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ABSTRACT This paper illustrates the reference model-based dead-time compensator (RM-DTC) recently
developed for first-order time-delayed systems using a real-time example, and extends this novel approach
for a time-delayed double integrator system. RM-DTC enables fully decoupled setpoint tracking and
disturbance reconstruction and compensation. The overall structure of RM-DTC includes feedforward
control using either a transfer function based implementation or the primary loop which produces a
filtered inverse of the model transfer function. The setpoint feedforward is complemented by a disturbance-
observer-based input disturbance reconstruction that also uses the filtered inverse of the plant model. The
reference models of setpoint and input disturbance feedforward control allow the introduction of a stabilising
PD controller without compromising the nominally independent dynamics of setpoint tracking and dis-
turbance rejection. The main advantage of retaining the full functionality of disturbance reconstruction in
RM-DTC is that it enables monitoring and diagnostics of the controlled process, which is important in terms
of full automation of running processes representing the fundamental goal of the Industry 4.0 campaign. This
surpasses the approaches based on internal model control, which have been modified for unstable systems
to achieve internal stability by eliminating the reconstructed disturbance signal from the control loop. The
excellent properties of RM -DTCs are illustrated by simulation and real-time control of thermal process.

INDEX TERMS Reference model, time-delayed system, double integrator, dead-time compensator, PID
control.

I. INTRODUCTION
In mechatronics, the model of a double integrator represent-
ing the motion of physical bodies plays a central role in
position control, whether in high-speed positioning control,
robotic arms and manipulators, high-performance servo sys-
tems, pneumatic muscle actuators, control of electrical vehi-
cles, robot-aided upper limb rehabilitation, flying vehicles,
magnetic levitation, etc. (see, for example [1]–[7]). Chains
of integrators also appear in the design of nonlinear systems
by feedback linearization [8]. In order to obtain an optimal
tuning that fully exploits the capabilities of the control loop,
it must be supplemented by the time delays, which are usually
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represented by a dead time element. This then leads to a
double integrator plus dead time (DIPDT) model.

Even today, due to the specifics of the applications, such as
nonlinear properties (control constraints, friction, hysteresis,
quantization), measurement noise, robustness, and compu-
tational complexity, we need a variety of different control
approaches. The latter is particularly important due to the
growing number of applications based on embedded con-
trollers. Therefore, it is still important to search for new
approaches and compare them with the traditional ones.

Recently, Grimhold and Skogestad [9] discovered that by
constructing a PID controller according to the DIPDT model,
it can be successfully used for a variety of dynamical sys-
tems. However, such observations are far from unique and do
not only concern PID controllers. Among the large number
of controllers based on DIPDT models, the discrete-time
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solutions with dead-beat performance can be highlighted
as examples of ‘‘time-optimal’’ control, first described and
applied in [10], to design constrained controllers with
anti-windup integral action for stable and unstable, possi-
bly higher-order plants. They were obtained by combining
one of the first dead-time compensators (DTCs), based on
the reconstruction and compensation of input disturbances
by an extended state observer (ESO), with a generalization
of the famous method for controller tuning by Ziegler and
Nichols [11]. Similar in several aspects to [10], the con-
strained control of a double integrator was the basis of a
special fhan function developed by Han [12] and used in
combination with the reconstruction and compensation of
equivalent disturbances by a state approach with an extended
state observer (ESO). This approach, proposed as an alter-
native to the traditional PID controllers, has been called
active disturbance rejection control (ADRC) and in the linear
setup denoted also as LADRC has been widely popular-
ized by Gao [13]–[16]. The need to consider the influence
of dead time was later incorporated in the LADRC solu-
tions suitable for time-delayed systems [17], [18]. Another
similar approach, referred to as model-free control (MFC),
based on finite impulse response filters (FIR), was developed
by Flies [19], [20]. However, the double integrator models
were used even earlier. The time-optimal control algorithms
applied to the double integrator for controlling some nonlin-
ear systems were already used by Feldbaum [21], who cites a
1935 patent for rolling mill control with quadratic feedback,
which is a typical example of a relay time optimal double
integrator control.

It is therefore not surprising that in addition to the
aforementioned ADRC and MFC, DIPDT models also play
a central role in various PID [22]–[24], or disturbance
observer (DOB) control structures [25]–[28]. The slowest
penetration of integrating models for modelling and control
is seen in the area of Internal Model Control (IMC), which
relies on the properties of the Smith predictor (SP) [29].
SP represents the best known structure for the control of
time-delayed systems by combining the advantage of an
independent design of dynamic feedforward control and of
disturbance reconstruction and compensation. However, the
use of integrating process models in SP leads to unobserv-
able and unconstrained output disturbances [30], [31]. More-
over, equivalent output disturbances may increase beyond all
limits in the presence of constant input disturbances [32].
Therefore, several authors have tried to avoid the problem
of diverging output disturbances by modifying the SP for
integrating process models by taking into account the
input disturbances [33]–[37]. However, in ensuring inter-
nal stability they only succeeded after reducing the overall
functionality by eliminating the signal of the reconstructed
disturbance. This, finally, severely limited the applicability
of the SP control structure.

Only the control structures using the set point and input
disturbance reference models [32] can eliminate the hidden
internal instability of structures with disturbance observers

TABLE 1. List of acronyms and abbreviations.

for unstable plants while maintaining the full functionality of
the circuit in terms of disturbance reconstruction. Since the
disturbance signal can be critically important in several con-
trol, monitoring and diagnostic applications, the development
of the referencemodel control has proven to be important also
for systems using time-delayed integrator models.

The novelty of the manuscript thus relates to the overall
design of a dead-time compensator for time-delayed chains of
first and second order integrators. In particular, the proposed
solution allows (1) a decoupled design with (2) decoupled
control branches used for separate setpoint tracking and dis-
turbance rejection. The master controller, which ensures the
internal stability of the control loop, (3) has a nominal input
signal of zero so that it does not affect the transients, and
(4) preserves the reconstructed input disturbance signal that
can be used for monitoring, diagnostics and optimisation of
the control loop. Since the design is based on an ultra-local
integrative model, (5) the proposed design can be applied to
a wide range of process models that can be approximated by
second-order dead-time processes.

To satisfy the requirements to work with disturbance sig-
nals even in the case of marginally stable integrator-plus-
dead-time (IPDT) and DIPDT models, this work provides
a generalization of the control approach with a decou-
pled setpoint feedforward and disturbance rejection dynam-
ics proposed in [32] for IPDT process models. Thereby,
the paper is structured as follows: Section II discusses
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two different implementations of setpoint feedforward for
second-order systems: the transfer-function-based implemen-
tation and the primary-control-loop-based implementation.
The requirements for the design of the input disturbance
observer based on DIPDT models, as well as the design
of the higher-level stabilizing controller and the necessary
reference models for setpoint tracking and disturbance rejec-
tion are discussed in Section III. Section IV compares the
newly designed RM-DTC with PID controllers in terms
of achievable performance and robustness. Section V illus-
trates the developed controller by a real-time example. The
results of the simulation verification are summarized in the
Conclusions.

