANs [94], [95] on medical image analysis [96]
which are discussed in Section V.B. While exploring GANs
has shown notable results, they come with a few limitations
such as (1) mode collapse: when the generator collapses to
map all latent space inputs to the same data and (2) instability:
when different outputs are obtained for the same input. The
principal causes for these phenomena are related to vanishing
gradients through the optimization procedure [97]. However,
when it comes to synthetic image generation of faces, a few
types of GAN architectures have become successful as further
discussed in Section V.B.

Given that GANs come with a few limitations and advan-
tages, there is a scope to explore other subfields of machine
learning to deal with limited datasets, such as meta-learning
and few-shot learning [98]-[100]. Meta learning approaches
differ from many standard machine learning algorithms. Meta
learning systems are trained by being exposed to many tasks
and are tested in their ability to learn new tasks. An example
of a task might be classifying a new image within 7 possible
classes, given one example of each class [99]. There has
been a small number of studies based on meta learning and
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few-shot learning applied to medical images and skin disease
diagnosis which are further discussed in Section V.C.

Advanced machine learning have been gaining popularity
in the field of computer vision due to their advantages. Never-
theless, some of the traditional approaches in computer vision
can be utilised when there is only a limited amount of data
available. One of these approaches leverages the technique
of 3D modeling. 3D face modelling is a computer graphics
technique. By using an intuitive user interface several 3D face
models can be created from one or more photographs [101].
Over the years various methodologies have been developed to
reconstruct 3D faces, such as 3D Morphable Models [102],
Active Shape Models [103]-[105], Gaussian Process Mor-
phable Models [106], deep learning based reconstructions
[107]-[109] and 3D modeling using GANs [110], [111].
However, there is only a small amount of literature available
on medical image diagnosis and facial skin image diagnosis
which will be discussed in Section V.D.

A. DATA AUGMENTATION AND TRANSFER LEARNING

Data augmentation is a technique to artificially create a new
set of training data from the existing ones by a slight mod-
ification. This is a process of modifying and expanding the
data through various geometric transformations and image
processing tasks. For images like those of faces with rosacea,
the geometry of the faces and the positions of affected regions
on the faces are different in each image. These are known as
positional biases. Data augmentation can work well with the
positional biases present in images, in order to increase the
size and quality of training datasets, especially with a facial
dataset [112].

Humans learn from their experience, which helps them
understand and solve new but similar tasks quickly. A similar
kind of hypothesis is applied in a handful of algorithms and
techniques [113]. Transfer learning is one of the deep learning
approaches in which a new task, which is in a different but
related category, can be learned and improved by acquiring
experience from a previously learned task. Thus, the acquired
learning experience comes from different constraints such as
extracting features and fine tuning the model. These con-
straints play an important role along with monitoring the
parameters of the model to obtain the desirable output.

This principle is used by Esteva ef al. [29] to demonstrate
a generalizable classification of a dermatologist-labelled
dataset of 129,450 images including 3,374 dermoscopy
images. A GoogleNet Inception version 3 CNN architec-
ture [43] was pretrained on approximately 1.28 million
images with 1,000 categories of real world objects from
the 2014 ImageNet Large Scale Visual Recognition Chal-
lenge [92]. This model was fine-tuned on a skin cancer
image dataset using transfer learning [113] to achieve 93.33%
accuracy.

Table 4 presents an overview of the state-of-the-art studies
which have utilised transfer learning and data augmentation
principles for skin disease analysis.

The main points that can be drawn from the Table 4 are:
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TABLE 3. List of accessible skin disease datasets.

Index | Dataset Disease Categories/ Imaging Volume Classes Rosacea| Accessibility Country/
Name Names modality images Region

1 7-point Melanoma and non- Clinical >2000 ~20 0 Public Canada,
criteria (aka Melanoma skin le- and Dermo- Italy
derm7pt) sions scopic
[60] 2019

2 Asan  and 12 types of Skin Can- Dermoscopic 17,125 12 0 Partially South Korea
Hallym cerous lesions
Dataset [61]

2018

3 Dermatology All kinds of skin Clinical ~11,000 ~550 38 Public Brazil
ATLAS [62] diseases  (including
1999 rosacea)

4 DanDerm All kinds of skin Clinical >3,000 ~100 17 Public Denmark
[63] 1995 diseases  (including

rosacea)

5 DermlIS All kinds of skin Clinical ~7,000 ~700 49 Public Germany
[64] diseases  (including

rosacea)

6 Dermnet All kinds of skin Miscellaneous| ~23,000 N/A 0 Public United
Skin diseases  (including States
Disecase rosacea)

Atlas
[65]11998

7 Dermofit Cancerous skin Dermoscopic 1,300 10 0 Under Scotland, UK
Image lesions License
Library (aka Agreement
Edinburgh
Dataset)

[66]

8 DermNetNZ All kinds of skin Clinical >25,000 >2,500 ~50 Public New
[13] 2016 diseases  (including and Dermo- Zealand

rosacea) scopic

9 Dermatoweb. All kinds of skin Clinical >7,300 0 45 Public Spain
net [67] diseases  (including and Dermo-

2002 rosacea) scopic

10 HAM10000 Pigmented malignant Dermoscopic 10,015 7 0 Public Austria
[68] 2018 and benign skin le-

sions

11 Hellenic Common disease Miscellaneous| 2,663 N/A 9 Public Greece
Derma- categories (including
tological rosacea)

Atlas  [69]
2011

12 ISIC  [70] Melanoma, Dermoscopic >33,000 N/A 0 Public Miscellaneous
[71] 2016 seborrheic  keratosis,

benign nevi

13 MED- Melanoma and be- Microscopic 170 2 0 Public Netherlands
NODE [72] nign nevi
2015

14 MoleMap Malignant and benign Clinical >32,000 N/A 0 NA New
[73] [74] lesions and Dermo- Zealand
2003-2015 scopic

15 PH2 Dataset common nevi, Dermoscopic | 200 3 0 Public Portugal
[75] 2013 atypical nevi, and (80+80+40)

melanomas

16 SD-128 [76] 128 disease Clinical 5,619 128  (>20 N/A On request China
2016 categories (Including samples per only

rosacea) class)

17 SD-198 [77] 198 disease Clinical 6,584 198 (10-20 N/A On request China

categories (Including samples per only
rosacea) class)

o Most of the work done using transfer learning for skin

diseases analysis starts from 2016 onwards.

