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ABSTRACT In this paper, we investigate enhanced super-resolution range estimators with decimeter-level
accuracy for multi-antenna and multipath Bluetooth systems. To enhance the traditional MUSIC range
estimator for a two-way frequency-hopping Bluetooth channel model, we apply forward-backward averaging
and bandwidth extrapolation using Burg’s algorithm to improve ranging accuracy, which is limited by
the used Bluetooth bandwidth and the quality of the estimated sample covariance matrix. For the multi-
antenna case, we compare the Summed Antenna Processing and Individual Antenna Processing methods
to process multiple-antenna Bluetooth channel measurements and enhance the range estimation accuracy
compared to the single-antenna case. In addition, we investigate a sparsity-aware range estimator which
exploits the sparsity of Bluetooth channel impulse response and achieves comparable ranging accuracy
to the enhanced MUSIC estimator but at a much lower computational complexity. We apply the greedy
Orthogonal Matching Pursuit algorithm to heuristically solve the sparsity-constrained optimization problem
for Bluetooth ranging. Furthermore, we evaluate the computational complexity of our investigated Bluetooth
range estimators with two complexity-reduction techniques to further reduce the complexity ofMUSIC range
estimator. Moreover, we analyze the Cramer-Rao Lower Bound (CRLB) on unbiased range estimation using
the frequency-hopping Bluetooth channel model and derive a new insightful CRLB expression for a two-path
channel model. Finally, we evaluate the Root-Mean-Square Error and Empirical Cumulative Distribution
Function performance of our investigated range estimators both on simulated and real-world Bluetooth data
that we collected in line-of-sight (LOS) and non-line-of-sight (NLOS) multipath scenarios. Our proposed
enhancements on the range estimators improved the ranging accuracy by 58% for our collected Bluetooth
data.

INDEX TERMS Reduced complexity, super resolution, ranging, delay estimation, bluetooth, sparse
estimator, multipath, decimeter level.

I. INTRODUCTION
Accurate localization is a highly-desired functionality for
precise tracking of events, assets, and individuals [1] in
Wireless Sensor Networks [2]. A critical initial procedure in
localization is determining the distance to an anchor/access
point with known location, also known as the ranging proce-
dure. Decimeter-level ranging accuracy enables a plethora of
applications such as Internet-of-Things (IoT) positioning [3],
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autonomous vehicles [4], and crowdsensing [5]. In many of
these applications, besides accurate ranging algorithms, low-
cost, low-power, and widely available sensors are required
for successful deployment. For example, in keyless car entry
systems, it is highly desirable to use the mobile phone as a
car key.

The main challenges in ranging using Radio Fre-
quency (RF) signals are signal attenuation, multipath prop-
agation, and the limited available bandwidth which degrade
localization performance. Current ranging methods based
on the Received Signal Strength Indicator (RSSI) do not
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offer satisfactory accuracy and security levels to support
applications requiring highly accurate localization. For Time-
of-Flight (ToF) based ranging methods, precise clock syn-
chronization between the transmitter and receiver is critical
for one-way ranging. Moreover, ranging accuracy in ToF-
based systems is limited by the available bandwidth. Due to
its high market penetration rate and low power consumption,
Bluetooth is a popular candidate for localization applications.
However, ToF-based Bluetooth distance estimation suffers
from a narrow Bluetooth frequency channel bandwidth and
timing offsets in one-way ranging. The Multi-Carrier Phase
Difference (MCPD) ranging method is able to overcome
this bandwidth limitation by collecting channel frequency
response (CFR) data over multiple frequencies and it miti-
gates the coarse clock synchronization problem by working
with the two-way instead of one-way channel. Using In-
phase/Quadrature (IQ)-samples in MCPD instead of just
phase information of the channel measurements has shown
robust and superior performance against multipath effects [6].

The Active Reflector (AR)-principle is a well-known
method [7], [8] for ranging where two radio transceivers,
called the Initiator and the Reflector, send and receive con-
stant tone signals over multiple frequencies. Different range
estimators, such as gradient-based [9], Fourier-transform-
based [10] and super-resolution-based [6] approaches are
then applied to extract the range information from multi-
frequency channel measurements. These range estimators
model the channel impulse response (CIR) as a superposition
of multipath components (MPCs) defined by their complex
magnitudes, angles-of-arrival (AoAs), and ToFs. The dis-
tance between the Initiator and Reflector to be estimated d̂
is directly related to the estimated ToF τ̂ of the line-of-sight
(LOS) path as follows

d̂ = cτ̂ . (1)

Therefore, the range estimator accuracy depends on how
accurately the ToF of the LOS path is being estimated. The
range estimator should be able to estimate the CIR and resolve
the MPCs by estimating their parameters and the LOS path
distance. Typically, the resolution of the distance estimator is
limited by the inverse of the transmission bandwidth. The low
resolution resulting from small bandwidth limits the ability
to resolve closely-spaced MPCs which leads to a low ranging
accuracy and biased estimators [11].

The gradient-based approach utilizes the slope of CFR
phase data, which depends on the LOS ToF, to estimate the
range, as shown in [9]. However, in the presence of multipath,
the gradient-based approach performs poorly as the phase
information tends to over-estimate the range. The Inverse Fast
Fourier Transform (IFFT)-based approach reconstructs the
CIR from CFR data using the IFFT. This method achieves
better performance than the gradient-based approach in
multipath scenarios. However, in non-line-of-sight (NLOS)
scenarios where the direct LOS path is obstructed, the IFFT
method suffers from low accuracy.

For ranging, the channel estimation problem can be
formulated as a delay estimation problem in the frequency
domain. Hence, the ranging problem becomes a parameter
estimation problem of superimposed complex exponentials
which are the MPCs of the CIR. When formulated as
a delay estimation problem, the ranging problem can be
considered a classical array signal processing problem, where
MUSIC [12], ESPIRIT [13], and Matrix Pencil [14] estima-
tors are applicable. In [6], MUSIC is applied for ranging
based on single-snapshot one-way channel measurements,
where spatial smoothing is applied to form a Hankel matrix
from the CFR [15]. However, this work assumed the single-
antenna case and no enhancements were applied to improve
the MUSIC estimator performance.

The typically sparse nature of the CIR MPCs can be
exploited to apply sparsity-aware estimators [16] for ranging.
The MPCs are confined to a finite grid of candidate ToFs.
Since the sparse estimator works directly on the CFR
measurements, subspace (signal or noise) estimation is not
required, unlike the MUSIC algorithm. To mitigate the well-
known basis mismatch error problem in sparse estimators,
gridless versions of the sparse estimators have been pro-
posed [17]. However, the iterative gridless sparse estimators
have high computational complexity which increases rapidly
with an increasing number ofMPCs. Using greedy algorithms
such as Orthogonal Matching Pursuit (OMP), the sparse
optimization problem can be solved with much lower com-
plexity than subspace-based estimators. Table 1 illustrates the
comparison of this work with the existing Bluetooth range
estimators in the literature.

