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ABSTRACT This paper proposes a novel multi-objective ant colony system (MOACS) approach to solve
the cooperative task allocation problem of multi-robot systems. The task allocation problem is formulated
as a multi-objective multiple traveling salesman problem (MTSP). The objectives are to minimize the total
and maximum cost of the robotic vehicles so that the workload of each vehicle could be balanced. The time
cost matrices of the salesmen are different and asymmetric due to the different flight speeds of vehicles and
executing time of tasks. Based on the single-objective ant colony system (ACS), a novel solution construction
method and a novel pheromone update rule are proposed. At each step in the solution construction phase,
the ant with minimum cost has the biggest chance to add an unassigned task to balance the workload of each
vehicle, while the ant with maximum cost also has a bigger chance than any other ants to add an unassigned
task to find better Pareto front. The minimum value of the pheromone is limited in the pheromone update
phase, which is helpful in avoiding fast convergence and local optima. Extensive simulation results suggest
that the proposed MOACS has better performance and effectiveness than the existing non-dominated sorting
genetic algorithm II (NSGA-II) and multi-objective particle swarm optimization (MOPSO). Hardware-in-
the-loop experiments on multiple unmanned aerial vehicles (UAVs) also show that compared with NSGA-II
and MOPSO, the maximum and total flight distance of the UAVs with the proposed MOACS are decreased
by up to 28.46% and 26.34%, respectively, while the maximum and total time used to finish all tasks are
decreased by up to 23.86% and 17.94%.

INDEX TERMS Multi-robot systems, cooperative task allocation, multi-objective optimization, multiple
traveling salesmen problem, multi-objective ant colony system.

I. INTRODUCTION
Research on multi-robot systems has drawn significant inter-
est as it is capable of performing complicated and complex
tasks more effectively and efficiently, and it is more fault-
tolerant compared with a single robot [1], [2]. In order to
develop and deploy multi-robot systems in real-world appli-
cations, one of the most critical problems is task allocation,
which aims to coordinate the robotic vehicles to perform tasks
to optimize one or more objectives [3]–[5].

The existing approaches for task allocation can be cat-
egorized into decentralized and centralized ones according
to the team organizational paradigm [6]. A consensus-based

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiwang Dong.

bundle auction (CBBA) algorithm was proposed to solve the
decentralized task allocation problem [7], [8]. In CBBA, each
vehicle makes its own allocation individually to maximize
its local reward. Then each vehicle sends its local allocation
results to the other vehicles if a communication link between
them exists, as well as receiving the allocations of other
vehicles and eliminating the conflicts among their allocations
according to some heuristic rules. A globally consistent allo-
cation could be achieved by repeating the above procedures.
CBBA has been proven to converge within limited iterations,
and 50% optimality of the final allocation can be guaranteed
under diminishing marginal gain assumption. Based on the
scheme of CBBA, a decentralized task allocation method
named performance impact (PI) algorithmwas proposed with
a new concept named significance [9]. Vehicles in CBBA
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are selfish, while they are unselfish in PI algorithm, the
objective of all vehicles is to decrease the total cost of the
entire fleet as much as possible. Simulation results show
that PI performs better than CBBA when applied to search
and rescue scenarios with critical time constraints. Based on
PI algorithm, PI soft-max algorithm was proposed in [10].
Dynamic online rescheduling was allowed in PI soft-max,
and an additional soft-max action-selection procedure was
introduced to increase the exploratory properties of the algo-
rithm. Simulation results show that PI soft-max has better
performance than PI algorithm.

Robustness is the main advantage of decentralized
approaches. The existing vehicles can still work indepen-
dently or cooperatively if some of them have failed in
decentralized systems. It is also easy to add new vehicles
to decentralized systems. However, it may take too much
time to achieve a globally consistent allocation since too
much communication is needed to eliminate the conflicts [6].
Besides, these decentralized approaches may produce highly
sub-optimal solutions since locally optimal solutions may
not result in globally optimal solutions, especially when the
number of vehicles and tasks is large [11].

Many centralized approaches have been developed to
produce solutions with better optimality. In centralized
approaches, the task allocation problem is always for-
mulated as optimization problems, which are always NP
(non-deterministic polynomial)-hard. Then the formulated
problems are solved with exact or heuristic methods. The
results of exact methods are always the same, with the same
input among different runs. The task allocation, sequencing,
and scheduling problem (TASSP) was formulated as a gener-
alization of the single traveling salesman problem (TSP), and
an approximation algorithm was proposed in [12]. The multi-
robot task allocation problem was formulated as an optimal
assignment problem (OAP), then an exact algorithm was
proposed in [13]. Simulation results show that the proposed
method can find optimal assignments within reasonable time
on small instances. However, it takes so much computation
time to find an exact assignment of a substantial number of
vehicles and tasks that these methods can hardly be applied
to real-world applications.