« Most of the studies were conducted on subtypes of skin
cancer such as malignant melanoma and benign nevi.
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However, only a few studies related to rosacea were
conducted so far. As seen in the Section II., most of
the works on rosacea and facial skin conditions are

conducted from 2019 onwards.
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e Most studies used a minimum data volume of
1000 images. A small number of studies have been
conducted with less than 1000 images.

o The studies by Esteva et al. [29], Liu et al. [114] obtained
an accuracy of 93.33% and 93% respectively with a
large number of images and used InceptionNet-v3 [43]
and v4 [41] respectively. The studies by Goceri [115],
MAA [116], Cui et al. [117] used a small number of
images to train an Inception Net [43] model. There are a
few studies with a small number of datasets that obtained
results by using different versions of the VGG16 [38]
and ResNet [44] architectures with transfer learning,
data augmentation and some pre-processing work.

Similarly, Yu et al. [118], Kwasigroch et al. [119],

Lopez et al. [120], Kassani et al. [121] presented studies
on cancerous dermoscopic skin lesions classifications using
DCNN s with transfer learning. Some of these works are done
using InceptionNet-v3 [43] and VGG-Net [38].

Shorten et al. [112] discussed a few limitations on data

augmentations such as:

« Finding the optimum final post-augmented dataset size
to produce the best performing model. There is a possi-
bility that the augmented dataset can be heavily biased.

o There are no existing augmentation techniques that can
correct a training dataset with very poor diversity with
respect to the testing data. All the augmentation algo-
rithms perform best under the assumption that the train-
ing data and testing data are both drawn from the same
distribution. Hence, these limitations in data augmen-
tation could be a potential problem for small medical
image datasets because of class imbalance and diversity.

Morid et al. [122] systematically reviewed the literature

on approaches to transfer learning in medical image analysis
that are based on CNN models trained on the non-medical
ImageNet dataset for medical image analysis. A vital research
gap discussed in this review is finding the optimal dataset
size that can support medical image analysis tasks, as a large
dataset may not always be available.

An extensive survey published by Pan et al. [113] discusses

a few limitations on transfer learning that may apply to medi-
cal image analysis, such as negative transfer, which is an open
problem in transfer learning. For example, when using the
ImageNet [35] dataset for medical/clinical image analysis,
there is no similarity between the source and target domains.
ImageNet contains real-world objects, animals, fruits, bal-
loons etc. Hence there is a high possibility of performance
intrusion in the target domain; which is known as negative
transfer [123]. Negative transfer is made more likely by the
fact that well performing CNN models are pre-trained on
a non-medical dataset [122]. In simple words, it is not yet
established that,

o Which characteristics facilitate an effective transfer of
features and weights in the transfer learning and fine-
tuning process?

o Whether the features that are transferred from ImageNet
are plausible or not?
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o Ifthe transferred features and weights are plausible, then
how can we quantify that?
« At what level is it adequate to incorporate the features of
a non-medical dataset during the training process?
Considering the limitations of transfer learning and data
augmentation, this study has considered a few methods such
as GANs, 3D modelling and meta-learning with few-shot
classification to improve medical image diagnosis of rosacea
and other facial skin conditions using Al and computer vision.

B. GENERATING SYNTHETIC IMAGES USING GANs

As discussed in the previous Section V.A., data augmentation
techniques are used in various studies, but there are a few
notable limitations. Although data augmentation techniques
help in transforming the images by zooming, cropping, flip-
ping, rotating, it does not radically improve results when there
is only a handful of data available for some specific skin
conditions. However, GANs can be explored in creating syn-
thetic data from an existing limited dataset without splitting
the dataset into training, validation, and test sets.

Generative models are inspired by the unsupervised learn-
ing model approach. They can generate new examples that
are similar to the training images. The GAN framework [95]
consists of a pair of adversarial networks — a Generator
Network G and Discriminator Network D. The Generator
Network G tries to transform random noise from the prior dis-
tribution over the input variables (usually a standard normal
distribution/gaussian distribution) to generate fake/synthetic
images which look as realistic as possible. The input variables
to G are drawn from a normal distribution and the output is a
synthetic image. Generally, the dimension of the output image
is much greater than the dimension of the input variables.

Simultaneously, a Discriminator Network D attempts to
discriminate between the sample images obtained from the
real training data and the fake/synthetic images obtained from
the generator function G. By utilizing the feedback from the
discriminator D, the parameters of the generator G can be
adjusted such that its samples are more likely to fool the
discriminator network in its classification task. Ultimately,
it is desired that the distribution of the fake images has as
much in common as possible with the real images. In the
Discriminator Network D, the input is an image, and the out-
put is a real number between 0 and 1, which represents the
probability that the input image is real. Ideally if D is working
properly, the output will be close to 1 for a real image and
close to O for a synthetic one.

The equation below represents the function V which GANs
optimise during training. x,.,; represents a real image. z rep-
resents the random input values for G. In this equation, the
first term only applies to real data and the second term only
applies to the synthetic data.

Ey~puue(x) indicates the expected value of log(D(xear))
where pq414(x) is the probability distribution over the real data
and E,, () is the expected value of log(1 — D(G(z))) where
p-(2) is the probability distribution over the input values to
G. The parameters of G and D are optimized by playing a
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TABLE 4. Studies based on data augmentation and transfer learning.