The main contributions of this paper are

• We carried out a real-world Bluetooth data collection
campaign using Bluetooth multi-antenna boards in ane-
choic chamber and parking lot environments, for LOS
and NLOS multipath scenarios, and single/multiple-
antenna configurations.

• We propose an enhanced super-resolution MUSIC-
based range estimator which carefully integrates
smoothing, forward-backward sample covariancematrix
averaging, bandwidth extrapolation, and multi-antenna
combining. Forward-backward averaging improves
the sample covariance matrix estimate, bandwidth
extrapolation virtually extends the limited Bluetooth
bandwidth, and multi-antenna combining leverages
spatial diversity to improve ranging accuracy.

• We propose a low-complexity sparsity-aware range
estimator based on the OMP greedy algorithm. In addi-
tion, we apply two complexity reduction methods
for the MUSIC range estimator; namely, the signal-
subspace-based estimator and the Lanczos algorithm to
approximate the sample covariance matrix eigenvectors.
We compare the computational complexity, measured in
terms of the number of complex multiplications, of the
MUSIC and the OMP-based sparse estimators with and
without our proposed enhancements.
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• We evaluate the Empirical Cumulative Distribu-
tion Function (ECDF) and the Root Mean Square
Error (RMSE) performances of the enhanced MUSIC
and sparse estimators and show that our proposed
enhancements to the MUSIC and sparse estimators can
improve the Bluetooth ranging accuracy significantly.
In addition, we demonstrate that the sparse OMP
estimator and the enhanced MUSIC estimator have
comparable performance, while the former has much
lower complexity than the latter. Moreover, the proposed
complexity reduction methods do not degrade the
MUSIC performance appreciably.

• We analyze the Cramer-Rao Lower Bound on the
variance of any unbiased range estimator in a multipath
channel, evaluate it for real-world Bluetooth measure-
ments, and compare it with the investigated MUSIC
and OMP range estimators. To gain further insights,
we derive a new closed-form CRLB expression for the
special case of a two-path CIR as a function of the
number and width of the Bluetooth frequency channels
and the time separation between the two CIR paths.

The rest of this paper is organized as follows: In Section II,
we present the two-way channel model for multi-antenna
Initiator-Reflector-based ranging and briefly review the
gradient, IFFT, and MUSIC estimators. In Section IV,
we describe the sparsity-aware range estimator based on the
greedy OMP algorithm. Section V proposes enhancements to
the super-resolution MUSIC algorithm, which are followed
by complexity reduction methods in Section VI. Sections VII
and VIII present our real-world Bluetooth data collection
campaign and numerical results of the proposed estimators
on both simulated and collected data, respectively. Finally,
Section IX concludes the paper, and both MUSIC spectrum
and CRLB derivations are given in Appendices A and B,
respectively.
Notation: We denote matrices with bold-face upper case

and vectors with bold-face lowercase letters. The transpose,
complex-conjugate and complex-conjugate transpose opera-
tors are denoted as (·)T , (·)∗, and (·)H , respectively. <[·] and
=[·] denote the real and imaginary parts of a complex number,
respectively. The subscripts (·)M , (·)p, (·)t , (·)f denote Initia-
tor (M = I ) or Reflector (M = R), pth path, time-domain and
frequency-domain quantities, respectively. The superscript
(·)l refers to the lth antenna measurement. CM×N and RM×N

denote the set of all M × N complex and real matrices,
respectively.� is the Hadarmard (element-wise) product and
(·)◦2 is the element-wise square operation. ‖·‖0, ‖·‖2, IN , and
JN denote the norm-0, norm-2 of a vector, N × N identity
matrix, and exchange matrix, respectively. Key variables and
acronyms used in the paper are summarized in Tables 2 and 3,
respectively.

II. SYSTEM MODEL AND ASSUMPTIONS
In this section, we describe our investigated ranging scenario,
develop the system model and state our assumptions. To be
relevant to the current Bluetooth standards, we consider a

ranging system that uses frequency hopping over multiple
frequency channels to collect multi-channel CFR measure-
ments. We consider a two-way ranging system utilizing the
AR-principle [10] because it eliminates the effects of the
unknown phase offset between the transmitter and receiver
in one-way ranging. We apply the AR-ranging method
in the IQ-domain since the magnitude information also
contains useful channel information [6] in addition to the
phase information. Following the AR-principle, two roles are
defined, namely Initiator (I) and Reflector (R). The I and R
nodes will first agree upon a pseudo-random channel hopping
sequence as part of the initiation handshake procedure.
After the handshake, they exchange tone signals on these
agreed-upon frequencies in the I/Q measurement stage. The
Initiator first transmits a constant tone signal at frequency
fk . Upon receiving this signal, the Reflector performs an I/Q
measurement which depends on the Initiator and Reflector’s
local oscillators and the distance between them. Then, the
Reflector sends back a constant tone signal at the same
frequency fk and the Initiator performs an I/Q measure-
ment. The Initiator and Reflector perform constant tone
signal transmission and reception over the entire available
frequency band to increase measurement bandwidth. After
this procedure is completed for all hopping frequencies,
the Reflector sends the measurements to the Initiator for
range estimation. Next, we formulate the generalized multi-
channel, multi-antenna, and multi-path system model for
AR-ranging.

To develop the two-way multi-antenna frequency hopping
channel model, we assume that the received signal at the
Initiator/Reflector for antenna l and frequency channel fk has
the form

y(l)M (k) =
P−1∑
p=0

α
(l)
p,Me

jφ(l)M (k,τp) + w(l)
M (k),

k = 0, . . . ,K − 1; l = 1, . . . ,LM , (2)

where K denotes the number of frequency channels, LM is
the number of antennas at the Initiator/Reflector, P is the total
number of paths, {α(l)p,M } and {φ

(l)
M (k, τp)} are the amplitudes

and phases of the pth path at the l th antenna, respectively, τp
is the ToF of the pth path, w(l)

M (k) is the additive noise term
(assumed white and Gaussian) for the l th antenna and the
kth frequency. In addition, we define 1f to be the frequency
step size,1(l)

t as the time-offset between the Initiator and the
Reflector at the lth antenna, and θ as the phase difference
between the local oscillators of the Initiator and the Reflector.
We can write the phase of the received signal at the Initiator
as

φ
(l)
I (k, τp) = −2πk1f (τp −1

(l)
t )− θ, (3)

and at the Reflector as

φ
(l)
R (k, τp) = −2πk1f (τp +1

(l)
t )+ θ. (4)
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TABLE 1. Comparison of this work with existing bluetooth range estimators.

TABLE 2. List of key variables.