II. SETPOINT FEEDFORWARD DESIGN
As commonly applied in motion control [38], the control
structure is composed of a feedforward controller and a
disturbance observer. These key control structures will be
extended by setpoint and disturbance reference models [32]
and a stabilizing PD controller [39].
Remark 1 (Basic Loop Modelling Constraints): RM-DTCs

have potential to increase the transient quality of high-end
applications. As different constraints on the usual plant mod-
elling apply in such situations, such limitations, as the dead-
time, nonlinearities, or constraints on the process input and
state, need to be given due consideration in the design from
the outset.

A. THE SIMPLEST PROCESS MODELLING
The advantage of feedforward over feedback is that any trans-
port delays do not affect the shape of the controlled system
transients, but merely delay the time responses. The primary
disadvantage of feedforward control is that, without a stabi-
lizing controller, it can only be applied to stable systems. This
fundamental limitation can be circumvented by reference
model control (RMC). In terms of setpoint tracking, RMC is
already part of standard textbooks (see, e.g., [40]). However,
its use in disturbance reconstruction and compensation is
much less known [32].

From the point of view of modeling more complex and
often nonlinear processes, it may be advantageous to use
models as simple as possible, such as the DIPDT model. For
the process model F(s), which relates the Laplace transform
Y (s) of the output y(t) to U (s) of the DIPDT input u(t)

F(s) =
Y (s)
U (s)

=
Kse−Td s

s2
(1)

it is necessary to identify only two model parameters Ks
and Td . Thus, the models (1) represent the simplest possible
and thereby realistic second-order process approximation.
To express differences between the abstraction of the process
model F(s) and its estimate used in the controller design,
we will introduce the transfer function

Fm(s) =
Kme−Tms

s2
(2)

HereKm represents the estimate of the process gainKs, which
is always unknown. So, by considering Ks 6= Km when
designing the controller, we introduce some uncertainty into
the control calculations.

From an identification process that can be carried out in
open-loop conditions we get also some estimate of the plant
delay Tm. Tm can represent a composition of different loop
delays, including the dominant process delay Tp, an actuator
dead-time Ta, a communication delay Tc, or a measurement
sensor delay Tt , yielding together Tm = Tp + Ta + Tc + Tt .
In principle, different, or additional delays may occur when
implementing closed-loop control. Then, if we still want
the controller settings derived for the transfer function (1)
to accurately reflect the needs of the real circuit, we usu-
ally have to supplement Tm with estimates of the newly
introduced delays. These will almost always include the
delay of the low-pass filters needed to obtain the feasi-
ble controller transfer function. Filter delay can be rep-
resented separately by an equivalent dead-time Te [39].
Then, the total loop delay considered in the design will be
calculated as

Td = Tm + Te (3)

Both (1) filtered inversion of the process transfer functions
and (2) primary control loops can be used to implement feed-
forward control. The simulation schemes used to compare
both approaches in terms of robustness are shown in Fig. 1.
The transfer function of the ‘‘real’’ controlled system, which
is extended by an unknown internal feedback parameter a,
is assumed in the form

F(s) =
Y (s)
U (s)

=
Ks

s2 + as
(4)

We will use the subscript ‘‘m’’ to indicate the parameter
estimate of the model used for the control design.

B. PRIMARY-LOOP-BASED FEEDFORWARD CONTROL
For the extended second-order process models (4), the stabi-
lizing controller can always be written as

C(s) =
U (s)
E(s)

= KP
1+ sTD
1+ Tfd s

=
KP + KDs
1+ Tfd s

, (5)

where KP is the controller gain and TD is the derivative time
constant, which both give the derivative gain KD. For the
implementation of the primary loop with a measurable state
shown in Fig. 1, the PD control can ideally be implemented
without the derivative filter, i.e., with Tfd = 0 in (5). For the
nominal process model with am = a;Km = Ks, when from
the requirement of a double closed loop time constant Tc one
gets

KP =
1

T 2
c Km
; KD =

2/Tc − am
Km

; (6)

and when there are no input constraints on the pro-
cess, such feedforward control leads to the closed-loop
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transfer functions

Fc(s) =
Y (s)
W (s)

=
1

(1+ Tcs)2
;

Fff (s) =
U (s)
W (s)

=
s2 + ams

Km(1+ Tcs)2
. (7)

As discussed in detail in [32], the advantages of primary-
loop-based feedforward control will be evident in unstable
systems with input constraints. As shown in Fig. 2 by two
simulations with parameters

Tc = 0.5;

Ks = 1; Km = Ks;

a = −0.2; am = −0.205;

a = 0.05; am = 0;

Umin = −0.5; Umax = 0.5; (8)

corresponding to parameter uncertainty 1a = a −
am = 0.05, the effect of inaccurate parameters is much less
pronounced than the effect of constraints, at least in the short
run. Surprisingly, the parametric inaccuracy of feedforward
has more profound consequences in the simplified position
control with a stable speed subsystem a > 0. Of course, the
uncontrolled feedforward does not guarantee a longer stable
setpoint tracking for unstable systems. But when the primary
closed-loop feedforward control is used, the results are much
better than for the open-loop feedforward control based on
transfer function. The differences are mainly to be seen in the
course of the output variables.
Remark 2 (Primary DTC Loop Mission): The use of the

primary DTC loop (typical for SP) is not related to the
transport delay itself, but to the feedforward generation and
to the control constraints, which are among the fundamental
nonlinearities of the circuit.

As for the effect of the constraints themselves on the
shape of the transients of the primary loop, the linear
PD controller can handle smaller constraints without disturb-
ing the smooth shapes of the transients. For more signifi-
cant constraints, a constrained design must already be used
(see, e.g., [5], [41]–[43]).

C. SETPOINT REFERENCE MODEL
It is well known that open-loop feedforward control cannot
be used to control unstable and marginally stable processes.
In combination with a higher-level stabilization controller
and a reference model, the advantages of feedforward con-
trol (e.g., in terms of time-delayed process control) can be
exploited [32], [40]. The reference model ensures the hierar-
chical division of activity between the stabilizing controller
and feedforward control by providing the higher-level con-
troller with information about the correct course of the set-
point tracking initiated by the feedforward control. For exam-
ple, for the closed-loop (setpoint to process output) transfer
function Fc(s) (7), the control error, defined as

Ew(s) = Fc(s)W (s)− Y (s) (9)

FIGURE 1. 1. Open loop (transfer function-based) and 2. primary-loop
(PD control-based) constrained setpoint feedforward implementations
for setpoint steps of w with parameters (6) used to explain advantages of
closed-loop-based feedforward implementation.