Author/ Skin Disease Names Dataset Dataset volume Methodology Best results and Perfor-
Index/ Name/ in total/per class mance measures
Year Source
Esteva er | 2,032 skin diseases ISIC  Der- 1,29,450 images. Pre-trained on ImageNet dataset | Accuracy =93.33%,
al. [29], | for Training the | moscopic 2,032 disease | Transfer Learning, Data Augmen- | Confusion matrix Saliency
2017 model and Tested for | Archive, classes for | tation, InceptionNet-v3. Maps, Sensitivity-
malignant melanomas, | Edinburgh Training and specificity curves.
benign nevi, malignant | Dermofit 7  types  of
basal, squamous cell | Library and | cancerous lesion
carcinomas, intraepithelial | data from | classes for
carcinomas, pre-malignant | the Stanford | Testing.
actinic keratosis, benign | Hospital.
seborrheic keratosis.
Sourav 9 common skin | N/A Each class com- | Pre-trained on ImageNet DCNNs | Classification
Mishra conditions: Acne, prises of approx- | such as: ResNetl8, ResNet50, | accuracy: 82.30%(by
et al. Alopecia, Crust, imately 4600 im- | ResNet152, DenseNet161. ResNet152)NVIDIA
[124], Erythema, Leukoderma, ages in which the Titan XP and CUDA v8
2018 Pigmented Maculae, division between
Pustule Ulcers and Wheal. training and test
ratio of 90:10
Binol et | Rosacea lesions Ohio State | 41 facial images. | Pre-trained on ImageNet DCNNs: | Dice co-efficient: 92.9%
al. (Ros- University The size of | Inception-ResNet-v2, ResNet- | False positive rate, MAT-
Net) (0OSU) each image is | 101, Image classification problem | LAB R2018b using the
[46], Division of | 4608x3072 for rosacea and non-rosacea | Deep Learning Toolbox,
2019 Dermatol- lesions, Data  Augmentation, | (HPC) with 128 GB RAM
ogy (using Anatomically  directed  post- | and 16 GB NVIDIA Tesla
DSLR processing (anthropometric | P100 PCI-E GPU.
camera) model)
Goceri. 5 common skin diseases; | N/A Total = 800, Per | Pre-trained on ImageNet: Classification ~ Accuracy:
[115], (1) Acne vulgaris, (2) He- class= 160 U-net, InceptionNetV3, | 80% (by ResNet50).
2019 mangioma, (3) Psoriasis, InceptionResNetV2, VGGNet | GeForce GTX  980Ti
(4) rosacea, and (5) Sebor- and ResNet. GPU, Intel Core 17-4930
rheic dermatitis. K processor, 6GB memory
and 16GB RAM
Sun er | 198 Common | SD-198 and | total= 6,584; for | Pre-trained on ImageNet DCNNs | Classification accuracy:
al. [76], | skin diseases: | SD-128 some classes-10 | such as: CaffeNet, CaffeNet+ fine- | 50.27% (by VGGNet +
2016 eczema,psoriasis, to 20 samples. tuning, VGG Net, VGG Net + | fine-tuning)
acnevulgaris, pruritus, finetuning
alopecia areata,
decubitus ulcer, urticaria,
scabies,impetigo,
abscess,bacterial skin
diseases, viral  warts,
molluscum, melanoma
and non-melanoma skin
cancer
Yang et | 198 common skin dis- | SD-198 6,584; for some | Pre-trained on ImageNet DCNNs | Classification  accuracy:
al. [125], | eases. classes-10 to 20 | such as: GoogleNet, GoogleNet + | 53.35 % (by ResNet +fine
2018 samples. fine tuning, ResNet, ResNet + fine | tuning)
tuning
MAA Seven  skin  diseases- | ISIC 2018 | Training set | Data Augmentation. Representa- | Validation score: 76% (by
[116], Melanoma (1113), | Melanoma = 10015 skin | tion learning. Pre-trained on Im- | PNASNet-5-Large)
2019 Melanocytic nevus (6705), | Detection lesion images. | ageNet DCNNs with fine tuning
Basal cell carcinoma | Challenege The validation | such as: PNASNet-5-Large, In-
(514), Actinic keratosis | and Dataset dataset = 193 | ceptionResNetV2, SENetl154, In-
(327), Benign keratosis skin lesion | ceptionV4, An Ensemble of all
(1099), Dermatofibroma images. models.
(115) and Vascular (142).
W.Sae- Seven skin diseases: Can- | Human 10,015 images Pre-trained on ImageNet Modified | Accuracy: 83.23%, Speci-
Lim er | cerous Against Mobile-Net with Data Augmenta- | ficity: 87%, Sensitivity:
al. [126], Machine tion Data up-sampling. 85%, F1 score:82%
2019 10,000
(HAM10,000)
Kemal er | Seven skin diseases: Can- | HAMI10,000 | 10,015 images A CNN architecture + One verses | Average precision:
al. [127], cerous all which 1,243,463 parameters in | 92.90%
2020 total. Data Augmentation.
Hosny Melanoma skin lesions. (1)2017 2000, 170, 206 Data Augmentation Pre-trained on | Average Accuracy:
KM et ISIC ImageNet for transfer learning on | 95.91%, 96.68%, 97.07%.
al. [128], challenge AlexNet
2019 dataset,
(i))MED-
NODE,
(iii)DermIS+
DermQuest.
Mahbod 411 malignant melanoma | ISIC 2016, | Total= 2037, | multi-class non-linear support | Average AUC:90.69%
et al. | (MM), 254 seborrheic ker- | ISIC 2017 Training= 1887, | vector machine (SVM) classifiers.
[129], atosis (SK) and 1372 be- Validation Fusion of DCNNs such as
2019 nign nevi (BN) set=150 AlexNet+ VGG16+ ResNet18)
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TABLE 4. (Continued.) Studies based on data augmentation and transfer learning.

Author/ Skin Disease Names Dataset Dataset volume Methodology Best results and Perfor-
Index/ Name/ in total/per class mance measures
Year Source
Mendes 11 distinct lesions with 4 | (i))MED- (1)170, (i1)1,300, | Data Augmentation, Pre-trained | Total accuracy: 78% (by
et al. | malignant illness. NODE, (iii)3816 on ImageNet DCNNs: ResNet- | ResNet-152)
[130], (ii)Edinburgh 152
2018 Dermofit
library, (iii)
Atlas
Cui  er | Melanoma (295) and non- | International | Total= 606 Image pre-processing | Average accuracy,
al. [117], | melanomas (311) Society for segmentations, feature extractions, | Sensitivity,  Specificity.
2019 Digital Machine Learning classifications- | (Accuracy, Sensitivity,
Imaging of using SVM, Regression tree, | Specificity=93.70%,
the Skin K-nearest neighbour, Logistic | 95.30%, 92.10%
(ISIC). regression, Transfer Learning | respectively by Inception
using-AlexNet, VGG16, VGG19, | v3), Windows 7 system,
Google Inception v3. MATLAB R2018b,
TensorFlow 1.3,
GTX1080Ti (Nvidia).
Liu et | 26 most common skin | Tele Der- | Training=64,837, | Transfer Learning pretrained on | top-3 accuracy=93%
al. [114], | conditions in adult, by | matology Valida- ImageNet, Fine tuning, Inception | -top-k  sensitivity=83%
2020 making it 419 categories | consultation tion=11,268, v4, Data Augmentation -95% confidence intervals,
of skin conditions | dataset clinical metadata -validated by 18 board
(Rosacea is not included), | (Confiden- (demographic certified ~ dermatologists
Labeled by a cohort of | tial) information and who did not participate in
37 US board-certified and medical history) labelling the input images.
5 Indian board-certified
dermatologists.