Heuristic methods are developed to find considerable sub-
optimal solutions within less computation time. The results
of heuristic methods may be different even with the same
input among different runs. These methods usually uti-
lize the bionic logic or evolutionary ability to search for
sub-optimal solutions [16]. These methods include genetic
algorithm (GA), particle swarm optimization (PSO), wolf
pack search (WPF) algorithm, and ant colony optimization
(ACO) [14]–[17]. Most of these algorithms have global capa-
bility, which is helpful in dealing with NP-hard problems.
However, these methods can only solve single-objective opti-
mization problems. The objective is usually to minimize the
total cost of all vehicles when applied to solve task allocation
problems, the workload of each vehicle may be significantly
different.

In order to balance the workload while minimizing the
total cost of the vehicles, the task allocation problem has
been formulated as multi-objective optimization problems
(MOOPs). The task allocation problem was formulated as a
multi-objective multiple traveling salesmen problem (MTSP)
in [18], both the total and maximum cost of the vehi-
cles are taken as objectives. Then a multi-objective particle
swarm optimization (MOPSO) approach was proposed, its
novel feature lies in a Pareto front refinement strategy and
a probability-based leader selection strategy. In [19], the
task allocation problem was formulated as a four-objective
MOOP, and a multi-objective optimization genetic algorithm
based on decision preference information (DPIMOGA) was
proposed. In [20], the task allocation problemwas formulated
as a bi-objectiveMTSP, and an ant colony optimization-based
metric algorithm was proposed. Computational results show
that the proposed algorithm is promising and effective for the
bi-objective MTSPs. However, the executing duration time
of tasks is not considered in most of these works, which is
necessary for real-world applications.

This paper studies the offline centralized task allocation
problem of multi-robot systems, in which vehicles should
balance their workload while minimizing the total costs. For
online dynamic changes, the task allocation results can be
modified based on the offline centralized results with the
existing distributed task allocation methods, e.g., CBBA [8]
and PI algorithm [9]. The task allocation problem is formu-
lated as a multi-objective MTSP, in which the objectives are
to minimize the total and maximum time cost of the vehicles.
In order to find more practical solutions, another restriction is
imposed on the two objectives. Then a novel multi-objective
ant colony system (MOACS) approach is proposed, in which
multiple pheromone and heuristic matrices are utilized to
cope with multiple objectives. At each step in the solution
construction phase, the ant with minimum partial cost has the
biggest chance to add an unassigned task to balance the work-
load of each vehicle, while the ant with maximum cost also
has a bigger opportunity than any other ants to add an unas-
signed task to obtain better Pareto front sets. Besides, a novel
global pheromone update rule is proposed to bound the val-
ues of pheromone information, which is helpful in avoid-
ing fast convergence and local optima. Extensive simulation
results suggest that the solutions of the proposed MOACS
can dominate those of the existing non-dominated sorting
genetic algorithm II (NSGA-II) [23], [24] and MOPSO [18],
and the proposed MOACS is efficient in reducing inverted
generational distances (IGDs). Furthermore, experiments on
multiple unmanned aerial vehicles (UAVs) were conducted
on a hardware-in-the-loop platform with real onboard pro-
cessing units, flight controllers, and Adhoc networks. The
results show that compared with NSGA-II and MOPSO,
the maximum and total flight distance of the UAVs with
the proposed MOACS are decreased by up to 28.46% and
26.34%, respectively, while the maximum and total time
used to finish all tasks are decreased by up to 23.86%
and 17.94%.
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The rest of this paper is organized as follows. In
section II, the task allocation problem of multi-robot systems
is described and formulated as a multi-objective MTSP, then
the basic concepts of MOOPs are presented. In section III,
the standard ant colony system (ACS) is introduced first, then
the proposed solution construction method and pheromone
update rule are presented. Simulations results are presented in
section IV, which validate the proposed MOACS. Hardware-
in-the-loop experimental results are presented in section V,
which further show that the proposed MOACS has better
performance than the existing approaches. Finally, section VI
concludes this paper.

II. PROBLEM FORMULATION
A. COOPERATIVE TASK ALLOCATION PROBLEM OF
MULTI-ROBOT SYSTEMS
The goal of task allocation is, given a set of Nv vehicles I =
{1, 2, . . . ,Nv} and a set of Nt tasks J = {0, 1, 2, . . . ,Nt },
to find a conflict-free matching of tasks to vehicles which
minimizes some global costs [7]. Each task is assumed to be
executed by a single vehicle, and each vehicle can perform
multiple tasks in an ordered sequence. Assume that a task
is assigned to more than one vehicle, then the cruising time
of the vehicles that arrive at the task later than the earliest
one is unnecessary, which leads to more cost. Therefore, the
vehicles should perform tasks in a cooperative manner, which
represents that each task needs to be assigned to at least and
no more than one vehicle. Since there are Nt tasks and Nv
vehicles, each task can only be performed by a single vehicle,
and each vehicle can perform multiple tasks, tasks should be
firstly divided into Nv subsets, each of them is performed
by a vehicle. Besides, the order to perform its tasks for each
vehicle should be optimized. Given the tasks being performed
by a vehicle, the cost may be significantly different if the
tasks are performed in different orders; thus, the order of
performing tasks should be optimized to minimize the total
cost.