FIGURE 2. Process input and output in transfer function-based (TF) and
primary-loop-based (PL) constrained setpoint feedforward for unit
setpoint steps of w according to Fig. 1 and a = −0.2,am = −0.205
(above) and a = 0.05,am = 0 (below) showing advantages of the
closed-loop-based feedforward implementation; Km = Ks = 1, Tc = 0.5,
Umax = 0.5,Umin = −0.5.

will be nominally zero. The processing of the control error
by the PD controller (5)-(6) (with am = 0) does not cause
any effect, but ensures the stability of the closed loop even in
unstable systems. For primary control, the signal Fc(s)W (s)
can be taken directly from the output of the plant model

VOLUME 10, 2022 39285



M. Huba et al.: Reference Model Control of Time Delayed Double Integrator

output. For a delay-free plant, such a controller could be
proposed by omitting all the transport delay blocks Tm and Td
in Fig. 3 (e.g., by setting Td = Tm = Tm1 = Tm2 = 0). How-
ever, later we will also deal with the time-delayed systems,
while also focusing on the reconstruction and compensation
of disturbances.

III. DISTURBANCE RECONSTRUCTION AND
FEEDFORWARD
The basic idea of the input disturbance observer is to evaluate
the difference between the process input estimated from the
output using the inverse process model and the controller
output. Low-pass filters with sufficiently high relative degree
must also be introduced to perform the given operation. The
presence of a transport delay (as in Fig. 3) naturally compli-
cates the whole control process, since there is no inversion
to the delay in causal systems and its influence must be
mitigated in other ways. The first DTCs for DIPDT processes
reduced the loop delay by reconstructing less delayed outputs
and disturbance signals [10]. Such an approach was no longer
a violation of causality, but a replacement of the transport
delay by the delays of the observer filters. In turn, such
solutions increased the speed of the transients and improved
disturbance rejection performance. Works [33], [44] based
on independent setpoint and disturbance feedforward loops
without a stabilizing controller encountered the problems
with internal instability in unstable and marginally stable
systems, which they could solve only by eliminating the
disturbance signal from the control structure. The mentioned
works did not respect the fundamental property of distur-
bance observers [32], [45], which is not only reconstructing
disturbance, but at the same time, the controlled object is
forced to follow the nominal dynamics of the chosen model.
Thereby, in terms of external disturbance reconstruction, the
nominal model must be chosen as close as possible to the
controlled process. However, the unstable nominal model
does not then guarantee the stability of the solution in the long
run. The conflicting requirements on precise plant modelling
with respect to disturbance reconstruction and compensation
and internal stability have been solved just by introducing
stabilizing controller and disturbance reference models [32].
In RM-DTCs, the higher-level stabilization controller ensures
the stability of the overall loop, but does not interfere with
the nominal transients specified at the slave level with set-
point and disturbance feedforward loops. For better clarity,
we divide the overall disturbance feedforward design into two
steps, the first describing the observer design with a reference
model for a system with negligible dead time and just then
including also the dead-time term.

A. DISTURBANCE REFERENCE MODEL FOR DELAY-FREE
MODEL
To make the inverse of the process model (2) feasible, the
disturbance observer must use the low-pass filter Qi(s):

Qi(s) =
1

(1+ Tos)2
. (10)

For an independent application of disturbance reconstruction
and compensation, the disturbance response must be stable.
Two unstable plant poles can be eliminated from the distur-
bance response by the disturbance feedforward

Ci(s) =
1+ b1s+ b2s2

(1+ Tos)n−2
; n ≥ 4, (11)

with n denoting the total filter order. With the lowest possible
value n = 4 and designation

Suu(s) = Ci(s)Qi(s) (12)

and considering the reconstruction of the actual plant
input Uaf (s)

Syu(s) =
Uaf (s)
Y (s)

=
Suu(s)
Fm(s)

=
s2(1+ b1s+ b2s2)
Km(Tos+ 1)4

, (13)

the disturbance compensation signal can be calculated as

Uif (s) = Syu(s)Y (s)− Suu(s)U (s). (14)

In the nominal case with Ks = Km and F(s) = Ks/s2 =
Fm(s), we get a ‘‘stabilized’’ disturbance response

Fiy(s) =
Y (s)
Di(s)

=
F

1+ FuSydF
; Fu =

1
1− Suu

. (15)

Note that to cancel the double plant pole s = 0 and to get
the zero steady-state disturbance response characterized with
Fiy(0) = 0, the numerator in

Fiy(s) = Ks
(1+ Tos)4 − (1+ b1s+ b2s2)

s2(1+ Tos)4
(16)

has to guarantee the triple pole at s = 0. Let us use the new
variable p = Tos, β1 = b1/To, β2 = b2/T 2

o , to simplify the
calculation. Then

Fiy(p) = KsT 2
o
(1+ p)4 − (1+ β1p+ β2p2)

p2(1+ p)4
. (17)

By comparing the coefficients at the first and second power
of p we get the required values β1, β2 and subsequently
also b1, b2, which yields

β1 = 4; β2 = 6; α0 = 4;

Fiyo(p) = KsT 2
o
p(p+ α0)
(1+ p)4

. (18)

In the ‘‘s’’ domain with the same value of α0 = 4,

b1 = 4To; b2 = 6T 2
o ;

Fiyo(s) =
Y (s)
Di(s)

= KsT 3
o
s(Tos+ α0)
(1+ Tos)4

. (19)

At this point, however, it should be emphasized that a
stabilized disturbance response does not imply a stabilized
system state. Through reconstruction and disturbance com-
pensation, the system behaves according to the chosen model
Fm(s), i.e., as a marginally stable double integrator with gain
Km. To obtain a system with stabilized states, an additional
stabilizing controller is required. Such a controller can be
designed according to expressions (5)-(6) with am = 0,
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FIGURE 3. Setpoint feedforward (blue), SDOB-based disturbance feedforward (green) and stabilizing PD controller Kp + Kd s with
reference model Qw (s) = Fwy (s) from the setpoint w and Fi (s) = Fiy (s) from the reconstructed disturbance di (orange) as the basic units
of the RMC for the DIPDT system with model (2).

where a suitable derivative filter time constant Tfd should
be chosen. Since the nominal disturbance response is given
by the transfer function Fiyo(s) (18) and the DOB gives the
disturbance signal filtered by the second-order Qi(s), the
wanted disturbance reference model RMi is

Fi(s) =
Fiyo(s)
Qi(s)

= KsT 3
o
s(Tos+ α0)
(1+ Tos)2

. (20)

The examples of the setpoint and disturbance step responses
obtained by the controller scheme in Fig. 3 for Td = Tm =
0 and the parameters