minimax game, which involves varying the parameters of G
to minimise V in an outer loop and varying the parameters of
D to maximise V in an inner loop. The value function V (G, D)
is defined as:

m(;n mDax V(D’ G) = ]Exwpdatu(x) []Og(D(x))]
+ Ezp.nllog(1 — D(GN] (1)

At the early stages of the learning process, G will not be
generating any realistic looking images and D can reject sam-
ples with high confidence because they are clearly different
from the training data. In this case, log(1 —D(G(z))) should be
close to zero because D(G(z)) will be close to zero [94], [95].

In skin disease classification and analysis, there have been
a few impactful studies, which support generating synthetic
images from existing datasets of real images to increase the
training samples and improve the classification accuracy.
These studies will be considered as a part of a critical analysis
and are listed in Table 5.

The main points that can be drawn from Table 5 are:

o Most of the work on GANSs for skin diseases classifica-

tion is from 2018 onwards.

o Most of the diseases considered for generating the syn-
thetic image dataset are melanoma or cancerous skin
lesions. There is no work related to rosacea or any facial
skin conditions.

o Minimum of 2,000 input real images are considered for
generating synthetic images.

o Majority of the works use the ISIC 2017 and
2018 datasets.

« DCGAN, PGAN and LAPGAN appear to be popular
architectures used in these studies.

Qin et al. [131] states that the generation of synthetic sam-

ples for vascular lesions (142 input images) makes the lesion
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region look realistic. However, the skin texture around the
lesion is still fuzzy and lacks contrast in some samples. The
same effect appears in melanoma images. For melanocytic
nevus (6705 images), the most representative images are with
concentrated colour, clear edge and regular shape. Hence,
more training samples lead to generating better quality syn-
thetic ones. In Rashid et al. [132], the highest F1 score was
obtained in the melanocytic nevus (6705 images) category
because of the high number of samples available.

1) MAJOR TAKEAWAYS ON DCGAN, LAPGAN AND PGAN

DCGAN [133] and LAPGAN [134]have proven to work
well for generating synthetic images from the input noise,
but the generated images were low in resolution e.g. 64 X
64 px. This setting can be improved using conditional GAN
approaches [135]. Recently, the Progressive Growing of
GANs (PGAN) [136] has shown promising results for real-
istic image synthesis of faces at resolutions up to 1024 x
1024 px, without the need for any conditioning. In simple
words, conditioning is the way of feeding additional informa-
tion to the generator and discriminator. It can be useful when
dealing with an imbalanced dataset. Baur et al. [137], [138]
shown that the synthetic sample images produced by DCGAN
are prone to checkerboard artefacts and they can be eas-
ily identified as fake. The sample images produced using
LAPGAN are realistic and diverse, but the close inspection of
the images shows a vast amount of high-frequency artefacts.
The generated samples using PGAN seem highly realistic,
and it is trained without considering the presence of various
classes. However, the presence of hair in the skin images
may raise questions. Hence PGAN and LAPGAN can be
taken into consideration in our further studies to generate syn-
thetic images of faces with rosacea. However, there are a few
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research gaps which are discussed by Baur et al. [137], [138]
including:
o Whether there is an information gain in the synthetic
samples over the actual training dataset?
o Whether the gain is higher than using conventional data
augmentation?
« How many training images are required to obtain reli-
able generative models?
o There is still a need to enhance the methodology to
account for filamentary structures.

2) STYLE-BASED GENERATIVE ADVERSARIAL NETWORKS

To examine a specific facial skin condition such as rosacea,
it is necessary to access full face images with anatomical
details. Therefore, a GAN model should be trained to gen-
erate full facial synthetic images rather than partial facial
images. The Style-based GAN [146] is an improvement of
PGAN, which supports generating higher-quality images via
the incremental expansion of both generator and discrimina-
tor models for low quality to high quality images. Looking
at the state of the art, Bissoto et al. [145] shown promising
results with StyleGAN2 [147]. This work also suggests noise-
based GANs work better than translation based GANs such
as Pix2pixHD [148] and SPADE [149].

Chai et al. [150] looked at one of the open questions on
GANs which aims to look at how to convert unstructured
latent code to a high quality output while maintaining global
consistency. They show that StyleGAN [146] performs better
in separating faces from background artifacts. Subsequently,
StyleGAN2 [147] was introduced as an improved version of
StyleGAN, hence StyleGAN2 can be considered for obtain-
ing relatively high-quality synthetic facial images with global
consistency of anatomical details and affected regions of
the face. StyleGAN2 works better in comparison to PGAN.
However, StyleGAN2 takes up to one month of GPU time
for a single course of training. Additionally, StyleGAN2
also produces high quality facial images [147], which can
be useful for generating synthetic face images with facial
diseases. Recently, StyleGAN2 with adaptive discriminator
augmentation (StyleGAN2-ada) [151] has been introduced,
which claims to help with relatively limited data (a few thou-
sand training images) regime due to an adaptive discriminator
augmentation mechanism which does not require changes
to the network architecture or defined loss functions. This
may help in generating images with a few hundred samples.
As StyleGAN2-ada has acquired optimal results with Flicker
Faces-HQ dataset [146], which is basically a facial dataset,
it may help in generating synthetic images of facial skin
conditions e.g. rosacea.