Using the above two equations, we can re-write the Initiator
and Reflector signals as

y(l)I (k) = h(l)I (k)ejψ
(l)
p,I (k) + w(l)

I (k), (5)

y(l)R (k) = h(l)R (k)e−jψ
(l)
p,R(k) + w(l)

R (k), (6)

where, h(l)I (k) =
∑P−1

p=0 α
(l)
p,I e
−j2πk1f τp , and h(l)R =∑P−1

p=0 α
(l)
p,Re
−j2πk1f τp are the multi-path channels at the

Initiator and Reflector, respectively, ψ (l)
p,I (k) = 2πk1f1

(l)
t −

θ , and ψ (l)
p,R(k) = −2πk1f1

(l)
t + θ . Equations (5) and (6)

can also be expressed inmatrix forms as follows.We stack the
multiple paths as columns of the channel matrixH(l)

∈ CK×P

(for simplicity, the Initiator/Reflector subscript is dropped).
The signal magnitudes and phases are stacked in a column
vector x(l) ∈ CP×1. Finally, we concatenate the CFRs to form

y(l) ∈ CK×1 which can be written as

y(l) = H(l)x(l) + w(l), (7)

where we used the following definitions

y(l) = [y(l)(0), y(l)(1), . . . , y(l)(K − 1)]T , (8)

x(l) = [α(l)1 e
jψ (l)

1 , α
(l)
2 e

jψ (l)
2 , . . . , α

(l)
P e

jψ (l)
P ]T , (9)

w(l)
= [w(l)(0),w(l)(1), . . . ,w(l)(K − 1)]T , (10)

H(l)
= [γ (τ1), γ (τ2), . . . , γ (τP)], (11)

γ (τp) = [1, e−j2π1f τp , . . . , e−j2π (K−1)1f τp ]T . (12)

Here, H(l) is the array manifold matrix with γ (τp)’s as the
steering vectors. We can now find the two-way CFR for the
l th antenna and K frequencies by multiplying the received
signals at the Initiator and Reflector. If we assume a stationary
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TABLE 3. Key acronyms.

channel without noise, the one-way channels outputs are
H(l)
I x(l)I = H(l)

R x(l)R = H(l)
O x(l). We find the two-way CFR by

taking the Hadamard product of the Initiator and Reflector
CFRs to get

y(l)T = y(l)I � y(l)R = H(l)
I x(l)I �H(l)

R x(l)R = {H
(l)
O x(l)}◦2. (13)

Our aim is to estimate the LOS component from y(l)T =

[y(l)T (0), y(l)T (1), . . . , y(l)T (K − 1)]T ∈ CK×1, where τ0 denotes
the delay of the LOS path.

III. TRADITIONAL RANGE ESTIMATORS
In this section, we review three widely-used ranging
approaches from the two-way CFR; namely, gradient-based,
IFFT-based, and MUSIC-based approaches.

In the gradient-based ranging approach, only the phase
information of the two-way channel is utilized. In the
noiseless single-path case, if the ToF is τ1 with gain α1,
we can readily verify that the two-way channel becomes

yT = (γ (τ1)α1)2 = (α1)2


1

e−j2π1f 2τ1

...

e−j2π (K−1)1f 2τ1

 . (14)

The phase differences of the two-way channel yT at two
adjacent frequencies k and k + 1, with proper normalization,
will give the range information. The final range, d̂ , can be
estimated as an average of all the range estimates from each
pair of frequencies, i.e.

d̂ =
c

4π (K − 1)

K−2∑
k=0

6 yT (k)− 6 yT (k + 1)
1f

. (15)

The performance of the gradient-based ranging approach
suffers from multipath effects. Moreover, for larger values of
LOS distance, measurement errors have a stronger impact on
the estimated range [9].

An alternative to the gradient-based approach is the IFFT-
based approach which utilizes both the magnitude and phase
information of the CFR data. Startingwith the CIR expression
(Initiator or Reflector)

h(l)(k) =
P−1∑
p=0

α(l)p e
−j2πk1f τp . (16)

Since the frequency spacing is uniform for h(l)(k), a simple
IFFT operation separates the multipaths, limited by a
time resolution determined by the inverse of the utilized
bandwidth, and provides the propagation delays of these
paths [19]. The IFFT approach outperforms the gradient-
based approach in multipath environments. However, the
resolutions offered by the gradient or IFFT-based approaches
can be further improved by applying super-resolution-based
range estimators which we will discuss next.

Themeasured CFR has a uniform frequency sampling grid.
Therefore, we can form a Hankel matrix from the CFR with
smoothing parameter 1 ≤ m < K as follows

C =


y(l)T (0) y(l)T (1) . . . y(l)T (K − m− 1)
y(l)T (1) y(l)T (2) . . . y(l)T (k − m)
...

...
...

y(l)T (m) y(l)T (m+ 1) . . . y(l)T (K − 1)

 ,
(17)

which admits a Vandermonde decomposition [20] and allows
us to apply the super-resolution MUSIC algorithm for ToF
estimation. We can either apply Singular Value Decompo-
sition (SVD) on the Hankel matrix C ∈ C(m+1)×(K−m),
or Eigenvalue Decomposition (EVD) on the sample covari-
ance matrix R̂ ∈ C(m+1)×(m+1) to separate the signal and
noise subspaces as follows

R̂ =
CCH

(K − m)

=
[
Uq Un

] [3(λq) 0
0 3(λn)

] [
UH
q

UH
n

]
. (18)

The orthonormal matrices Uq ∈ C(m+1)×q and Un ∈

C(m+1)×(m−q+1) contain the signal and noise eigenvectors as
columns, respectively, and q is the estimated number of signal
sources (signal subspace dimension). The diagonal matrices
3(λq) ∈ Rq×q and 3(λn) ∈ R(m−q+1)×(m−q+1) contain the
signal and noise eigenvalues, respectively.

The number of signal sources q can be estimated using
the popular Minimum Description Length (MDL) or Akaike
Information Criterion (AIC) [21]. After performing the EVD
and selecting the signal and noise eigenvectors, we can
estimate the delay of the LOS path by selecting the first peak
of the following MUSIC pseudo-spectrum

J (τ ) =
1∥∥UH

n 8
m(τ )

∥∥2
2

, (19)

where 8m(τ ) = [1, e−j2π1f τ , e−j2π21f τ , . . . , e−j2πm1f τ ].
After extracting the ToF of the LOS path, wemultiply it by the
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speed of light to compute the distance between the Initiator
and the Reflector. The two-way CFR is more sensitive to
multipath effects than the one-way CFR since the number of
multipaths is increased from p to 2p− 1 in the former due to
cross products that degrade LOS estimation.

IV. SPARSITY-AWARE RANGE ESTIMATOR
The MUSIC range estimator requires calculation of the
sample covariance matrix and its computationally-intense
EVD. In this section, we present a sparsity-aware range
estimator which does not require this EVD.

A. SPARSE RECOVERY FORMULATION OF THE RANGING
PROBLEM AND KEY ASSUMPTIONS
The ToF of LOS path estimation problem from the CFRs of
(7) can be formulated as a sparse optimization problem as
follows [16]. First, we define a search range of interest for
the ToF estimation as

τ̄ = [τ1, τ2, . . . , τN ], (20)

where N � P is the number of uniformly-distributed
candidate ToFs. Using this search grid, we construct an
overcomplete array manifold matrix 9 ∈ CK×N whose
columns are steering vectors for each of the ToFs in τ̄ , i.e.