In this paper, the local cost of each vehicle is considered
as its total time used to perform tasks, which refers to the
time period from when the vehicle starts to perform tasks to
when it finishes its tasks and returns to base. The total cost
of all vehicles is considered as the sum of local costs. Due
to the different locations of vehicles and tasks, vehicles need
to reach tasks before executing them, and the cruising speeds
of different vehicles are assumed to be different. All vehicles
start to perform tasks from the same position and return to
this position after finishing all tasks. This position may be the
location of a base station in real-world applications, which
is named depot. In this paper, the depot is always assumed
to be task 0 ∈ J . A duration time is lasted for a vehicle to
execute a task, which refers to the time period from when
the vehicle starts to execute this task to when the task is
successfully executed. The duration time of a task is assumed
to be different if it is executed by different vehicles due to the
different capabilities of the vehicles. Therefore, the time cost

FIGURE 1. A sample task allocation problem with 2 vehicles and 9 tasks.

of a vehicle from one task to another is dependent on both the
cruising time and executing duration time, and it is defined as
the sum of the cruising time and the executing duration time
of the former task, which is

c(i)jk = djk/ui + tij (1)

where c(i)jk denotes the time cost of vehicle i from task j to k ,
djk is the distance from task j to k , ui is the cruising speed
of vehicle i, and tij is the duration time used by vehicle i to
execute task j.
Note that the time cost defined in (1) is different for

different vehicles due to the different cruising speeds of the
vehicles and executing time of tasks. Besides, the time cost
in (1) is usually asymmetric since c(i)jk 6= c(i)kj due to the

different executing duration time of task j and k . The cost is
symmetric if and only if the executing time of all tasks by all
vehicles is the same, i.e., c(i)jk = c(i)kj ,∀i ∈ I, and j, k ∈ J .

LetPi be the task path of vehicle i, which is a list containing
an ordered sequence of tasks in J , its kth element Pik = j
if vehicle i performs task j at the kth point along Pi. Let
P = {P1,P2, . . . ,PNv} be the task paths of all vehicles.
A sample task allocation problem is shown in Fig. 1, in which
V1 and V2 represent two vehicles, while T1−T9 are nine tasks
in a mission area to be performed by the two vehicles, and
the depot is outside the mission area. In this sample, the task
paths of V1 and V2 are [0, 1, 6, 7, 2, 0] and [0, 3, 5, 9, 4, 8, 0],
respectively.

Suppose that the task allocation problem is formulated as
a single-objective optimization problem to minimize the total
cost of all vehicles, the optimal solution is obtained when a
vehicle performs all tasks if no other restrictions are imposed.
If a new vehicle is used, it needs to start and end its path at
the depot, thus the depot is visited many times, which leads
to additional costs [25]. If only the balance of the cost of each
vehicle is considered, the costs cannot be minimized, which
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often leads to unnecessary costs [24]. Therefore, not only
the total cost should be minimized, but also the cost of each
vehicle should be balanced. To balance the workload while
minimizing the total cost, besides taking the total cost as an
objective, the author in [25] also took the unbalancing degree
as another objective, which was measured as the difference
between the maximum and minimum cost of all vehicles.
However, the total cost cannot be optimized very well since
it is much larger than the unbalancing degree.

In this paper, the task allocation problem is formulated as
a multi-objective asymmetric MTSP, in which the objectives
are to minimize the total and maximum time cost of the vehi-
cles while the cost of each vehicle is asymmetric. The main
advantage of multi-robot systems is efficiency compared with
a single vehicle. Assume that the maximum time cost of the
vehicles is close enough to the total time cost, then the vehicle
with maximum time cost is still busy while the others have
already finished their tasks, which is inefficient in reducing
the time used by the vehicles to finish all tasks. Therefore,
another restriction is imposed on the two objectives, which is
used to measure the unbalancing degree of solutions and limit
the number of solutions in the results.

The task allocation problem can be formulated as the fol-
lowing linear integer programming problem [24]:

minF = {f1(P), f2(P)} (2)

f1(P) =
Nv∑
i=1

Nt∑
j=0

Nt∑
k=0

xijkc
(i)
jk (Pi) (3)

f2(P) = max
16i6Nv

Nt∑
j=0

Nt∑
k=0

xijkc
(i)
jk (Pi) (4)

s.t.
Nv∑
i=1

Nt∑
j=1

xijk = 1, ∀k ∈ J \ {0} (5)

Nv∑
i=1

Nt∑
k=1

xijk = 1, ∀j ∈ J \ {0} (6)

Nv∑
i=1

Nt∑
j=1

xij0 = Nv (7)

Nv∑
i=1

Nt∑
k=1

xi0k = Nv (8)

Nv∑
i=1

Nt∑
j=1

Nt∑
k=1

xijk = Nt (9)

f1(P) > λf2(P) (10)

where xijk equals to 1 if vehicle i performs task k after
finishing j and 0 otherwise, c(i)jk (Pi) is the cost of vehicle i
from task j to k along task path Pi, which is defined in (1).
Equations (3) and (4) represent the total and maximum cost
of the vehicles, respectively. Constraints (5) and (6) represent
that each task except the depot can only be performed once,
(7) and (8) represent that all vehicles start their task paths

from the depot and return to the depot after finishing all
tasks, while constraint (9) represents that all tasks should
be performed. In (10), λ is a parameter used to limit the
unbalancing degree of the task paths. The maximum value
of λ is Nv when the cost of each vehicle is the same, while the
minimum value is 1 when all tasks are assigned to a vehicle.
In this paper, λ is set to Nv/2, which represents that the total
cost should be bigger than Nv/2 times the maximum cost.