C. META-LEARNING AND FEW-SHOT CLASSIFICATION
The concept of meta-learning and few-shot classification
can help deal with the limited amount of data without any
transfer learning techniques, and without any augmentation
process (such as synthetic image generation) of the dataset,
but through hyperparameter optimization.
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In a meta-learning problem, we have a meta-training set
and a meta-test set, each of which contains a number of
“tasks”. Each task is associated with a training set and a test
set containing both feature vectors and correct labels. It is
similar to a standard machine learning problem but each task
is considered as one data sample [98]. The goal of meta-
learning is to acquire generic knowledge of different tasks.
The knowledge can then be transferred to the base level
learning to provide generalisation in the context of a single
task [152].

Meta-learning assumes that all the tasks in both the meta-
training set and the meta-test set, have some degree of similar-
ity. For example, in the case of skin diseases the meta-training
tasks might represent different, well-studied skin conditions
and the meta-test set might represent a rarer skin condition,
for which there is limited data.

Regular machine learning involves the minimisation of a
loss function L.

0f = arg rngin L(Oc,D™) )

where ¢ is a vector of the parameters of a classifier (e.g. the
weights of a neural network). The classifier takes an input x
which represents the feature values of an example and outputs
a label y.

Meta-learning involves estimating the parameters 6 of a
“learning function” fp. The learning function takes as input
a training set D! and outputs a vector ¢; as in Equation. 3
below.

¢i = fo(D) 3

¢; can be used to generate a classifier, which can classify
examples from the corresponding test set D’ for task i.

Meta-learning involves minimising the function in
Equation. 4 with respect to 6,

n
6% = argmin ) | L(¢i. DY) @
i=1
where n is the number of tasks in the meta-training set. For
each task i a vector ¢; is generated using the learning function
fo as in Equation. 3 above. The same learning function (with
the same values for 6) is used for all tasks.

Then ¢; is used to generate a classifier, which can then
applied to the test set D?' to generate labels for each example
in the test set. The loss function L is calculated by comparing
the generated labels with the true labels. The loss functions
for all the tasks in the meta-training set are then summed.
An optimisation algorithm is then used to find the values of
6 which minimises the function in Equation. 4.

Fig. 2 is an example of a meta-learning setup. The figure
represents the meta-training set and the meta-test set, where
each grey rectangle is a separate task that consists of a training
set and a test set separated by the dotted lines. The training
sets are also called support sets. The test sets are also called
query sets. Each image is taken as one example within the
dataset. Each training/support set has 5 different example
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TABLE 5. Studies based on GANs.

Author/ Skin Disease Names Dataset Dataset Methodology/Benchmark Best results Evaluation
Index/ Name/ volume in Metrics /Samples
Year Source/ total/per class Generated, Deployment

and H/'W

Qin et | Seven skin diseases- | International | 10,015 Transfer learning and fine tuning on | Inception Score, Fréchet

al. [131], | Melanoma (1113), | Skin dermoscopic Transfer-ResNet50, GAN, DCGAN, | Inception Distance (FID),

2020 Melanocytic nevus (6705), | Imaging images. StyleGAN, SL-StyleGAN(proposed | Precision and Recall.

Basal cell carcinoma | Collabora- 600x400 work), Non-linear mapping network, | Best result obtained by

(514), Actinic keratosis | tion (ISIC) | pixels and | Adaptive Instance Normalization | SL-StyleGAN proposed

(327), Benign keratosis | 2018 96dpi. (AdalN)operations, Style Mixing, | method. H/W: Intel Xeon

(1099), Dermatofibroma Stochastic variation Gold 6144 with 192 GB

(115) and Vascular (142) RAM, GPU of NVIDIA
Quadro P40 0 0.

Lei et al. | Melanoma skin lesions International | ISIC2016: Segmentation task, A deep encoder- | Accuracy, Sensitivity,

[139], Skin Training-900, | decoder module UNet-SCDC (skip | Specificity, Jaccard Index,

2020 Imaging Test-379; connection and dilated convolution) | Dice coefficient, H/W:

Collabora- ISIC2017: (proposed work), Dual discrimination | Two NVIDIA TITAN XP
tion (ISIC) | Training- module. GPUs.
Skin Lesion | 2000,
Challenge Testing-600;
Datasets ISIC2018:
2016, 2017 | Training-
and 2018 2296,
Testing-300

Baur et | Benignand malignant skin | ISIC2017 2000 DCGAN, LAPGAN, deeply discrim- | Earth mover’s distance

al. [137], | cancerous lesions (256 x256px) inated GAN (DDGAN) (proposed | (MD) (Wasserstein-

2018. work), Tranfer learning: pretrained | Distance), JS Divergence,

ResNet-50 2000 random samples
generated. H/W: NVidia
1080Ti

Rashid et | Melanoma (MEL); | ISIC2018 8,000 training | Transfer  learning, Finetuning, | Precision and Recall, F1

al. [132], | Melanocytic Nevus (NV); images, DenseNet, ResNet50, GAN based | score, Balance accuracy

2019 Basal Cell Carcinoma 2,000 testing | augmentation score: 0.86 using GAN

(BCC); Actinic Keratosis images. based augmentation,
(AKIEC); Benign Highest F1 score for
Keratosis (BKL); Melanocytic Nevus (NV).
Dermatofibroma (DF);

Vascular Lesion (VASC)

Baur et | Benignand malignant skin | ISIC2018 10,000 PGAN, DCGAN, LAPGAN, Visual | Sliced Wasserstein

al. [138], | lesions of 7 categories. labelled Turing Test Distance (SWD): 20.0197

2018 training (closest to the lower

samples bound, 10,000 synthetic
images generation per
model, User study
amoung 3 expert
dermatologists and 5
Deep Learning experts;
showing experts had a
hard time distinguishing
real and fake image

Bisla er | Three classes: melanoma, | ISIC 2017 803+40+76 Segmentation using U-Net architec- | MSE for GANs, 350

al. [140], | nevus, and seborrheic ker- | (3 classes) | cases of | ture, de-coupled DCGANs for data | synthetic images for

2019 atosis. PH2 (2 | melanoma, generation, Pre-trained ResNet-50 for | melanoma and 750

classes), 2107+ 80+ | final classification. synthetic ~ images  for
Edinburgh 331 cases seborrheic keratosis (26%
Dataset, of nevus, artificially generated data
Test dataset: | and 288+ for training) ROC and
ISIC 2017 | 257 cases of AUC for classification.
and  ISIC | seborrheic
2018 Keratosis

from

ISIC2017,

PH2 and

Edinburgh

Dataset

respectively

Bissoto Melanoma skin lesions ISIC 2017 | 2,000, SLIC algorithm, DCGAN, Condi- | AUC, p-value

et al. Challenge, 13,000, tional PGAN, pix2pixHD GAN (a

[141], ISIC 1,300, conditional image-to-image transla-

2019 Archive, 200, 900 | tion GAN) using only semantic map,

Dermofit dermoscopic Real+Instance+PGAN
Image images of 270

Library, melanomas

PH2 categories.