9 =
1
√
N
[γ (τ1), γ (τ2), . . . , γ (τN )]. (21)

Using the overcomplete array manifold matrix 9, we can
write the received CFR in (7) as follows

y(l) = 9s(l) + w(l), (22)

where s(l) = [s(l)1 , s
(l)
2 , . . . , s

(l)
N ]T ∈ CN×1 contains the

signal components for the l th antenna corresponding to all
N possible ToFs in the search grid. Since the number of
true paths P is much smaller than the number of search
grid points N , s(l) becomes a sparse vector with P non-
zero components and the remaining N − P components are
close to zero. To recover the P-sparse signal component
vector s (superscript l is dropped for simplicity), we solve
the following l0-norm minimization problem in the absence
of noise

min
s
‖y−9s‖22 s.t. ‖s‖0 ≤ η, (23)

where η is the constraint on the maximum sparsity level of
s. However, the l0-norm optimization problem in (23) is NP-
hard to solve. In the literature, many methods and algorithms
have been proposed for sparse signal recovery including
convex relaxation or l1 optimization [22], lq, 0 < q < 1 norm
optimization [23], Iterative Hard Thresholding (IHT) [24],
Compressive Sampling Matching Pursuit (CoSaMP) [25],
MaximumLikelihood Estimation (MLE), etc. Here, we apply
a popular greedy algorithm, namely the orthogonal matching
pursuit (OMP) [26], to iteratively solve the l0-norm optimiza-
tion problem in (23).

B. ORTHOGONAL MATCHING PURSUIT (OMP)
The OMP algorithm belongs to the class of matching or
‘‘greedy’’ pursuit algorithms for sparse signal recovery.
The major advantages of the OMP algorithm are its low
computational complexity and ease of implementation. In our
sparse recovery problem (23), s has a maximum of η non-
zero components (remaining components are close to zero).
Therefore, in the noiseless case, the CFR y can be considered
as a linear combination of η columns of 9. To identify the
sparse signal s, OMP selects columns of 9 whose linear
combination best matches the CFR y in a greedy manner.
More specifically, at each iteration, the OMP algorithm
selects the column of 9 that is most strongly correlated with
y. Then, the contribution of this column of 9 is subtracted
from y in the next step and the same steps are applied to the
updated 9 and y. After η iterations, OMP finds η columns
from 9 whose indices represent the locations of the MPCs.
After finding the ToFs of the MPCs, their magnitudes can
be easily calculated using the least squares method. The
steps of the OMP algorithm for range estimation are given
in Algorithm (1). The estimate ŝ has non-zero components at
the indices contained in 3η. The jth value of xt denotes the
λthj component of ŝ.

Algorithm 1: OMP Range Estimation
Data: y,9, η, τ̄
Result: estimate of ideal signal ŝ, τ0
r0← y;
30← ∅;
80← ∅;
t ← 1;
while t ≤ η do

λt = argmaxj |〈r0,9 j〉|;
3t = 3t−1

⋃
λt and 8t = [8t−19λt ];

xt = argminx ‖y−8tx‖22;
at = 8txt and rt = y− at ;
t ← t + 1;

end
τ0← τ̄ (min(3η));

V. ENHANCED RANGE ESTIMATION
In this section, we present three enhancements to the
super-resolution MUSIC and sparsity aware range esti-
mators, namely forward-backward averaging, bandwidth
extrapolation, and multi-antenna combining. All of these
enhancements can be applied to the MUSIC range estimator
while only the latter two are applicable to the OMP algorithm.

A. FORWARD-BACKWARD AVERAGING
The super-resolution MUSIC range estimator finds the LOS
ToF from the received sample covariance matrix R̂ of the
CFR. Using the smoothing length 1 ≤ m < K , we express
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the sample covariance matrix as follows

R̂ =
1

(K − m)

N∑
t=m

ỹ(t)ỹ(t)H , (24)

where ỹ(t) = [y(t), . . . , y(t − m)]T . The MUSIC estimator
from Section II which uses R̂ for ToF estimation is known as
the forward approach. This is because the matrix R̂ appears
in least-squares estimation of the coefficients {ak} of the (m+
1)th-order forward linear predictor of y∗(t + 1) [27]

y∗(t + 1) = a0y∗(t)+ . . .+ amy∗(t − m). (25)

The estimation accuracy can be enhanced by using the
following modification on the sample covariance matrix R̂

R̃ =
1
2
(R̂+ Jm+1R̂∗Jm+1), (26)

where

Jm+1 =

0 1
. . .

1 0

 , (27)

is the exchange matrix. The second term in (26) appears in
the least-squares estimate of the coefficients of an (m+ 1)th-
order backward predictor [27]. This property of Jm+1R̂∗Jm+1
suggests the name forward-backward averaging approach
for methods that estimate signal parameters using R̃. This
forward-backward averaging also improves the condition
number of R̂ which, in turn, improves the range estimation
accuracy in multipath environments.

B. BANDWIDTH EXTRAPOLATION
The range estimation accuracy of the MUSIC or sparsity-
aware estimators is limited by the available Bluetooth
bandwidth because the ToF resolution is inversely propor-
tional to the bandwidth. By using bandwidth extrapolation
(BWE), the CFR can be extended virtually to achieve better
resolution [28]. The linear-prediction signal model is one of
the most practical models for the measurement data which
assumes that the sum of uniformly-spaced signal samples
multiplied by a set of complex weights will predict the next
sample. These coefficients can span in the forward direction
to continue predicting the signal samples outside the available
bandwidth resulting in forward extrapolation. The complex
conjugates of these prediction coefficients are used to predict
the signal samples in the backward direction.

The prediction coefficients are estimated by applying least-
squares methods to minimize the squared error between
the estimated and actual measurement data, also known as
forward-backward prediction error minimization. The extrap-
olation methods vary depending on how these prediction
coefficients are estimated. Here, we apply Burg’smethod [29]
to estimate the prediction coefficients which puts a constraint
based on an auto-regressive all-pole model (the so-called
Levison recursion) on the coefficients so that the extrapolated
data do not increase in amplitude exponentially. Let the

mth-order complex forward prediction coefficients estimated
using Burg’s algorithm be a(n), n = 0, . . . ,m. The forward
and backward prediction lengths are Kf and Kb, respectively.
We predict the measurement data sample-by-sample in the
forward direction using

yf (k) = −
m∑
t=1

y(k − t)a(t), k = K , . . . ,K + Kf − 1,

(28)

and in the backward direction using

yb(k) =
m∑
t=1

y(k + t)a∗(t), k = −1, . . . ,−Kb, (29)

where, yf (k), k = K , . . . ,K+Kf −1 is the forward predicted
and yb(k), k = −1, . . . ,−Kb is the backward predicted CFR.