B. MULTI OBJECTIVE OPTIMIZATION PROBLEM
A MOOP with m objectives can be generally stated as:

minG(x) = {g1(x), g2(x), . . . , gm(x)}

s.t. x ∈ � (11)

where � is the decision space, G : � → Rm consists of
m real-value objective functions g1, g2, . . . , gm, and Rm is
called the objective space.

Let u, v ∈ � be two solutions to (11), u is said to be domi-
nated by v, which is denoted as u � v, if gk (v) 6 gk (u),∀k =
1, 2, . . . ,m and gk (v) < gk (u), ∃k = 1, 2, . . . ,m. Similarly,
u � v denotes that u is not dominated by v. A solution is
said to be Pareto optimal if it is not dominated by any other
solutions, while the set containing all Pareto optimal solutions
is said to be Pareto front, which is denoted as P . Hence, the
goal of solving MOOPs is to find the best Pareto front sets.

III. MULTI-OBJECTIVE ANT COLONY SYSTEM
A. BASIC ANT COLONY SYSTEM
Inspired by the foraging behavior of real ants that succeed in
finding the shortest paths between their nest and food sources,
ACS was originally proposed by Dorigo to solve TSPs [26].
Ants lay pheromone on their paths while traveling between
their nest and food sources, and are willing to select the paths
with more pheromone later. Therefore, the pheromone on
shorter paths accumulates faster, more and more ants will
choose these shorter paths. Finally, the shortest path may be
found by repeating the above procedures.

Three main phases are involved in the ACS optimiza-
tion process, they are solution construction phase, local
pheromone update phase, and global pheromone update
phase. The artificial ants used in ACS build their solutions
according to a state transition rule by iteratively adding nodes,
i.e., cities in TSPs or tasks in task allocation problems, to their
partially constructed solutions. In this process, two factors are
taken into effect: the heuristic information about the prob-
lem being solved and the pheromone information, which is
updated dynamically during the optimization process. Local
pheromone update happens while ants are constructing their
solutions. If an ant at a node selects another node as the next
one to visit, then the pheromone on the link between the two
nodes will decrease, and the link becomes less attractive to
other ants. Global pheromone update happens after all ants
have built their solutions. The pheromone on the links in the
global best solution will increase, and these links may attract
more ants in the following optimization process.

56378 VOLUME 10, 2022



S. Wang et al.: Cooperative Task Allocation for Multi-Robot Systems Based on MOACS

Algorithm 1 Initialization
1: C = {1, 2, . . . ,Nt } // the tasks not assigned yet
2: P̂(0)i,1 = 0,∀i ∈ I // assign the depot to each ant
3: while C is not empty do
4: î = Int(1,Nv) // select an ant randomly
5: r = P̂(0)

î,|P̂(0)
î
|
// the last task of î

6: s = arg minu∈Cc
(i)
ru // find the next task

7: P̂(0)
î,|P̂(0)

î
|+1
= s // assign s to î

8: C = C \ {s} // remove s from C
9: end while

10: P̂(0)
i,|P̂(0)i |+1

= 0,∀i ∈ I // all ants return to the depot

11: P = {P(0)
} // P is initialized as P(0)

12: for (r, s) ∈ (J ∪ {0})2 do
13: η

(i)
rs = 1/c(i)rs ,∀i ∈ I

14: τ
(1)
rs = 1/f1(P(0)) // first pheromone trail

15: τ
(2)
rs = 1/Nv/f2(P(0)) //second pheromone trail

16: end for

B. MULTI-OBJECTIVE ANT COLONY SYSTEM
1) BASIC SETTINGS AND INITIALIZATION

In order to cope with multiple salesmen and objectives,
the data structures of solutions, ant groups, pheromone and
heuristic information matrices, and Pareto front in the pro-
posed MOACS are first stated as follows. Each solution P =
{P1,P2, . . . ,PNv} of the multi-objective MTSP contains Nv
ordered sequences of tasks, the ith sequence Pi is the task
path of vehicle i. Each ant group constructs a solution at each
iteration, and Nv ants are employed in each group. For a link
between task r and s, there are two kinds of pheromone τ (1)rs
and τ (2)rs . Since the time cost of each vehicle from one task
to another is different, the heuristic information of each ant
is different. Nv heuristic matrices are employed, and the ith
heuristic information between task r and s for the ith ant in a
group is denoted as η(i)rs . The Pareto front P contains all non-
dominated solutions found so far, and its lth element P(l) is a
non-dominated solution to the multi-objective MTSP.