Dataset,

For  Test:

Interactive

Atlas

of Der-

moscopy
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TABLE 5. (Continued.) Studies based on GANs.

Author/ Skin Disease Names Dataset Dataset Methodology/Benchmark Best results Evaluation
Index/ Name/ volume in Metrics /Samples
Year Source/ total/per class Generated, Deployment
and H/'W
Pollastri Melanoma Skin lesions ISIC 2017 1882 (As | Segmentation task using Baseline | Jaccard Index
et al. Authors CNN architecture and U-Net, DC-
[142], wished to | GAN, LAPGAN
2019 remove 118
images from
the dataset
Ghorbani | 26 skin conditions (no | Tele- 9,897 cases | Pix2pix GAN architecture, Human | 20,000 synthetic images
et al. | rosacea) Melanocytic ne- | dermatology | and 49,920 | Turing Test, DermGAN, MobileNet are generated using the
[143], vus, Melanoma and Seb- | service images; 8-class DermGAN model
2020 orrheic Keratosis/Irritated | dataset: each case and added them to the ex-
Seborrheic Keratosis, Scar | collected in | contains one isting training Data to train
condition, Basel cell Car- | 17 clinical | or more high MobileNet.
cinoma etc. sites in two | resolution
U.S. states | images
from 2010 | (resolution
to 2018 range:
600x800 to
960x 1280).
Romsaas | Benign and Malignant | ISIC 2019 Total= 25,331 | ACGAN (128x128), CycleGAN | Upto 24,000 synthetic
et al. | cancer lesions images. With | (256x256), Path-Rank-Filter (to | images are generated
[144], 7 classes. generate class specific synthetic | using ACGAN
2020 images) and CycleGAN,
Precision/recall,
Maximum Accuracy
=86%
Bissoto Benign and malignant can- | ISIC 2019, 3,863, 1,743, | PGAN and StyleGAN2 (to gener- | Fréchet inception distance
et al. | cer lesions ISIC 2020, | 872,839,973 | ate from random noise), pix2pixHD | (FID) "StyleGAN2 per-
[145], Derm-7pt- and SPADE (for semantic segmenta- | formed ahead of all other
2021 dermoscopic, tion masks to guide the generation), | GANSs".
Derm-7pt- Inception-v4 for classification, Data
clinical, Augmentation.
Dermofit.

images, and each test/query set has 2 additional example
images. The meta-learning model can be trained on the tasks
in meta-training set and then tested on entirely new tasks in
the meta-test set. The whole dataset is divided and structured
as shots/iteration/episodes.

Few-shot classification is a subset of meta-learning. ““Few-
shot learning” means learning a large number of tasks using
datasets containing only a few examples known as ’shots’,
e.g. training five different classes where each class has just
one example is called 1-shot-5-way classification. Fig. 2 is
an example of a 1-shot-5-way classification task (the word
way’ indicates a class). The main idea of few-shot meta-
learning is to train a few iterations/shots from the whole
dataset, so the model can quickly adapt to the new task with
only fewer examples. In order to attain this idea, the meta-
learner is trained over a large set of different tasks, such
that for the new unseen tasks, the model can learn quickly
with only a limited number of examples. In effect, the meta-
learning problem treats an entire dataset as training examples
[99], [100]. The whole dataset is divided and structured as
shots/iteration/episodes.

There are three general meta-learning categories includ-
ing: Model-based (Black-Box) Meta-Learning, Metric-
based (Non-parametric) Meta Learning, Gradient-based
(Optimization-based) Meta Learning. Typical architectures
that are model-based meta learning are Memory Aug-
mented Neural Network (MTNN) [153], Meta-Net [152],
Simple Neural Attentlve Learner (SNAIL) [154]. Typical

39060

architectures that are metric-based meta learning are: Match-
ingNets [155], RelationNet [156], FSL with Graph Neural
Networks [157], Prototypical Networks [158]. Typical archi-
tectures that are gradient-based meta learning are: MAML
[100], Reptile [159], Auto-Meta [160], GIMLI [161], ALFA
[162]. The Model-based meta-learning is conceptually very
simple, but it has minimal inductive bias, meaning everything
must be meta-learned. However, metric-based meta-learning
can work very effectively by combining some inductive
bias with easy end-to-end optimization and is restricted to
classification models. On the other hand, optimization-based
meta-learning is convenient to apply any architecture and
good at generalizing a wide range of domains. An overview
of the state-of-the-art studies on skin disease analysis using
meta-learning and few-shot learning is presented in Table 6.

A few other studies on meta learning and few-shot learning
for other domains of medical image analysis shown promis-
ing results. Zhao et al. [163] proposed a novel approach for
automating data augmentation for synthesizing labelled MRI
brain scans. The proposed method only requires a single seg-
mented scan. This approach uses a semi-supervised method
for dealing with unlabelled scans that results in a major
improvement over bio-medical image segmentation state-of-
the-art methods.

Guo et al. [164] and Zhao et al. [56] showed a comparative
study among different CNN architectures using meta-
learning and few-shot learning algorithms in various medi-
cal image analyses. Patacchiola et al. [165] proposed Deep
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FIGURE 2. An example of Meta-Learning set up in 1-shot-5-way classification.

Kernel Transfer (DKT) which is a Bayesian treatment for
the inner loop through deep kernels in the meta-learning
algorithm. This approach has many advantages such as, (a) it
is simple to implement as a single optimizer, (b) it offers
uncertainty quantification, and (c) it does not need estimation
of task-specific parameters.

Cai et al. [166] proposed a novel score-based meta
transfer-learning to address the cross-domain few-shot learn-
ing problem. This work claims to achieve an average accu-
racy of 74.06%, which significantly outperforms previous
best-performing meta-learning and transfer-learning methods
by 14.28% and 5.93%. Sun et al. [167] have proposed a
novel few-shot learning method called Meta-Transfer Learn-
ing (MTL) which learns to adapt a DNN for few-shot learning
tasks.