C. MULTI-ANTENNA COMBINING
When multiple antennas are available at the Initiator or
Reflector or both sides, different antenna paths can be
combined to provide spatial diversity that helps in mitigating
multipath effects. We present two methods to utilize multi-
antenna measurements; namely, Individual Antenna Process-
ing (IAP) and Summed Antenna Processing (SAP) [6].

1) INDIVIDUAL ANTENNA PROCESSING (IAP)
In IAP, all antenna paths are processed separately by applying
the range estimator to each path’s CFR. Then, the minimum
of all range estimates is selected as the final LOS distance.
Let the estimated distance from the lth antenna path be d̂ (l).
Using IAP, the final estimated distance is

d̂ = min
l=1,...,L

d̂ (l). (30)

By taking the minimum of all distance estimates from
multiple antennas, the distance over-estimation error due to
multipath is reduced. IAP can be applied to both the MUSIC
and sparsity-aware estimators.

2) SUMMED ANTENNA PROCESSING (SAP)
The covariance matrices from individual antenna paths are
summed in SAP for MUSIC distance estimation to achieve
higher accuracy. In addition, by summing the covariance
matrices, the EVD only needs to be computed once, thus
reducing computational complexity. If R̂(l) is the covariance
matrix for antenna path l, the summed covariance matrix for
SAP is given by

R̂ =
∑

l=1,...,L

R̂(l). (31)

VI. REDUCED COMPLEXITY RANGE ESTIMATOR
The MUSIC range estimator computational complexity is
dominated by the EVD and pseudospectrum computation
in (19). In this section, we present two methods to reduce
the MUSIC algorithm complexity; namely, using the signal
subspace (as opposed to the noise subspace) to speed up the
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MUSIC pseudospectrum computation and using the Lanczos
algorithm [30] to reduce EVD complexity. Then, we compare
the MUSIC and sparse OMP estimators’ complexities in
terms of the number of complex multiplications.

A. SIGNAL SUBSPACE BASED PSEUDOSPECTRUM
The MUSIC pseudospectrum in (19) is based on the noise
eigenvectors. For signal subspace dimension q, the noise
eigenvectors matrix dimension is (m + 1) × (m − q + 1).
Under a fixed number of sources assumption, q remains
constant. However, with an increasingmeasurement data size,
the number of columns of Un increases linearly. To reduce
the computational cost of the MUSIC pseudospectrum
computation, we use the signal subspace instead of the noise
subspace as follows [31],

J (τ ) =
1

(m+ 1)−
∥∥UH

s 8
m(τ )

∥∥2
2

. (32)

Proof: See Appendix A.

B. LANCZOS ALGORITHM FOR EIGENVECTOR
APPROXIMATION
After separating the noise and signal eigenvectors of the
sample covariance matrix using EVD in (18), which requires
at least O(M3) flops for an M × M matrix, we are only
interested in either the signal or the noise eigenvectors for
pseudospectrum computation. To reduce the computational
load of MUSIC, several iterative approaches have been
proposed in the literature to estimate only the ‘‘most useful’’1

eigenvectors instead of computing all of them [32]. We apply
the well-known Lanczos algorithm here to estimate the signal
eigenvectors [30]. To approximate the signal eigenvectors
of the Hermitian covariance matrix R̂, we first generate the
orthonormal basis of the Krylov subspace of R̂ [33]. To do
this, R̂ is first reduced to a symmetric tridiagonal form using
the Lanczos algorithm. After the kth iteration of the Lanczos
algorithm, we will have k basis vectors for the Krylov
subspace which we denote by [q1, . . . , qk ] (also called the
Lanczos vectors). Then, we can write the tridiagonal matrix
Tk as

Tk = [q1, . . . , qk ]T R̂[q1, . . . , qk ] = QT
k R̂Qk . (33)

After performing the above tri-diagonalization operation,
we approximate the q signal eigenvalues using the Rayleigh-
Ritz method [34] which approximates the eigenvalues of R̂ by
the eigenvalues of Tk , which are called Ritz values. If Tk =
V3VT is the eigen-decomposition of Tk , the corresponding
eigenvector approximations are the columns of QkV, which
are called the Ritz vectors.

C. COMPLEXITY ANALYSIS
In this subsection, we compare the computational complexity
of MUSIC (using either EVD or Lanczos algorithms) and

1‘‘Most useful’’ eigenvectors refer to either the signal or noise eigenvec-
tors since to compute the MUSIC pseudospectrum, either the signal or the
noise eigenvectors are needed and the remaining eigenvectors can be ignored.

TABLE 4. Computational complexity of MUSIC and sparse OMP range
estimators.

sparse OMP estimators in terms of the number of complex
multiplications. We assume that the number of search points
used byMUSIC and sparse OMP are JM and JS , respectively.
Table 4 shows the number of complex multiplications for
the MUSIC and sparse range estimators. For the MUSIC
estimator, the EVD and Lanczos algorithms are applied to
compute the signal and noise subspaces for multi-antenna
processing methods SAP and IAP. For fixed search grids of
lengths JM and JS for the MUSIC and sparse estimators,
respectively, a fixed number of sources q, and K ≈ m

2 ,
MUSIC using noise eigenvectors and EVDhas computational
complexity O(m3), whereas MUSIC using signal subspace
with Lanczos algorithm and sparse OMP estimators have
computational complexities O(m2) and O(m), respectively.
Though the computational complexities of MUSIC using
noise and signal subspace with EVD are O(m3), using the
signal subspace requires less complex multiplications due
to no m2 terms, as seen in Table 4. Figure 1 depicts the
variation of computational complexity with data size. With
forward and backward bandwidth extrapolation length of 30,
the number of Bluetooth channels will increase from K =
80 to 140. As expected, the computational complexity of the
SAP estimators is lower than that of the IAP estimators since
it is multiplied by the number of antennas in IAP. Among
the IAP estimators, sparse OMP has the lowest computational
complexity. The complexity reduction methods based on the
signal subspace and Lanczosmethods are shown to reduce the
number of complexmultiplications for theMUSIC estimators
significantly with increasing K .

VII. DATA COLLECTION
In this section, we describe our Bluetooth data collection
campaign. For multipath multi-antenna scenarios, measure-
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FIGURE 1. Number of complex multiplications as a function of data size
K for SAP and IAP ranging estimators.

FIGURE 2. Locations of Initiator and Reflector in parking lot data
collection campaign for LOS and NLOS multipath scenarios and antenna
configurations 4× 1, 1× 4 and 2× 2.

ments were taken in the parking lot where the Reflector was
placed in varying positions inside and outside the car and
the Initiator was fixed at two locations: outside the car on
the door handle and inside the car on the rear-view mirror.
The distance between the Initiator and Reflector is varied
from 123cm to 700cm outside the car and from 84cm to
136cm inside the car. Figure 2 shows the measurements

FIGURE 3. RMSE of enhanced super-resolution MUSIC and sparse OMP
range estimators for K = 80 and 1f = 1MHz.