The procedures of initialization are summarized as
Algorithm 1. In order to obtain the initial value of the
pheromone matrices, a feasible solution P(0) is generated as
follows. An ant in a group is randomly selected firstly, and the
next tasks being assigned to this ant is chosen as the closest
unassigned one relative to the last task of this ant according to
the time cost (Line 1-10 inAlgorithm 1, P̂(0)i is the ith partially
constructed task path of P(0)). The above procedures repeat
until all tasks have been assigned to the ants in a group.

The Pareto front set is initialized as {P(0)
}, and the heuristic

information on a link between task r and s for the ith ant
in a group is initialized as the inverse of the time cost,

i.e. η(i)rs = 1/c(i)rs . Then the initial value of the pheromone
matrices for the first objective is set to τ (1)0 = 1/f (P(0)).
Since f1 is approximately Nv times of f2 in the most ideal case
and the two pheromone matrices should be balanced, for the

Algorithm 2 Solution Construction Method
1: for j = 1 to Ng do
2: C = {1, 2, . . . ,Nt } // the tasks not assigned yet
3: P̂i,1 = 0,∀i ∈ I // assign the depot to each ant
4: while C is not empty do
5: Choose an ant î according to (12)
6: r = P̂î,|P̂î|

// the last task of î
7: Choose the next task s according to (13)
8: P̂î,|P̂î|+1

= s // assign s to î
9: Update pheromone on rs according to (16)

10: C = C \ {s} // remove s from C
11: end while
12: P̂i,|P̂i|+1 = 0,∀i ∈ I // all ants return to depot
13: P = P ∪ {P}, if P � P(l),∀P(l)

∈ P
14: for l = 1 to |P| do
15: P = P \ {P(l)

}, if P(l)
� P

16: end for
17: end for

second objective, the initial value of the pheromone is set to
τ
(2)
0 = 1/Nv/f2(P(0)).

2) SOLUTION CONSTRUCTION
The procedures of the solution construction phase are sum-

marized as Algorithm 2. At the beginning of each iteration,
Ng ant groups are deployed at the depot, and each ant group
builds a solution during each iteration. Since there areNv ants
in each group and tasks are iteratively added to the ants one by
one, an ant needs to be first selected to add an unassigned task.
The partial cost of each ant in an ant group could be obtained
at each step of the solution construction phase because tasks
are assigned one by one. On the one hand, in order to mini-
mize the maximum cost of all ants in a group, the ant with
the minimum partial cost is selected to add an unassigned
task. In this way, only the minimum partial cost increases,
then the maximum cost could be minimized, and the cost
of each ant in a group could also be balanced. On the other
hand, if only the ant with theminimum partial cost is selected,
the algorithm will converge within very few iterations and be
trapped into local optimal solutions. Therefore, the ant with
maximum partial cost also has a bigger chance to be selected
to avoid local optima. Since the optimal solution is obtained
once an ant in a group performs all tasks without additional
restrictions, more non-dominated solutions may be found by
selecting the ant with maximum partial cost. Besides, the ants
except those with minimum and maximum cost should also
have chances to be selected to add a new task. Therefore, the
ant î adding the next unassigned task is selected as follows.

î =


arg min16i6NvC(P̂i), if q < q0
arg max16i6NvC(P̂i), if q > 1− q1
Int(1,Nv), otherwise

(12)

where P̂i is partially constructed solution of ith ant in a group,
q is a random number uniformly distributed in [0, 1]. q0 is the
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probability that the ant with minimum partial cost is selected,
while q1 is the probability that the ant with maximum partial
cost is selected. Int(1,Nv) is a random integer between 1 and
Nv, and C(P̂i) is the partial cost of ith ant, which is defined as

C(P̂i) =
Nt∑
j=0

Nt∑
k=0

xijkc
(i)
jk (P̂i) (13)

Once the ant î in a group is selected, let r be the last task in
P̂î, and task s being assigned to î is selected according to the
following state transition rule:

s =

{
arg maxu∈C[

∏2
k=1[τ

(k)
ru ]αk ] · [η(î)ru ]β , if p < p0

S, otherwise
(14)

where C is the set that contains the tasks that have not been
assigned yet, α1, α2 and β are three parameters, which are
used to determine the relative importance of pheromone ver-
sus heuristic information. p is a random number uniformly
distributed in [0, 1], and 0 6 p0 6 1 is a parameter to
determine which way is selected to obtain the next task to
be assigned. Here, [

∏2
k=1[τ

(k)
ru ]αk ] · [η(î)ru ]β is said to be the

decision information of task u, which is used to decide the
next task being assigned. If p < p0, the task with maximum
decision information is assigned. S is a random variable
selected according to the following probability distribution.

prs =


[
∏2

k=1[τ
(k)
rs ]αk ] · [η(î)rs ]β∑

u∈C[
∏2

k=1[τ
(k)
ru ]αk ] · [η(î)ru ]β

, if s ∈ C

0, otherwise

(15)

Equation (15) represents that if p > p0, the next task
being assigned is selected randomly from the unassigned ones
according to their decision information. The task with bigger
decision information has a bigger chance to be selected. Once
a task s is selected to be assigned to î, it will be removed from
the unassigned set C.