Tc = To = 0.8; Ks = 1; Km ∈ {0.8, 1, 1.2};

Kp = KP; Kd = KD; Tfd = 0.2 (21)

are presented in Fig. 4. The choice of these parameters was
motivated by the possibility to compare the obtained tran-
sients with the further analysed loop with dead time. They
show that the plant gain perturbation produced by Km 6= Ks
corresponds to an input disturbance that increases as Tc and
To decrease.
Remark 3 (The Main Advantage of RM-DTCs): Besides

the generalization shown for the double integrator, the main
advantage of the newly introduced reference model control
over the solutions in [33]–[37] is the availability of the
equivalent input disturbance signal, which can be of great
use for finding the optimal process model and for its further
diagnosis. From the opposite signs of the reconstructed dis-
turbance signal (dif ) in the initial interval without external
disturbances for the non-nominal values Km = 0.8 and

Km = 1.2 in Fig. 4, it is evident that the actual value of the
process gain Km = 1 should lie between these two values.
Thus, the advantage of keeping the full functionality of the
RM-DTC is that it allows monitoring and diagnostics of the
controlled process [46], [47].

B. REFERENCE MODEL FOR TIME-DELAYED SYSTEM
The obtained solution can be further extended with nonzero
dead time values. From the point of view of setpoint tracking,
the extension can be easily achieved by including the dead
time model Tm in the reference model of setpoint signal
tracking (Fig. 3). While the feedforward transfer function
remains the same as in (7), the reference-to-output transfer
function Fc(s) corresponding to a double real-time constant
Tc becomes

Fc(s) =
Y (s)
W (s)

=
e−Td s

(1+ Tcs)2
. (22)

To equate both the process delay Td and the DOB delay,
the time delay Tm1 must be included in the DOB path from
the controller output. In the nominal case with Tm1 = Td ,
Suu(s) (12) is changing to

Suu(s) = Ci(s)Qi(s)e−Td s. (23)

For p = Tos, τd = Td/To, the disturbance response becomes

Fiy(p) = KsT 2
o e
−τdp (1+ p)

4
− (1+ β1p+ β2p2)e−τdp

p2(1+ p)4
.

(24)
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FIGURE 4. Transients with RM-DTC and Td = Tm = 0 showing for different
Km impact of the plant model gain uncertainty, Ks = 1; di step at t = 10,
do step at t = 20; Tc = To = 0.8.

A direct comparison of expressions (24) and (17) is not possi-
ble because of the time delay. However, in (17), the parameter
α0 could also be obtained by triple derivation of the Fiyo(p)
numeratorKsT 2

0 p
3(p+α0), by substituting p = 0 and dividing

by 3!=6. Similarly, by evolving the numerator of expression
(24) we get

α0 = 4+ 6τd + 2τ 2d + τ
3
d /6 . (25)

For Tm2 = Td in Fig. 3, (24) and (18) become equivalent
when

b1 = 4To + Td ; b2 = 6T 2
o + 4ToTd + T 2

d /2;

Fiyo(s) = KsT 3
o e
−Td s s(Tos+ α0)

(1+ Tos)4
. (26)

From Fiyo(s) it is then possible to calculate Fi(s) according
to (20).

Design of a stabilizing PD controller for the DIPDT plant
model based on the multiple real dominant pole [6], [48],
[49], results in parameters

Kp = 0.079/(KsT 2
d ); Kd = 0.461/(KsTd ) . (27)

The low-pass filter with time constant Tfd , which is necessary
to realize a stabilizing PD controller of the form (5) has
no major influence in the considered controller structure.
In Fig. 5, transients corresponding to the parameters

a = am = 0; Td = Tm = 0.4; Tc = To = 0.8;

Ks = 1; Km ∈ {0.8, 1, 1.2}; Tfd = Tm/2 = 0.2, (28)

FIGURE 5. Transients with RM-DTC and Td = Tm = 0.4 showing for
different Km impact of the plant model gain uncertainty in the case of
time-delayed systems, Ks = 1; di step at t = 10, do step at t = 20;
Tc = To = 0.8.

with KP,KD (6) and Kp,Kd (27), have similar shapes as for
Td = 0. Again, note that the choice of Tc and To values is
taken into account to show the differences that arise due to
the influence of Td and in relation to the model uncertainty
considered. In the illustrative example, we will show their
significance in terms of taking into account the measure-
ment noise. However, di is now reconstructed with a time
delay Tm, so the effect on the disturbance response is much
stronger. Again, in the case of non-nominal setpoint changes
with Km 6= Ks, the equivalent disturbances can already be
observed during the periods without external disturbances.

IV. COMPARISON WITH 2DOF PID CONTROL
Comparing the proposed solution with alternative methods
based on a PID controller is not straightforward. For example,
Grimholt and Skogestad [9] choose the tradeoff between
servo and regulatory by optimizing a weighted average of the
integral of the absolute error

IAE =
∫
∞

0
|e(t)| dt; e = w− y, (29)

during process input and output disturbance steps, but they
do not consider the design of a setpoint prefilter to ensure
monotonic tracking of the reference steps. The aforemen-
tioned solution also does not deal with a suitable controller
low-pass filter design that would result in a feasible, fully
implementable transfer function of the controller to attenuate
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a measurement noise and to minimize the excessive signal
increments at the plant input.

At the plant output, a modification of the total output
variation criterion (TV) [50]

TV0(ys) =
∑
i

(|yi+1 − yi|)− |y∞ − y0| (30)

can be interpreted as the output’s deviation from monotonic-
ity. At the plant input, the excessive control effort can be
defined in terms of the deviations from the two-pulse (2P)
control signal. For the double integrator, the expected control
signal consists of the two extremes um1 and um2, which lie
at some time instants between the initial value u0 and the
final u∞ of the control signal and have the amplitudes umi /∈
[u0, u∞]; i = 1, 2; (um1 − u∞)(um2 − u∞) < 0. Ideally,
such a signal has three monotonic intervals [39], [51], [52].
The plant input deviation from 2P shape can be calculated as
follows

TV 2(u) =
∑
i

(|ui+1 − ui|)

− |2um1 − 2um2 + (u∞ − u0) sign(um1 − u∞)| . (31)

Remark 4 (Reason for Changed Evaluation Excessive Con-
trol Effort): In contrast to the definition of TV given in [50],
the application of (31) does not penalize active changes
in the controller output forced by the necessary accelera-
tion and deceleration of the process. Such shortcomings in
the evaluation of the control effort are encountered in the
majority of recent publications and the separation of useful
control actions from redundant ones is only slowly being
promoted [23], [53], [54].

A. THE MULTIPLE REAL DOMINANT POLE PID
CONTROLLER TUNING
Unlike [55], which is dominantly dealing with control con-
straints, without considering the transport delays and noise
attenuation, the limitations are only briefly mentioned here,
without a detailed evaluation. The considered analytically
derived optimal PID controller is based on a generalization
of the approach used in [56], [57].