The datasets used in this work are minilmageNet
(100 classes with 600 samples per class) and Fewshot-
CIFAR100 (100 classes with 600 samples per class). Com-
pared to other few-shot learning methods, MTL has shown
remarkable results in low data settings. In a few-shot learn-
ing pipeline, Gidaris et al. [168] used self-supervision
as an auxiliary task, that allows feature extractors to
learn richer and more transferable visual representations
while using few annotated samples. Hospedales et al. [169]
reviewed many existing works in various domains. They
claim that there is still a gap in understanding which kinds of
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meta-representations tend to generalize better under certain
types of domain shifts. Wang et al. [170] looked at various
studies on a few-shot learning approach in which it is said
that real-world computer vision tasks with low data situations
are the first test-bed for few-shot learning algorithms. It is
also seen in various works that transfer learning methods are
used in a few-shot learning approach as part of the domain
adaption, which might be beneficial in case of limited data
availability across the medical image analysis domain.

D. 3D FACE MODELLING

There have been a few preliminary studies on 3D mod-
elling of faces and other biomedical images using Statistical
Shape Models (SSMs) which include Active Shape Mod-
els (ASMs) [103], [105] and Active Appearance Models
(AAMs) [104]. Mainly, MRIs of the brain and knees have
been considered in depth in these works while other medi-
cal applications were also mentioned. The ASM essentially
matches a model to boundaries in an image. The AAM finds
model parameters that synthesize a complete image similar
to the target image by using a set of target feature points.
The combination of shape and appearance has turned out to
be very impactful [102]. The better the model represents the
structure of the objects to be analyzed, the easier it becomes
to fit the model. Due to the linear and parametric nature
of SSMs, they are mathematically convenient and easy to
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TABLE 6. Studies based on meta learning and few shot classification.

Author/ Skin Disease Names Dataset Dataset Methodology/Benchmark Best results/ Evaluation
Index/ Name/ volume in Metrics /Samples
Year Source/ total/per class Generated, Deployment
and H/'W
Li et al Melanocytic nevus (6705), | ISIC2018 10,015 First | Difficulty aware meta learning | AUC: 83.3% (for 5 sam-
[171],2020] melanoma (1113), benign | Skin Lesion | four diseases | (DAML) framework, Transfer | ples per class).
keratosis  (1099), basal | Dataset, for training | learning.
cell carcinoma (514), | Dermofit and the
actinic  keratosis (327), | Image remaining 3
vascular  lesion (142) | Library (for | are for testing
and dermatofibroma | validation)
(115).  squamous  cell
carcinoma, haemangioma,
and pyogenic granuloma
K. Dermoscopy images | ISIC 2018, | 10,015 (7 | Reptile (Gradient based meta learn- | For ISIC2018: AUC: 86.8
Mahajan eczema, acne, and various | Derm7pt, classes), ing),Prototypical networks (Distance | (using Reptile, G-conv, 5-
et al. | cancerous conditions. SD-198 2,000 (20 | metric based meta learning technique | shot) For Derm7pt:AUC:
[172], classes), 198 which computes a prototype vectoras | 77.2  (using  Reptile,
2020 the representation of each class), G- | G-conv, 5-shot)For SD-
convolutions (group equivalent con- | 198:AUC: 89.5 (using
volutions), 2-way classification. Reptile, 2-way G-conv,
5-shot)
Zhang et | Melanocytic nevus (6705), | ISIC2018 10,015(7 Fine tuning and data augmentation, | Average Accuracy:
al. [173], | melanoma (1113), benign classes) 4 | MAML (Model Agnostic Meta | 81.38%.
2020 keratosis  (1099), basal classes with | Learning), @ ST-Meta  Diagnosis
cell carcinoma (514), the largest | Network, A few shot settings
actinic  keratosis  (327), number of | (3wayslshot, 3ways3shot and
vascular lesion (142) and samples for | 3waysSshot) with different STN
dermatofibroma (115) training and | (Spatial Transform Network)
the remaining | modules stacked up into different
3 classes with | layers.
relatively
fewer number
of  samples
for testing.
Fayjie et | Miscellaneous FSS-1000 1000 classes | Segmentation task, Pretrained VGG | DSC (Sgrensen—Dice co-
al. [55], (Base where network on ImageNet is used as En- | efficient)score, The pro-
2020 Training each class | coder, A few shot learning with ‘sup- | posed approach outper-
set), ISIC | contains 10 | port’ and ‘query’ set, The pretrained | forms the few-shot base-
2018, PH2 | images, 2594 | VGG network architecture from Im- | line by a margin be-
dataset dermoscopic ageNet is used as an encoder, Atrous | tween 6-7%, H/W: Keras
images convolutions with dilation rate 2 are | with Tensorflow using the
with their | incorporated with episodic training. Nvidia Titan X GPU.
respective
masks
200 RGB
dermoscopic
images of
melanocytic
lesions.
Zhao et | Miscellaneous (no | minilmagenet| N/A Few-shot learning, Baseline fine tun- | Best-Average
al. [56], | rosacea) (source ing method, BSR (Batch Spectral | Performance results
2020 domain) Regularization) with data blending, | are obtained by BSR with
Crop BSR with LP (Label Propagation), | data blending and with
Diseases BSR with data blending in Ensemble, | LP in Ensemble network
dataset, BSR with data blending and with LP | architecture using 5-way
EuroSAT, in the Ensemble network 50-shot.
ChestX
and  ISIC
2018 (target
domain
datasets)

work with image analysis algorithms. For this reason, SSMs
have become very popular [106]. However, SSMs come with
various drawbacks such as (a) the shape variation in SSMs
is restricted to the linear span of the training data, (b) hence,
a lot of training data is needed.

The application of computer vision for face modeling has
focused on the direction of a new face representation using
analysis-by-synthesis [174]. This seeks to explain an image
by synthesizing its content using both 2D and 3D modelling.
One technique which does this is 3D Morphable Models
(3DMMs) [101].
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A 3D Morphable face model is based on the two funda-
mental ideas (a) all faces are in dense point-to-point corre-
spondence (which is usually established on a set of example
faces in a registration procedure), (b) this correspondence can
be maintained throughout any further processing steps [102].
A 3DMM is a generative model which applies to the entire
shape of the face and the appearance of the face.