The above solution construction procedures repeat until all
tasks have been assigned. Then the depot, i.e., task 0 ∈ J ,
is assigned to each ant in the group. If the newly constructed
solution is not dominated by any solutions in the Pareto front
set, i.e., P � P(l),∀P(l)

∈ P , it will be added to the Pareto
set (Line 13 in Algorithm 2). The solutions in the Pareto set
may be dominated by this newly constructed solution, and the
dominated ones are removed from the Pareto set(Line 14-16
in Algorithm 2).

3) PHEROMONE UPDATE
Each time an ant at task r in a group selects s as the next one
being assigned, the local pheromone update rule is applied on
the link between task r and s. The pheromone level is updated
as

τ (k)rs ← (1− ρ) · τ (k)rs + ρ · τ
(k)
0 , k = 1, 2 (16)

where 0 6 ρ 6 1 is a parameter used to balance the historical
and newly added pheromone.

Algorithm 3 Global Pheromone Update Rule

1: for (r, s) ∈ (J ∪ {0})2 do
2: 1τ

(k)
rs = τ

(k)
0 // initialize 1τ (k)rs

3: end for
4: for l = 1 to |P| do
5: for i = 1 to Nv do
6: for j = 1 to |P(l)

i | − 1 do
7: r = P(l)i,j , s = P(l)i,j+1
8: Update 1τ (k)rs according to (18)
9: end for
10: end for
11: end for
12: for (r, s) ∈ (J ∪ {0})2 do
13: Update pheromone on rs according to (17) and (18)
14: end for

The global pheromone update phase, which is summarized
as Algorithm 3, happens after all ant groups have built their
solutions during each iteration. The pheromone level on the
link between task r and s is updated as

τ (k)rs ← (1− ρ) · τ (k)rs + ρ ·1τ
(k)
rs , k = 1, 2 (17)

where 1τ (k)rs is the newly added pheromone on the link
between r and s for the kth objective, which is defined as

1τ (k)rs =

τ
(k)
0 +

∑|P |
l=1

1
nk · fk (P(l))

, if rs ∈ P(l),P(l)
∈ P

τ
(k)
0 , otherwise

(18)

where P(l) denotes the lth non-dominated solution in the
Pareto front set, |P| is the number of solutions in P , nk is
a parameter used to balance the two pheromone matrices,
nk = 1 if k = 1 and nk = Nv if k = 2.
All the solutions in P are not dominated by P(0), then for

any k = 1, 2, there exists P(l)
∈ P , which satisfies fk (P(l)) 6

fk (P(0)), thus 1τ (k)rs > τ
(k)
0 always holds. 1τ (k)rs = τ

(k)
0 if

and only if the solutions which is not dominated by P(0) have
not been found yet, and only P(0) is in P . Therefore, the
pheromone level on the links in the solutions in P increases
by applying the global pheromone update rule, and more ants
are attracted to select these links to find better solutions.

For a link between r and s, if it has never been on the
solutions in P , the pheromone level for the kth objective is
always τ (k)0 .When the local pheromone update rule is applied,
the pheromone level is still τ (k)0 . If the link between task r and
s has ever been on the solutions in the global Pareto front set,
the pheromone level will be higher than τ (k)0 if ρ 6= 0. When
the local pheromone update rule is applied, the pheromone
level will decrease, but τ (k)rs > τ

(0)
rs always holds. Therefore,

the minimum pheromone level is limited by τ (0)0 with the
proposed global pheromone update rule, which is useful in
avoiding fast convergence and local optima. The goal of local
pheromone update is to decrease the pheromone on the links
that are just selected by an ant, and the attractiveness of this
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link to other ants decreases, so that the ants in different groups
may not select the same path repeatedly.

C. COMPUTATIONAL COMPLEXITY
In the initialization phase, the computational complex-
ity of constructing a feasible solution P(0) (line 1-10 in
Algorithm 1) is O(N 2

t ) in the worst case, while the com-
plexity of the initialization (line 11-16 in Algorithm 1) is
O((Nt + 1)2). Therefore, the total complexity of the initial-
ization phase is summed to be O(N 2

t ).
In the solution construction phase, the computational

complexity of constructing a new solution (line 2-12 in
Algorithm 2) is O(NvN 2

t ), while the complexity of remov-
ing dominated solutions in P (line 13-16 in Algorithm 2)
is O(|P|). Since there are Ng ant groups, the solution con-
struction phase repeats Ng times. Therefore, the total com-
plexity of solution construction phase is summed to be
O(Ng(NvN 2

t + |P|)).
In the global pheromone update phase, the computa-

tional complexity of calculating new added pheromone1τ (k)rs
(line 1-11 in Algorithm 3) is O(NvNt |P|) in the worst case,
while the complexity of updating pheromone (line 12-14
in Algorithm 3) is O((Nt + 1)2). Therefore, the total
complexity of global pheromone update is summed to be
O(N 2

t + NvNt |P|).
Assume that the maximum number of iterations is set toN ,

then the solution construction phase and pheromone update
phase repeat N times, and the complexity of initialization
is much less than that of the solution construction phase.
Therefore, the total complexity of the proposed MOACS is
bounded by O(N (NgNvN 2

t + NvNt |P| + Ng|P|)).