FIGURE 4. RMSE of enhanced super-resolution MUSIC and sparse OMP
range estimators for K = 40 and 1f = 2MHz.

collected with the fixed Initiator locations. The Reflector
location is varied around the car in ten different directions
of arrival. Ai denotes the dataset for the ith direction of
arrival. For each location of the Reflector shown in Figure 2,
40 channel measurements were taken in the parking lot. For
each direction of arrival, 5 Reflector locations were used. For
each trial, both LOS and NLOS data were taken for antenna
configurations 4 × 1, 1 × 4 and 2 × 2 (no. of antennas at
Initiator × no. of antennas at Reflector). The measurements
are defined as NLOS if there was user blockage, car blockage,
or car seat blockage inside the car. The distances between the
Initiator and Reflector inside the car were 84, 91, 130, 135,
and 136cm. The Initiator to Reflector distances of the parking
lot data collection campaign for each direction and Reflector
location are summarized in Table 5.
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FIGURE 5. ECDF and RMSE performance of the investigated range estimators for collected bluetooth data when the initiator is inside the car and the
Reflector is outside the car: (a) LOS, all distances, (b) NLOS, all distances, (c) LOS & NLOS, all distances, (d) LOS, distances ≤ 3m, (e) NLOS, distances
≤ 3m, (f) LOS & NLOS, distances ≤ 3m.

TABLE 5. Distances for collected bluetooth data sets Ai,i=1,2,3,4 and
locations Lj,j=1,2,3,4,5.

VIII. NUMERICAL RESULTS
In this section, we present numerical results that quantify
the performance of our investigated range estimators for
simulated and collected Bluetooth data. First, we describe
the simulation setup and system parameters for multi-antenna
Bluetooth 5.1 transceivers. We compute the Cramer-Rao
Lower Bound (CRLB) [35] for the two-way multipath
channel and compare the performance of the enhanced
ranging algorithms relative to the plain MUSIC algorithm
and the CRLB. Next, we present the performance of ranging
algorithms in practical scenarios with the collected Bluetooth
data using the setups described in Section VII. The CRLB
derivation is provided in Appendix B.

In the simulation setup, we assume a Bluetooth bandwidth
of 80MHz with 80 hopping frequencies (channels) in the
2.4GHz band with frequency spacing of 1MHz. We consider
a two-path channel where the distances travelled by theMPCs
are set to {2, 4} m with corresponding average powers of
{0,−3} dB.We compute the root mean square error (RMSE)2

of the range estimators using 10, 000 Monte Carlo trials and
compare it to the CRLB in (39).

Figure 3 depicts the RMSE performance of the enhanced
MUSIC and sparse OMP estimators compared with the
plain MUSIC estimator as a function of the signal-to-
noise ratio (SNR). The bandwidth extrapolation parameter
is Kf = Kb = 15. The enhancements of forward-
backward averaging and bandwidth extrapolation are denoted
by FB and BWE, respectively, and it is evident that they
significantly improve the performance of MUSIC at medium
and low SNR. For example, at SNR of 5 dB, MUSIC(BWE),
MUSIC(FB&BWE) and Sparse OMP(BWE) reduce RMSE
from 67cm to 32cm, 22cm, and 18cm, respectively. The
variant MUSIC(FB&BWE) performs the best among the
MUSIC estimators and Sparse OMP(BWE) performs the best
overall in this single-antenna two-path channel scenario.

2For LOS distance xi and estimated distance x̂i at ith trial, the RMSE is

calculated as

√∑N
i=1(xi−x̂i)

2

N for N number of trials.
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FIGURE 6. ECDF and RMSE performances of the investigated range
estimators when the Initiator is on the car door handle, the Reflector is
outside the car, and LOS distances ≤ 3m.

The Bluetooth Low Energy (BLE) standard uses the same
total bandwidth of 80 MHs as classical Bluetooth. However,
the number of frequencies is halved to K = 40 and their
spacing is doubled to 1f = 2MHz. It is clear from Figure 4
that the ranging RMSE is increased in BLE due to the reduced
frequency resolution of the CFR.

For our collected Bluetooth data, the ECDF performances
in multipath environments LOS, NLOS and both LOS-NLOS
where the Initiator is on the rear-view mirror of the car
and the Reflector is outside the car are shown in Figure 5.
The best performing estimators, namely, MUSIC-SAP,
MUSIC-IAP, MUSIC-IAP with FB and BWE enhancements
(MUSIC-IAP(FB&BWE)) and sparse OMP IAP with BWE
enhancement (Sparse-IAP(BWE)) are compared with the
plain single-antenna MUSIC estimator. In almost all of
these scenarios, the MUSIC-IAP(FB&BWE) and Sparse-
IAP(BWE) are comparable in terms of the 90th percentile
error3 and RMSE while outperforming all other estimators.
MUSIC-SAP performs the best in terms of the 90th percentile
error when the LOS is present and in terms of RMSE (27cm,
which is 85% better than the single-antenna plain MUSIC)
when the LOS distances are smaller than or equal to 3m.
The sparse OMP estimator performance is very close to the
MUSIC-IAP(FB&BWE) in all of these scenarios.

However, as shown in Section VI, the sparse OMP
estimator has much lower complexity than the MUSIC
estimator. Figure 6 depicts the performances of the range
estimators when the Initiator is on the car door handle, the
Reflector is outside the car, and the LOS distances are smaller
than or equal to 3m. The sparse OMP estimator outperforms
the other estimators in this scenario both in terms of the 90th
percentile error and its RMSE of 56.6cm, which represents a

3The 90th percentile error is defined to be the absolute error at which or
below which 90% of the absolute errors occur.

FIGURE 7. ECDF and RMSE performance of the investigated range
estimators when the Initiator and Reflector are both inside the car.

38% performance improvement over the RMSE of the single-
antenna plain MUSIC estimator.

Finally, Figure 7 shows the performances of the investi-
gated range estimators when both the Initiator and Reflector
are inside the car for the 2× 2 antenna configuration. In this
scenario, the sparse OMP estimator achieves the best RMSE
performance of 33cm, which represents a 67% performance
improvement over the single-antenna plainMUSIC estimator.

IX. CONCLUSION
In this paper, we investigated enhanced super-resolution
MUSIC and sparsity-aware OMP range estimators for
two-way Bluetooth signalling. We presented the results
of our Bluetooth real-world data collection campaign in
different multipath scenarios with three different Initiator-
Reflector pair locations and antenna configurations. In addi-
tion, we analyzed complexity reduction methods for the
MUSIC estimator using the Lanczos algorithm and by
utilizing the signal subspace instead of the noise subspace
for MUSIC pseudospectrum computation. Furthermore,
we demonstrated the performance gains of forward-backward
sample covariance matrix averaging for MUSIC and band-
width extrapolation for both MUSIC and OMP estimators.
For multi-antenna processing, we compared two methods,
namely, Individual Antenna Processing (IAP) and Summed
Antenna Processing (SAP), to combine multiple antenna
measurements.