As shown in Theorem 1 in [39], for the parameters
Td > 0,Ks 6= 0 of model (1), for ideal PID controller
with parameters Kc (the controller gain), Ti (the integral time
constant) and TD (the derivative time constant)

C(s) =
U (s)
E(s)

= Kc

(
1+

1
sTi
+ sTD

)
(32)

the ‘‘optimal’’ values Kco,Tio and TDo can be determined
analytically to ensure a quadruple real dominant pole (QRDP)
so of the characteristic quasi-polynomial

P(s) = Tis3eTd s + KcKs(1+ Tis+ TiTDs2) (33)

such that

so = −0.416/Td . (34)

These values may be expressed by dimensionless (normal-
ized) parameters κo, τio and τDo as

κo = KcoKsT 2
d = 0.125,

τio = Tio/Td = 10.324,

τDo = TDo/Td = 4.043. (35)

For zero compensation of the closed loop transfer function

Fw0(s) =
Y (s)
W (s)

=
KcKs(1+ Tis+ TiTDs2)

Tis3eTd s + KcKs(1+ Tis+ TiTDs2)
(36)

leading to overshoot after reference setpoint steps, [56], [57]
proposed the two-degree-of-freedom (2DOF) PID using a
setpoint prefilter [51]

Fp(s) =
cTiTDs2 + bTis+ 1
TiTDs2 + Tis+ 1

. (37)

In the simplest case, Fp(s) is used with

b0 = c0 = 0 . (38)

To accelerate the transients, the weighting parameters b and
c can also be set to cancel one of the quadruple closed loop
poles so (34)

b1 =
1/ |so|
Tio

= −
1

τioTd so
= 0.233 c1 = 0. (39)

The fastest possible setpoint step responses correspond to the
numerator of (37), which is equal to the double pole so:

(s− so)2 = s2 − 2sso + s2o = s2 + bs/(cTD)+ 1/(cTiTD).

(40)

This gives the prefilter coefficients

b2 = −2/(Tiso) = 0.466, c2 = 1/(TiTDs2o) = 0.150.

(41)

However, such a design increases the required control signal
amplitudes (see Fig. 6) and also the overshoot due to gain
uncertainty.

Finally, to obtain a feasible controller transfer function,
C(s) must be combined with a first-order series filter [51]

Q (s) = 1/(T1s+ 1) (42)

with the time constant T1 = 0.271Te expressed by means
of an equivalent dead-time Te. It has been considered in the
controller tuning as an additional delay Te = 0.4, added to
the total dead time of the control loop.

Since it is generally difficult to obtain good performance
for a double integrating process, when the time delay Td is
large, cascade control is used in practice whenever possible
for controlling double integrating processes [9], [51].
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FIGURE 6. Setpoint step responses of the PID controller (32) with the
tuning (35), filter (42) and prefilter (37)showing for different Km impact of
the plant model gain uncertainty.

B. ROBUSTNESS TESTS BY NEW PERFORMANCE
SENSITIVITY MEASURES
Traditional robustness analysis is mostly based on sensitivity
functions [58], which are defined for the open-loop transfer
function L(s) as

Ms = max
{∣∣∣∣ 1

1+ L(jω)

∣∣∣∣} ; Mt = max
{∣∣∣∣ L(jω

1+ L(jω)

∣∣∣∣} ;
ω ≥ 0. (43)

Ms is primarily defined for the nominal loop and is related to
the loop stability. The recommended values of the sensitivity
function are usually less than 2 and are generally not suitable
for unstable systems, where the required sensitivity values
may increase to more than 20 [59]. Therefore, instead of
using sensitivity functions, we preferred to implement the
robustness test similar to the approach proposed in [60].
In such a test, the controller based on model (2) is applied
to the plant (4) extended by a dead time

S (s) =
Y (s)
U (s)

=
e−0.4s

s(s+ a)
; a ∈ [−0.2, 0.2]; 1a = 0.1.

(44)

Its internal feedback, quantified by the pole s = −a, trans-
forms the DIPDT plant into the second-order time-delayed

system (SOTD) (44). By changing a in (44), the perfor-
mance measures corresponding to the setpoint steps under
DIPDT-based controller draw trajectories in the speed-effort
(SE) plane (IAE − TV2(u)) and speed-wobbling (SW) plane
(IAE − TV0(y)), as shown in Fig. 7. Here, longer trajecto-
ries correspond to stronger performance changes and hence
higher sensitivity (lower robustness) of the control loop.
Denote the individual uncertain parameter values as

ai = amin + (i− 1)1a; i = 1, 2, . . . ,N ;

1a = (amax − amin)/(N − 1), (45)

and the coordinates of the performancemeasures vector (ξ, η)
as

ξ = TV2(u), or ξ = TV0(y); η = IAE . (46)

The corresponding sensitivity measures for the setpoint
responses at the plant input, or output, reflecting the length
of the trajectory traced out by the change in position of the
operating point (46), can then be defined as

S =
N−1∑
i=1

√
(ξi − ξi+1)2 + (ηi − ηi+1)2. (47)

The introduction of these new sensitivity measures S(u)
and S(y), in contrast to the traditional Ms and Mt sensitivity
peaks, brings the differentiation of the achieved sensitivity
levels with respect to the input and output of the system,
as well as the consideration of the controller effort required
to maintain the required performance at the input or output.

The results in Fig. 7 were evaluated taking into account the
measurement noise with a maximum amplitude of 0.001 gen-
erated in Matlab-Simulink by the Uniform Random Number
block. Corresponding to PID control with different prefilters
(38)-(41) they show that by using more complex prefilters we
can speed up the transients while keeping nearly the same
excessive control effort (Fig. 7 left). However, at the cost
of larger output fluctuations in performance when chang-
ing the internal system feedback parameter a (Fig. 7 right).
For RM-DTC, the results vary to a greater extent. The small-
est value of the tuning parameter Tc = To = Td/2 leads to the
fastest transients (minimal IAE) with the lowest dependence
on the perturbed parameter (reflected by low S(u) and S(y)
values). However, this is achieved on the costs of the high-
est excessive controller effort TV2(u), reminiscent of robust
systems using sliding mode control [61], [62].

The TV2(u) values can be reduced to by increasing Tc and
To. In general, we achieve optimal values of S(u), S(y) and
S(u)S(y) (see Fig. 8) with different settings, which challenges
the design according toMs and Mt criteria.