IV. SIMULATIONS AND RESULTS
A. PARAMETER CONFIGURATIONS
The proposed approach is simulated on several different sce-
narios in which the tasks to be performed are assumed to
be known. Since there are currently no benchmark examples
for multi-objective MTSPs to be used to evaluate the per-
formance of various approaches, most existing work is done
on the TSP benchmark [19]. In this paper, four instances in
TSPLIB1 named kroA100, kroA150, kroA200, and kroB150
were tested. The number at the last of the instance name
represents the number of positions listed in the instance,
e.g., there are 100 and 150 positions in kroA100 and
kroA150, respectively. All vehicles were assumed to be at
the first position in the instances before performing tasks,
while the tasks to be performed were assumed to be at the
other positions. The units of the positions given in the TSP
instances were assumed to be meters. The cruising speeds of
the vehicles were uniformly set between 20 m/s and 30 m/s,
while the executing duration time of a task performed by a
vehicle was uniformly set between 50 s to 100 s.

The proposed MOACS was compared with the existing
well-known NSGA-II and MOPSO. NSGA-II extends GA

1http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

TABLE 1. Detailed values of the parameters used in the proposed MOACS.

to cope with multiple objectives. At each iteration, a new
temporary population is generated by crossover and muta-
tion operators, the operators in [24] were adopted in this
paper. Then the individuals in the union of this temporary
population and the original population are sorted by their
dominated level and crowding distances [23]. The individuals
with lower dominated levels and bigger crowded distances are
accepted to the next generation, while the others are rejected.
Therefore, the optimality of solutions increases along with
iterations. PSO was proposed in [27] to train the artificial
neural network weights in 1995 and has been successfully
applied in many optimization problems. At each iteration, the
velocity of each particle is updated with its current velocity,
position, local and global best positions. Then the position of
each particle is updated with the velocity that is just updated.
The local and global best positions are updated if the new
position is better than them. The author in [18] extends the
standard single-objective PSO to solve the multi-objective
MTSP by proposing a Pareto front refinement strategy and a
probability-based leader selection strategy. Besides, a Hamil-
tonian tour improvement algorithm is utilized to improve the
task path of each vehicle to decrease the costs further.

The parameters used in the proposed MOACS are shown
in Table 1. In order to make a fair comparison, the number
of populations in NSGA-II and the number of particles in
MOPSO were also set to 24. The other parameters used
in NSGA-II and MOPSO were the same as those in [24]
and [18], respectively. For all three algorithms, the num-
ber of iterations was set to 100. To evaluate the obtained
Pareto fronts, 20 independent runs for each investigated algo-
rithm and TSP instance were performed. From these solu-
tions obtained among 20 runs, the non-dominated ones were
extracted to obtain a single approximate Pareto front set for
each algorithm and each MTSP instance.

B. SIMULATION RESULTS
Fig. 2 depicts the approximate Pareto front sets obtained
by the three investigated algorithms on the instance named
kroB150 with a different number of vehicles. The horizontal
and vertical axis represents the total and maximum time of
the vehicles used to perform all the tasks. The time used
by a vehicle to perform its tasks refers to the time period
from when it starts to perform tasks to when it finishes
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FIGURE 2. Non-dominated fronts obtained by the proposed MOACS, NSGA-II and MOPSO on kroB150 with a different number of vehicles.

FIGURE 3. Non-dominated fronts obtained by the proposed MOACS, NSGA-II and MOPSO on kroA100, kroA150 and kroA200 with 4 vehicles.

all its tasks and returns to the depot. As shown in the
figure, the solutions of the proposed MOACS always dom-
inate those of NSGA-II and MOPSO despite the number of
vehicles. Furthermore, the three algorithms were evaluated
with different TSP instances named kroA100, kroA150, and
kroA200, and the number of vehicles was set to 4. The
approximate Pareto front sets obtained by each algorithm
are shown in Fig. 3. The solutions of the proposed MOACS
for all three instances also dominate those of NSGA-II
and MOPSO.

Note that the Pareto sets of the proposedMOACS are more
sparse than NSGA-II andMOPSO. One reason is that in order
to balance the workload of each vehicle, some solutions are
excluded by applying the constraint (10). Another reason is
that the two objectives are not negatively correlated. One
objective will decrease as the other one increase. On the
contrary, the objectives are positively correlated to some
degree. The decrease in the maximum time may also result
in a decrease in the total time. An ideal case is that the costs
of all vehicles are the same and minimized, then only one
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FIGURE 4. Evolution of average IGD values along with the number of iterations on instances named as kroA100, kroA150 and kroA200.

TABLE 2. Average CPU time used by the proposed MOACS, NSGA-II and
MOPSO after 100 iterations (unit: seconds).

solution is in the Pareto front set. Even though the Pareto front
set of the proposed MOACS is more sparse, the solutions of
the proposed MOACS can still dominate those of NSGA-II
and MOPSO. The proposed MOACS is more practical since
only one solution is needed in most real-world applications.