To compare the performances of our investigated range
estimators, we evaluated their ECDF and RMSE both for
simulated and collected Bluetooth data. Our numerical
results showed significant performance improvement from
the enhancements on MUSIC and sparse OMP estimators
in all multipath scenarios. Our proposed enhanced range
estimators improved the ranging accuracy by 58% for our
collected Bluetooth data for a range up to 7m for both LOS
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and NLOS multipath scenarios. For example, in the scenario
with all LOS distances and both LOS and NLOS environ-
ments, MUSIC-SAP, MUSIC-IAP, MUSIC-IAP(FB&BWE)
and Sparse-IAP(BWE) reduce the RMSE from 1.53m (for the
single-antenna case without enhancements) to 93cm, 75cm,
61cm, and 64cm, respectively. Even though MUSIC-IAP
achieves higher performance than MUSIC-SAP in terms of
RMSE and 90th percentile error in almost all scenarios,
it has higher computational complexity. For a data size of
K = 80, MUSIC-SAP (with 0.22 × 107 complex multipli-
cations) is around 4 times faster compared to MUSIC-IAP
(0.9× 107 complex multiplications). The sparse OMP (with
0.63 × 107 complex multiplications for data size K = 80)
has the lowest complexity of all the enhanced IAP estimators
(1.43 times faster than MUSIC-IAP) and performs very close
to the MUSIC IAP with FB and BWE enhancements. With
increasing data size, sparse OMP becomes even faster than
MUSIC-IAP (2.2 times faster for data size K = 140).
Therefore, enhanced sparse OMP is clearly the best candidate
for range estimation among all IAP estimators investigated
in this paper because of its low RMSE, 90th percentile error,
and reduced complexity compared to the enhanced MUSIC
estimators.

In conclusion, key advantages of our investigated ranging
solutions for IoT networks using Bluetooth signals include
decimeter-level high accuracy, low power consumption, low
deployment cost due to the use of existing ubiquitous
Bluetooth signals, applicability to both indoor and outdoor
scenarios within Bluetooth range, and implementation using
simple firmware upgrades without the need for expensive
dedicated hardware as in Ultra-Wideband (UWB) based
ranging. Disadvantages are the limited Bluetooth bandwidth
and limited range which we will address in our future work
by investigating ranging using WiFi signals and possibly
fusing them with Bluetooth signals across the 2.4 and 5 GHz
unlicensed frequency bands for better accuracy in an NLOS
multipath environment.

APPENDIX A
DERIVATION OF SIGNAL SUBSPACE BASED MUSIC
PSEUDO-SPECTRUM
We want to prove the following equation

J (τ ) =
1∥∥UH

n 8
m(τ )

∥∥2
2

=
1

(m+ 1)−
∥∥UH

s 8
m(τ )

∥∥2
2

. (34)

For the signal and noise eigenvector matrices denoted by Us
and Un, respectively, we can write

q∑
i=1

∥∥∥8H (τ )ui
∥∥∥2
2
+

m+1∑
i=q+1

∥∥∥8H (τ )ui
∥∥∥2
2
=

m+1∑
i=1

∥∥∥8H (τ )ui
∥∥∥2
2
,

(35)

where un is the nth column of eigenvector matrix U =

[Us Un]. We write the summation in terms of vectors as

m+1∑
i=1

∥∥∥8H (τ )ui
∥∥∥2
2
= 8H (τ )UUH8(τ ). (36)

For orthonormal eigenvectors, UUH
= I. Hence,

8H (τ )UUH8(τ ) = 8H (τ )8(τ ) = m+ 1, (37)

since 8(τ ) = [1, e−j2π1f τ , e−j2π21f τ , . . . , e−j2πm1f τ ].
Finally, we equate the denominators of the two pseudospec-
trums to get

m+1∑
i=q+1

∥∥∥8H (τ )ui
∥∥∥2
2
= (m+ 1)−

q∑
i=1

∥∥∥8H (τ )ui
∥∥∥2
2
. (38)

APPENDIX B
DERIVATION OF ToF CRAMER-RAO LOWER BOUND FOR
TWO-PATH CHANNEL
The CRLB for the system model described in (2) sets a lower
bound on the variance of any unbiased estimator for the
ToF of the LOS path. This CRLB was derived and further
simplified under the Wide Sense Stationary uncorrelated
Scattering (WSSUS) channels assumption in [36]. The final
CRLB expression for MPC delay τk was shown to be given
by

CRLB(τk ) =
1

2(K − m) · SNRk
b−1(τk ), (39)

where SNRk is the SNR of the kth MPC, b(τk ) = dH (τk )(I−
PH)d(τk ), PH = H(HHH)−1HH is the projection matrix on
the column space ofH, whereH is the array manifold matrix
in (7), and d(τk ) is the kth column of D where

D = [
∂γ (τ1)
∂τ1

, . . . ,
∂γ (τp)
∂τp

], (40)

is the matrix of derivatives of the steering vectors with respect
to the delays. As seen from the CRLB(τk ) expression in (39),
the CRLB is inversely proportional to the SNR of the kth
MPC, denoted by SNRk , and to the number of hopping
Bluetooth frequencies in excess of the smoothing length, give
byK−m. In addition, the CRLB is also inversely proportional
to the scalar positive quantity b(τk ), which has a quadratic
form that is equal to the magnitude square of the error vector
when projecting d(τk ) on the column space of H.

To gain more insights, we will derive a simplified closed-
form CRLB expression for the special case of a two-path
CIR, where P = 2 and H = [γ (τ1), γ (τ2)]. Since PH is a
projection matrix, we can write (using Pythagoras Theorem)

b(τk ) = ‖(I− PH)d(τk )‖22
= ‖d(τk )‖22 − ‖PHd(τk )‖22 . (41)

For the first CIR path with ToF τ1, we have

d(τ1) = −j2π1f [0, e−j2π1f τ1 , . . . , (K−1)e−j2π(K−1)1f τ1 ]T .

(42)

38346 VOLUME 10, 2022



S. N. Shoudha et al.: Reduced-Complexity Decimeter-Level Bluetooth Ranging in Multipath Environments

Therefore, the quantity ‖d(τ1)‖22 =
2π212

f K (K−1)(2K−1)
3 does

not depend on the ToFs of any of the CIR paths. The
second term in (41) can be expanded as ‖PHd(τ1)‖22 =∥∥H(HHH)−1HHd(τ1)

∥∥2
2 where the psuedo inverse matrix

H(HHH)−1 and the column vector HHd(τ1) are given by

H(HHH)−1

=
[
γ (τ1) γ (τ2)

]
(
[
γH (τ1)
γH (τ2)

] [
γ (τ1) γ (τ2)

]
)−1

=

[
Kγ (τ1)− γ (τ2)γH (τ2)γ (τ1)
Kγ (τ2)− γ (τ1)γH (τ1)γ (τ2)

]T
K 2 −

∥∥γH (τ2)γ (τ1)∥∥22 , (43)

HHd(τ1)

= −j2π1f

[
γH (τ1)
γH (τ2)

]
0

e−j2π1f τ1

...