Of course, the impact of measurement noise can also be
reduced by using higher order filters in DOB, or in the
stabilizing controller.
Remark 5 (Impact of the Feedback Parameter a, ADRC,

PID and DTC Design): The characteristics in Fig. 7 also
show that the influence of the parameter a on the excessive
controller effort and the speed of transients is negligible
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FIGURE 7. Robustness characteristics expressing IAE changes due to uncertainty of the internal plant feedback coefficient a versus the shape
related deviations at the input of the plant (44), 1a = 0.1 and different PID controllers tuned with Te = Td = 0.4 and prefilters (38)-(41) and
the RM-DTCs with the parameters Tc = To ∈ {1/2,1,2,4}Td ; Km = Ks = 1; measurement noise amplitude |δ| ≤ 0.001.

FIGURE 8. Sensitivities (46)-(47) defined for the plant (44) with uncertain
a and PID controllers tuned with Te = Td = 0.4 and prefilters (38)-(41)
and the RM-DTCs with the parameters Tf = To ∈ {1/2,1,2,4}Td ;
Km = Ks = 1.

compared to the effect of the measurement noise. This makes
it possible to avoid identification of this parameter and so to
simplify the controller design. Similar feature represents one
of the key reasons for the popularity of ADRC.However, such
simplification is clearly also relevant in designing RM-DTCs
and can also be shown in PI and PID control [63].

V. ILLUSTRATIVE EXAMPLE: TEMPERATURE CONTROL
The decoupled setpoint tracking and disturbance rejection,
together with the use of a superior stabilizing controllers,
have created new degrees of freedom in tuning of RM-DTCs
compared to traditional PID controllers. Therefore, it will
be useful to start clarifying the increased tuning complex-
ity by explaining particular tuning steps, preferably from
the simplest tasks. To illustrate the use of the RM-DTC
design and practical problems associated with its applica-
tion, we will consider the thermal process control discussed
already in [31], [60], [64]. The choice of this process is

motivated by several aspects - from a physical point of view,
it is a highly nonlinear and time-variable higher-order process
posing a challenge for robust control - only due to the fact
that the concept of a nominal dynamics is strongly question-
able. The existing time delays and the resulting measurement
noises also require due attention to the appropriate filtering
of the measured signals. In addition, it is a process that is
clearly not integrative. So, the use of integrative models is
not a meaningful step for many users and needs to be shown
that it can still be beneficial. Nevertheless, it makes it possible
to clarify several aspects of RM-DTC control based on IPDT
models and subsequently to highlight the specifics of control
of systems with DIPDT models.

A. SIMPLIFIED PLANT MODELLING
The essence of thermal process control is to vary the amount
of heat released by the actuator (bulb) so that the temperature
measured at the desired point (by a sensor pt1000) reaches
in the shortest time possible the setpoint reference value.
Among the different possible ways of heat transfer partic-
ipating in heating the temperature sensor (such as advec-
tion, conduction convection, radiation, boiling, condensation,
or melting), occur in the case of the thermo-optical-
mechanical laboratory system TOM1A [65] mainly the
fastest heat transfer by radiation and conduction. So, although
a physically more accurate modeling of the dynamics of the
system under consideration would require the use of higher-
order models, limiting to the fastest process mode it is usually
enough to work with the IPDT model

F(s) =
Y (s)
U (s)

=
Ks
s
en−Td s. (48)

Parameters of the plant model identified in the vicinity of the
selected operating point and applied in works [31], [64] can
be given as

Ks = 0.01; Td = 0.3s. (49)
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The identified internal feeddback coefficient a = 0.05s−1,
corresponding to a time constant T = 1/a = 20s, will be
neglected. (From this moment on, we stop emphasizing that
these are the parameters of the model and we simply write Ks
and Td instead of Km and Tm.)

B. IPDT-BASED RM-DTCs
Firstly, since the RM-DTC designed in [32] with a second-
order low-pass filter (used in the disturbance observer and the
disturbance feedforward) proved to be insufficient for a noisy
environment, its extension had to be developed to more effec-
tively reduce noise. To illustrate the practical aspects of such a
design continuing from simpler to more complex setup, let us
first consider controller design based on a first-order integral
model (i.e., Td = 0)

F(s) =
Y (s)
U (s)

=
Ks
s
. (50)

In this case, use just the P controller

uw = KP(w− y); KP = 1/(TcKs) (51)

to generate the setpoint feedforward control. For the distur-
bance feedforward the parameters bn corresponding to the
total filter degree n with

Q1(s) =
1

1+ Tos
; Ci(s) =

1+ bns
(1+ Tos)n−1

; n ≥ 2, (52)

the disturbance compensation signal can be calculated as

Uif (s) = Syu(s)Y (s)− Suu(s)U (s);

Syu(s) =
Uaf (s)
Y (s)

=
s(1+ bns)
Ks(Tos+ 1)n

;

Suu(s) =
1+ bns

(Tos+ 1)n
. (53)

From (53) we get the ‘‘stabilized’’ disturbance response

Fu =
1

1− Suu
;

Fniy(s) =
F

1+ FuSyuF
= Ks

(Tos+ 1)n − (1+ bns)
s(Tos+ 1)n

. (54)

To simplify the calculation of a stable Fniy, let us again use the
variable p = Tos and parameters βn = bn/To, κ = KsTo,
when

Fniy(p) = κ
(p+ 1)n − (1+ βnp)

p(p+ 1)n
(55)

Since an elimination of the numerator coefficient at p yields

βn = n; bn = nTo (56)

and due to this choice the lowest two numerator coefficients
in Fniy(p) disappear,

Fniyo(p) = κ

n∑
j=2

(
n
j

)
pj−1

(p+ 1)n
. (57)

FIGURE 9. Reference model control in Matlab/Simulink based on IPDT
model with saturation nonlinearity at the controller output applied to the
thermal channel of TOM1A system for the setpoint change from w = 31 to
w = 37oC at t = 150s and for the fan voltage step from di = 5 to
di = 15 at t = 250s; To = Td = 0.3s; n = 2; Ks = 0.01; Kp = KP (65).