2D morphable models and 3D morphable models rely on
dense correspondence rather than only a set of facial feature
points [102]. Determining the dense correspondence is only
possible by assigning every point on the reference object that
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FIGURE 3. Standard reference shape. This image is taken from the work
by Liithi et al. [106].

¢

(b) s =10, 0=30 mm

FIGURE 4. Generated face models using a Gaussian Covariance function
with different standard deviations. This image is taken from the work by
Liithi et al. [106].

is semantically meaningful to the corresponding point on the
target object. This process is called image registration. The
same anatomy of an object can be explained using any other
object of the same class perturbed with deformation or slight
structural variation [175]. The generalization of SSMs is
called Gaussian Process Morphable Models (GPMMs) [106].
The application is based on the Principal Component Analy-
sis (PCA) concept with a covariance function computed from
the training data. The GPMMs start with standard reference
shapes such as shown in Fig. 3.

Later, in order to incorporate a specific family of deforma-
tions with a dataset, a framework is needed which can assign
the probability to all possible deformations for the given
input feature. The desired deformations can be modelled by
defining a covariance function as shown in Fig. 4.

According to Luthi et al. [106] GPMMs come with many
advantages over SSMs such as:

o With GPMMs, there is much more freedom in defin-
ing the covariance function, by combining differ-
ent covariance functions (or kernels) to mimic more
sophisticated registration schemes. This helps to extend
the model beyond the linear span of example data (train-
ing data), hence GPMMs work well with little training
data.
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o« GPMMs are generative; therefore, the validity of prior
assumptions can be assessed by sampling from the
model.

« Shape variations can be well approximated using only a
moderate number of leading basis functions (eigenvec-
tors).

« For most anatomical shapes, finely detailed deforma-
tions only occur in parts of the shape, and GPMMs give
more power to model these slight deformations only
where they are needed.

o The above advantages may help in incorporating the
medical expert knowledge into the model in order to
shape slight deformations.

Hence, GPMMs can be incorporated to deal with the sig-
nificant and minor deformations that occur on human faces
with various subtypes of rosacea (i.e. phymatous rosacea) by
creating a 3D model of face with possible deformations from
the set of 2D images. GPMMs give us the modelling power
to model these fine deformations only where they are needed.
This autonomy may help in incorporating medical expert
knowledge in order to model slight, local deformations e.g.
lesions, enlargement of nose etc. As the effective treatments
of rosacea are broadly advancing, a laser and light-based
treatment approach to the rosacea diagnosis is recommended
[176], [177]. Thus, reconstructing local deformations on the
face for specific subtypes of rosacea may help diagnose and
support light and laser treatment of the disease condition.

As GPMMs are generative, recently there have been a few
applications developed using CNNs and GANs. These mod-
els have also succeeded in generating 3D faces [107], [108],
[110], [111], [178]-[181]. Therefore, if local deformations of
rosacea are successfully generated using GPMMs, then it may
help in generating more synthetic datasets of rosacea using a
GAN architectures.

VI. DISCUSSION AND OUTLOOK

The majority of the research done in the field of skin disease
diagnosis is focused on skin cancer. The lack of publicly
available visual data for a skin condition such as rosacea often
leads to poor performance in classification and automated
diagnosis models. However, the recent advancement in the
field of Al and particularly data generation has prompted
many opportunities in the future of computer-aided diagnosis
for Teledermatology [182] including rosacea.

Although data augmentation and transfer learning have
been very successful with medical and clinical image analysis
with large datasets, they may not perform as accurately with
limited data. Hence, using a classification approach for a
limited data problem may not be a good idea at present.
However, there is an opportunity to explore techniques to
overcome this central problem which may improve the scope
of research.

In the field of skin disease analysis, generating synthetic
samples that may look as real as certain skin conditions, such
as rosacea, can mitigate the problem of data scarcity. As dis-
cussed in Section V.B., a few variants of StyleGAN can be
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utilised to explore the possibility of generating synthetic faces
with rosacea. Nevertheless, the accuracy of the generated data
must be examined. For such examinations, it is important to
rely on the subjective evaluation methods for image quality,
such as the Mean Opinion Score (MOS) of a group of experts.

As discussed in Section V, GANs have a few common lim-
itations, which may lead to unsatisfactory outcomes. There-
fore, it is essential to investigate additional methods to deal
with limited data without modification, i.e. by keeping the
data volume constant and still performing classification. This
can be achieved with hyperparameter optimization by adapt-
ing the Meta-Learning concept. Nevertheless, meta-learning
and few-shot classification are new approaches in medi-
cal and clinical image analysis, that offer a solid motiva-
tion to explore the techniques. There are a few studies on
meta-learning for clinical image analysis, which may pro-
vide limited scope for exploration. Further, we discussed 3D
modelling as an approach to generate synthetic facial data
through GPMMs. By leveraging the concept of GPMMs,
unlike GANSs, we can handcraft the particular types of appear-
ances on the skin caused by rosacea. This may help identify
a few subtypes of rosacea that cause significant deformation
on the face.

VIl. CONCLUSION AND FUTURE SCOPE

Al and computer vision have performed remarkably well as it
approaches understanding and dealing with disease diagnosis
using health data. The effectiveness of deep learning has
started offering breakthrough outcomes. Nevertheless, there
are notable gaps needed to be bridged. Even though the world
of Al is running with the concept of big data, it is crucial
to draw valid inferences from a small amount of data by
wisely tweaking the new information. This is a fundamental
challenge in machine learning and computer vision. In this
review, to utilise limited availability of skin disease image
data, we have investigated a few essential computer vision
and machine learning techniques i.e. GANs, meta-learning,
few-shot learning, 3D face modelling using GPMMs with
important research gaps and noteworthy advantages. It may
help navigate future research directions in computer-aided
diagnosis for other facial skin conditions when only a small
number of clinical images are available for research. Our
future work will be aligned with exploring the methodologies
of synthetic data generation in details for skin disease analysis
such as rosacea as discussed in this paper. The assessment
of such technologies can significantly impact the quality of
Al and automated examination models to further advance the
diagnosis frameworks in the field of dermatology.
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