(K − 1)e−j2π(K−1)1f τ1

 , (44)

where δτ = τ2 − τ1 is the ToF difference between the
two CIR paths. For Bluetooth, K = 80, 1f = 1MHz,
and the distance separation between the two paths can
be assumed less than 15 meters. Hence, we can use the
approximations sin 2π1f δτ ≈ 2π1f δτ , cos 2π1f δτ ≈ 1,
and ej2π (K−1)1f δτ ≈ ej2πK1f δτ . Using these approximations,∥∥γH (τ2)γ (τ1)∥∥22 can be written as K sinc (K1f δτ ).4 Hence,
the expression of ‖PHd(τ1)‖22 simplifies to∥∥∥H(HHH)−1HHd(τ1)

∥∥∥2
2
=

Kζ (δτ )

δ2τ (1− sinc2(K1f δτ ))2
, (45)

where

ζ (δτ )

=

∥∥∥∥sinc(Kβπ ) (β(K − 1)− j)+ jejKβ
∥∥∥∥2
2

× (1+

∥∥∥∥∥∥
β(K − 1)− jsinc(Kβ

π
)
(
sinc(Kβ

π
)+ ejKβ

)
sinc(Kβ

π
) (β(K − 1)− j)+ jejKβ

∥∥∥∥∥∥
2

2

− 2<

β(K − 1)− jsinc(Kβ
π
)
(
sinc(Kβ

π
)+ ejKβ

)
(β(K − 1)− j)+ jejKβ

sinc(Kβ
π
)

),
(46)

and β = π1f δτ . The sinc function sinc(K1f δτ ) equals zero
at δτ = n

K1f
, n = 1, 2, . . .. At these values of ToF difference,

we have

‖PHd(τ1)‖22 =
K

(δτ )2
+ π212

f K (K − 1)2. (47)

4The normalized sinc function is defined for x 6= 0 as sinc (x) = sin(πx)
πx .

The value at x = 0 is defined to be the limiting value limx→0 sinc (x) = 1.
At x = ±1,±2, . . ., sinc (x) = 0.

Since ‖PHd(τ1)‖22 is inversely proportional to δ2τ with a
steady-state value of π212

f K (K − 1)2, we can approxi-
mate (45) accurately as follows

‖PHd(τ1)‖22 ≈ π
2Kα2sinc2(αδτ )+ π212

f K (K − 1)2, (48)

where α = 1f K
√
3

was determined by ensuring that the
initial and steady-state values of the approximated function
in (48) match those of ‖PHd(τ1)‖22 in (45). This approximated
expression can be used in (41) to compute the following
closed-form expression of b(τ1)

b(τ1) ≈
π2

3
K 312

f (1− sinc2(αδτ )), (49)

where we assumed K 3
� K to simplify the expression of

b(τ1). For δτ ≤
√
3

2K1f
, we can accurately approximate b(τ1)

with a quadratic function as follows

b(τ1) ≈
4
9

(
π2
− 4

)
K 514

f δ
2
τ . (50)

For δτ ≥
√
3

K1f
, the sinc function variation in (49) is so small

that we can approximate b(τ1) by a constant equal to the
steady-state value in (49) as follows

b(τ1) ≈ K 312
f
π2

3
. (51)

Putting all the approximations of b(τ1) together, we have

b(τ1) =



4
9

(
π2
−4
)
K 514

f δ
2
τ : δτ ≤

√
3

2K1f
π2

3
K 312

f (1−sinc
2(αδτ )) :

√
3

2K1f
≤δτ ≤

√
3

K1f

K 312
f
π2

3
:

√
3

K1f
≤ δτ .

(52)

We can gain the following insights from the above expression
of b(τ1) and when it is substituted in the CRLB expression
in (39), at a given SNR of the first path.
• For the two-path channel model, the CRLB on variance
of ToF estimation of each path depends on the ToF
difference between the two paths δτ , not the individual
paths ToFs.

• As the two paths become closer, δτ decreases and CRLB
increases proportional to 1

δ2τ
.

• The CRLB decreases inversely proportional to δ2τ until
δτ =

√
3

2K1f
which is equal to 11 nano-seconds (or

equivalently two-path distance separation of 3.3 meters)
for Bluetooth parameters of K = 80 and 1f = 1MHz.
For δτ ≥

√
3

2K1f
, the CRLB exhibits small additional

oscillations due to the sinc function, as shown in the inset
of Figure 8 below.

• For a fixed path separation δτ ≤
√
3

2K1f
, the CRLB is well

approximated by

CRLB(τ1) ≈
9

8(π2 − 4)(K − m)K 514
f SNR1δτ

2
, (53)
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FIGURE 8. Exact and approximated CRLB plots of first path for a two-path
channel with K = 80, 1f = 1MHz, and SNR1 = 0dB.

which decreases rapidly inversely proportional to K 6

and less rapidly inversely proportional to 14
f . Hence,

for a fixed δτ and fixed total bandwidth which is equal
to K1f , doubling K and halving 1f will reduce the
CRLB on the estimator variance by a factor of 4. On the
other hand, halving K and doubling 1f (as in the BLE
standard) will increase CRLB on estimator variance by
a factor of 4 (or equivalently by a factor of 2 in estimator
RMSE).

• For path separation δτ ≥
√
3

K1f
which is equal to 22 nano-

seconds (or equivalently two-path distance separation of
6.6 meters), the CRLB approaches its steady state value
CRLBSS given by

CRLBSS (τ1) =
3

2π2(K − m)K 312
f SNR1

, (54)

which is inversely proportional to the square of the
frequency spacing 1f and the fourth power of the
number of frequencies K . Hence, for a fixed total
bandwidth, doubling K and halving 1f will reduce the
steady-state CRLB on estimator variance by a factor
of 4. On the other hand, halving K and doubling1f will
increase steady-state CRLB on estimator variance by a
factor of 4 (or equivalently by a factor of 2 in estimator
RMSE).

Figure 8 shows the excellent match between the exact
and approximate CRLB for the two-path Bluetooth channel
model. We assume a smoothing length m = K

2 = 40 and
SNR1 = 0dB which, when substituted in (54), result in
a steady-state CRLB of 0.09 nano-seconds or equivalently
2.58 cm as shown in Figure 8.
Finally, Figure 9 depicts the variation of the CRLBwith the

SNR of the first path for different choices of K and1f while
keeping the total bandwidth fixed at 80 MHz. As predicted

FIGURE 9. CRLB on ToF estimator RMSE of first path for a two-path
channel with K = 40,80,160, 1f = 0.5,1,2MHz, and path separation
of 2m.

accurately by our CRLB expression in (53), doubling the CFR
frequency resolution by doubling K , reduces the CRLB on
RMSE by a factor of 2.
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