Therefore, by increasing n we get gradually transfer
functions

F2
iyo(p) = κp

1
(p+ 1)2

;

F3
iyo(p) = κp

p+ 3
(p+ 1)3

;

F4
iyo(p) = κp

p2 + 4p+ 6
(p+ 1)4

; (58)

corresponding to

F2
iyo(s) = KsT 2

o s
1

(Tos+ 1)2
;

F3
iyo(s) = KsT 2

o s
Tos+ 3

(Tos+ 1)3
;

F4
iyo(s) = KsT 2

o s
T 2
o s

2
+ 4Tos+ 6

(Tos+ 1)4
; (59)

Instead of calculating the Fniyo(p) numerator by comparing
the coefficients at individual powers of p, the tuning βn and
coefficients αnj could also be evaluated to get zero values of
the numerator (55) derivatives according to p at p = 0, when
from

N n
0 (p) = (p+ 1)n − (1+ βnp)

= 1+ αn1p+ α
n
2p

2
+ αn3p

3 . . .+ αnnp
n
− (1+ βnp),

N n
j (p) =

dN n
j−1(p)

dp
; j = 1, 2, . . . , n, (60)

follows

βn = N n
1 (0); αnj =

N n
j (0)

j(j− 1) . . . 1
; j = 2, 3, . . . , n. (61)

The calculation according to (61) is preferred in the case of
time-delayed integrator, when the numerator of Fniy(p) is

N n
0 (p) = (p+ 1)n − (1+ βnp)e−τdp . (62)
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FIGURE 10. IPDT: Reference model control scheme for the thermo-opto-mechanical systems TOM1A proposed by modification of the scheme in
Figure 12 in [32], by considering higher order noise attenuation filters in the disturbance feedforward (52) and in the disturbance response F n

iyo(s) (63)

applied in Matlab/Simulink with Km = Ks, Tm = Td ,am = 0 (49); Fi (s) = Nf (s)/Pn1(s); Pn1(s) = (1+ Tos)n−1.

With the help of computer algebra system we can then easily
get

bn = nTf + Td ; Fniyo(s) = Kss
Niy(s)

(Tos+ 1)n
, (63)

where

n = 2;

N 2
iy(s) = T 2

o + 2ToTd + T 2
d /2;

n = 3;

N 3
iy(s) = A31s+ A30;

A31 = T 3
o − 3T 2

o Td −
9
2
ToT 2

d −
5
6
T 3
d ;

A30 = 3T 2
o + 3ToTd + T 2

d /2;

n = 4;

N 4
iy(s) = A42s2 + A41s+ A40;

A42 = T 4
o − 4T 3

o Td + 3T 2
o T

2
d +

14
3
ToT 3

d +
17
24
T 4
d ;

A41 = 4T 3
o − 6T 2

o Td − 6ToT 2
d −

5
6
T 3
d ;

A40 = 6T 2
o + 4ToTd + T 2

d /2;

n = 5;

N 5
iy(s) = A53s3 + A52s2 + A51s+ A50;

A53 = T 5
o − 5T 4

o Td + 5T 3
o T

2
d −

5
3
5T 2

o T
3
d

−
25
8
ToT 4

d +
49
120

T 5
d ;

A52 = 5T 4
o − 10T 3

o Td + 5T 2
o T

2
d +

35
6
ToT 3

d +
17
24
T 4
d ;

A51 = 10T 3
o − 10T 2

o Td −
15
2
ToT 2

d −
5
6
T 3
d ;

A50 = 10T 2
o + 5ToTd + T 2

d /2. (64)

From Fniyo(s) it is possible to calculate Fi(s) according to (20).

C. EXPERIMENTS BASED ON IPDT MODELS
Returning now to the experiments on a system with param-
eters (49) and a minimum filter order n = 2, with the time
constant chosen for simplicity as To = Td and the gain of the
feedforward and the stabilization controllers KP = Kp

KP =
1

eKsTd
(65)

corresponding to the double real dominant closed loop pole.
The first aspect we will notice is the consideration of the

constraints of the control signal. If we design the whole
scheme in the linear domain and include the output limitation
on the range u ∈ [0, 100] only at the output of the con-
troller, the transients will be with a typical over-regulation
at the output (see Figure 9). To avoid overshooting due to
the control saturation, according to Figure 12 in [32], the
scheme with feedforward loop feedback from the output
of Dynamic Saturation block might be used. However, this
scheme works correctly only for Kp = KP, which in our
case may not be suitable, because with regard to the trans-
mission of measurement noise we will try to reduce the value
of Kp (while maintaining the loop stability) as much
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FIGURE 11. IPDT: Transients corresponding to the setpoint change from
w = 31 to w = 37oC at t = 150s and to the fan voltage step from di = 5 to
di = 15 at t = 250s; To = Td = 0.3s; n = 2; Ks = 0.01; KP = Kp (65).

as possible. Because when using such a scheme with
Kp < KP, a permanent error occurs at the output, we prefer to
modify the scheme with Dynamic Saturation block according
to Figure 10. In this scheme, the output from the stabilizing
controller has the highest priority, which ensures monotonic
responses after setpoint step changes.

Responses corresponding for KP = Kp (65) to the setpoint
change from w = 31 to w = 37oC at t = 150s and to
the fan voltage step from di = 5 to di = 15 at t = 250s
in Figure 11 show a monotonic output transient to the new
setpoint variable. The disturbance step caused by the fan
voltage change from di = 5 to di = 15 at t = 250s is
practically not visible in the output, just in the control signal
values. Due to the inclusion of internal plant feedback in the
equivalent disturbance, the reconstructed disturbance signif-
icantly changes its value after the setpoint change. Its values
change even after reaching the required output, which is a
manifestation of slow heat transfer by convection. Significant
changes in the reconstructed disturbance occur after a change
in fan power.

As it is clear from the course of the controller output u, such
a nearly ideal output response was achieved by a strongly
noisy controller output. It is also evident that the stabiliz-
ing controller output us does not completely remain at zero
and, especially during the transition to the new setpoint
value, it acquires considerable values. However, given the

FIGURE 12. IPDT: Transients corresponding to the setpoint change from
w = 31 to w = 37oC at t = 150s and to the fan voltage step from
di = 5 to di = 15 at t = 250s; Td = 0.3s; To = 0.25s; n ∈ [2,5]; Ks = 0.01;
Kp = KP (65).

significant difference between the IPDT model used and the
physical nature of the controlled process, this may not be
surprising. In other words, with significant differences of
the plant and model dynamics, the RM-DTC behaves the
same as traditional DOB-based solutions with a stabilizing
controller. In such situations RM-DTC forces, with the help
of stabilizing controller, the controlled system dynamics to
cope the selected model [45]. However, the RM-DTC allows
the deviations between expected and actual behavior to be
evaluated separately with respect to setpoint tracking, distur-
bance reconstruction and compensation, and overall stabiliza-
tion, which can be used for more detailed analysis of system
behavior and optimization of controller design.

Transients corresponding to a slightly decreased value
To = 0.25s, Kp = KP (65), n ∈ [2, 5] and with the
disturbance observer and reference model tuning (63)-(64)
are in Figure 12. Due to the decoupling of the setpoint and
disturbance responses, the DOB filter does not significantly
influence the shapes of setpoint step responses. As a result
of a constant relative order of the disturbance reference
model Fi(s), the increase in DOB filter order n does not
immediately reduce the impact of noise. Therefore, we will
look for other ways to reduce the noise impact. In a nominal
circuit with an integrative plant, it is sufficient for stability to
workwith any small positive valueKp. In the next experiment,
we therefore reduce the gain of the stabilizing controller to
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FIGURE 13. Transients corresponding to the setpoint change from
w = 31 to w = 37oC at t = 150s and to the fan voltage step from
di = 5 to di = 15 at t = 250s; Td = 0.3s; To = 0.25s; n ∈ [2,5];
Ks = 0.01; Kp = 0.1KP (65).

the value Kp = KP/10. The corresponding transients on
Figure 13 show that the rise of the output to the required
setpoint value slowed down a bit by decreasing Kp. However,
it still depends only slightly on the order of disturbance com-
pensation filters n. A comparison of performance measures
in Figure 14 shows that with the reduction of Kp, the values
of IAEs increased slightly, but all other performance values
decreased significantly. A similar effect could be achieved
by simplifying the disturbance reference model, in which the
coefficients at higher powers would be neglected.
Remark 6 (RM-DTCs and Noise Elimination): Decoupled

setpoint tracking and disturbance rejection enabled by the
use of RM-DTCs focus on reducing the stabilizing controller
activity by zeroing its input. This is achieved by decreasing
the measured output impact by opposite expected determin-
istic signals added to the controller input. This is partly
reminiscent of the methods known from acoustics as active
noise control (ANC), noise cancellation (NC), or active noise
reduction (ANR). They are reducing an unwanted permanent,
or periodic sound by the addition of a second sound produced
in antiphase. Although it might be interesting, we did not deal
with the compensation of the effect of steady periodic signals
in this work.

D. EXPERIMENTS BASED ON DIPDT MODELS
The TOM1A system can be extended to a system with
dominant second-order dynamics by including an additional

FIGURE 14. Performance measures corresponding to transients in
Figure 12 (above) and (13) (below) documenting possibilities of
decreasing measurement noise impact.

FIGURE 15. TOM1A system with integrator limited block at the input
constrained to the range u ∈ [0,100], added to obtain a smoother bulb
input signal, can be simply approximated by the DIPDT model.

integrator to the input. This, when controlled by a
limited-range signal u2(t), produces a control signal u(t)
with the limited rate of change at its output. Of course,
u(t) must meet the limits of the admissible 0-100 TOM1A
input range. To (at least partially) avoid the windup problem,
we will use the Integrator Limited block (see Figure 15) in the
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FIGURE 16. DIPDT: Transients corresponding to the Simulink model in
Figure 3 with the controlled plant according to Figure 15 for the setpoint
change from w = 31 to w = 37oC at t = 150s for the fan voltage step
from di = 5 to di = 15 at t = 250s; To = 0.5s; Td = 0.3s; n = 4; Ks = 0.01;
both PD controllers tuned according to (27), TDf = Td /2.

Matlab/Simulink program for this purpose. We will assume
the system model (1) with parameters (49).

Because the output u(t) of the input integrator will
obviously not be affected by external influences, we will
expect the values of the reconstructed disturbance to be
zero at least at steady states. Thanks to the use of con-
trollers with a derivative action, we can also expect an
increased effect of measurement noise. Therefore we choose
To = 0.5s.

An example of measured responses of individual variables
is shown in the Figure 16. In their brief evaluation, it is
necessary to mention:

1) Thanks to the use of an integrator with limited output,
the course of the controlled output is overshooting.
Although its shape resembles the situation in Figure 9,
we now need significantly different approaches to elim-
inate this overshoot: limiting the signal u is actually
a limitation of the state variable of the controlled
second-order system. In such a situation, the parallel
work of two controllers can be used by interconnecting
them using the selector based ‘‘lowest wins’’ strat-
egy [66]. In addition, when wishing to control with a
limited input u2, non-linear algorithms described e.g.
in works [5], [10], [41]–[43] should be used. However,

a more detailed discussion of this issue will require a
separate contribution.

2) From the point of view of the design of the controller
with decoupled setpoint tracking and disturbance rejec-
tion, it is important to check the output of the stabi-
lization controller. Although it is not completely zero
(due to the deviations of the model used and the actual
process and measurement noise), the stabilization sig-
nal us is relatively small compared to the carrier sig-
nals of the design uwf and uif . Experiments show that
us can be further reduced without compromising the
overall stability by reducing the gains of the stabilizing
regulator, which also reduces the noise level of the
signals u2 and u.

3) As we assumed, in steady states, the reconstructed
disturbance is really zero and its course is completely
different from the reconstructed disturbance based on
the IPDT model. It is also worth noting that switching
on the fan represents now, in terms of the reconstructed
disturbance, a far smaller intervention than changing
the setpoint.

4) In addition to the already mentioned issues concerning
the elimination of output overshooting and the design
of transients with rate-limited transients, it would also
be interesting to test the use of higher order filters
and their impact on noise attenuation and closed-loop
robustness also in the case of a design based on the
DIPDT model.

VI. CONCLUSION
The generalisation of the RM-DTC designmethodology from
the work [32], based on the IPDT models, (1) by the case of
disturbance feedforward with higher order filters, (2) the case
of DIPDT models and (3) the addition of experiments with
real-time temperature control allowed to show the advantages
and the current limitations of the methodology.

The advantages of RM -DTCs include (1) the extension of
the number of degrees of freedom in controller design and
(2) the decoupled design of setpoint tracking and disturbance
rejection dynamics, together with (3) the modified controller
structure for separate implementation of setpoint tracking and
disturbance rejection control.

The introduction of a superior stabilising controller, com-
plemented by reference models for setpoint tracking and dis-
turbance rejection, enabled (4) the generalisation of the use of
IMC structures to control unstable circuits while maintaining
the reconstructed disturbance signal.

The separate evaluation of setpoint tracking and distur-
bance rejection together with the change of the controller
signal (controller noise) opens up (5) new possibilities in
terms of diagnosis, monitoring and optimisation of control
loops, which is important especially with regard to fulfilling
the objectives of Industry 4.0 and 5.0.

RM-DTCs are particularly suitable for (6) high-end appli-
cations with high performance and robustness requirements
due to their nature. On the other hand, the structure of the
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RM-DTC controller is more complex than the structure of
common IMC controllers and therefore also requires a more
complex control implementation for constrained processes
(with input, state and output constraints), for processes with
periodic disturbances, nonlinearities, etc.

(7) It is yet worth noting that the closed loop analysis based
on the RM-DTC methodology can also be beneficial when
finally results in using simpler controller structures.

Compared to 2DOF structures SP, which are based on
the reconstruction of the output disturbance by a parallel
model recalculated for an input disturbance and modified
for internal stability by eliminating the reconstructed distur-
bance, RM-DTC seems to be more complex. Its main advan-
tage is that the reconstructed disturbance signal is preserved.
Another advantage of the proposed approach is the separation
of setpoint tracking and disturbance rejection to two different
branches, which are supplemented by the reference models
and the stabilising controller, which simplifies the debugging
and parallelization of the controller program, which can be
beneficial when programming fast embedded-control based
applications.
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