The algorithms were implemented with MATLAB 2017b
on a computer with a CPU Intel Core i5-7500 of 3.4 GHz
and 8 GB of RAM. Table 2 shows the average and standard
deviation of CPU time used by each algorithm. Among the
three algorithms, the proposed MOACS takes the least CPU
time, while MOPSO takes the longest CPU time, and it is
not stable with a fixed TSP instance and number of vehicles.
In MOPSO, each particle has a private Pareto front set, and
the number of solutions in the private sets may be of great
difference among different runs. Note that, for kroB150, the
CPU time used by the proposedMOACS is almost unchanged
with a different number of vehicles, because the complexity
of the proposed approach is mainly determined by the number
of tasks.

IGDs [22] were also computed for a more accurate analysis
of the three algorithms. IGD is an indicator that shows how far
is the real Pareto front from the approximate Pareto front set.
Let P̂ be a set of uniformly distributed points in the objective
space along real Pareto front, and P be an approximate set,
the IGD from P̂ to P is defined as

D(P̂,P) =

∑
v∈P̂ d(v,P)

|P̂|
(19)

FIGURE 5. Non-dominated fronts obtained by the proposed MOACS on
instance named as kroB150 with different kinds of cost definitions.

where v is an element in the real Pareto front, d(v,P) is the
minimum Euclidean distance between v and points inP . If P̂
is large enough to represent real Pareto front well, D(P̂,P)
can measure both the diversity and convergence of P .

In order to compute the IGD values, P̂ was set to the set
that contains all non-dominated solutions found by all the
runs of all the three algorithms. For a specified TSP instance,
the number of iterations was set to 2000, and 20 independent
runs were performed for each of the three algorithms. Among
all the solutions obtained by the three algorithms, the non-
dominated ones were extracted as P̂ .

Fig. 4 depicts the IGD values obtained by the three algo-
rithms along with iterations, in which IGD values are the
average of 20 runs. As shown in Fig. 4, the IGD values of
the proposed MOACS are always less than NSGA-II and
MOPSO at different iterations, which shows that the pro-
posed MOACS is more efficient in reducing IGD values than
NSGA-II and MOPSO.

C. COST DEFINITION
The time cost of vehicle i from task j to k is defined as (1),
which refers to the sum of the cruising time from the former
task to the latter one and executing time of the former task.
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FIGURE 6. Main scheme of the hardware-in-the-loop experimental platform with real Adhoc networks, onboard processing units and
flight controllers.

Similarly, given any µ in [0, 1], the time cost can also be
defined as

c(i)jk = djk/ui + (1− µ)tij + µtik (20)

In this section, three values of µ were considered. µ = 0,
which is the same as (1). µ = 0.5, which represents that the
cost is defined as the sum of the cruising time and half of the
executing time of both the former and latter tasks. µ = 1,
which represents that the cost is defined as the sum of the
cruising time and executing time of the latter task.

The test scenario is kroB150, the cruising speeds of all
vehicles were set to 20 m/s, and the executing time of each
task for different vehicles is assumed to be the same, which
is uniformly generated between 50 s and 100 s. The none-
dominated front sets obtained by the proposed MOACS with
different µ are shown in Fig. 5. As shown in the figure, the
solutions with µ = 0 dominates those with µ = 0.5, while
the solutions with µ = 0.5 dominates those with µ = 1.
In the optimization process of the proposed MOACS, the

ants are more willing to select tasks with less time cost from
the current task according to (14). Assume that a vehicle is
at the former task, then the executing time of this task is
necessary despite the value of µ. When µ = 0, the time
cost from the current task to the next one being selected is
only determined by the cruising time except for the necessary
executing time of the former task. However, when µ > 0,
the time cost is determined by both the cruising time and the
executing time of the next task being selected. Then more
cruising time may be needed from the current task to the next
one if the executing time of the next task is shorter. Besides,
when the executing time of each task performed by different
vehicles is assumed to be the same, the executing time of tasks

in the total cost is always the same, which equals the total
executing time of all tasks. Then the total time cost of vehicles
is only dependent on the total cruising time of all vehicles.
Therefore, the total time of the vehicles may be bigger due
to the more cruising time when µ > 0. The bigger µ is, the
cost defined in (20) is more related to the executing time of
the latter task, then more time is needed by the vehicles.

V. HARDWARE-IN-THE-LOOP EXPERIMENTS
A. EXPERIMENTAL CONFIGURATION
In order to further investigate the proposed approach, experi-
ments with UAVs were conducted on a hardware-in-the-loop
platform. The main scheme of the experimental platform is
illustrated in Fig. 6. Real onboard modules are utilized in the
platform, which includes Adhoc networks, onboard process-
ing units, and flight controllers, while scenarios, UAVs, and
tasks are virtually defined and displayed in a host machine.

As illustrated in Fig. 6, the scenario, UAVs, and tasks are
first defined in the host machine. In this experiment, fix-wing
UAVs are employed, and tasks are uniformly distributed in the
mission area. Then an investigated task allocation algorithm,
i.e., MOACS, NSGA-II, or MOPSO, is called to calculate the
task paths. Then the task path of each UAV is sent from the
host machine to the corresponding UAV. Once the task path is
received by the onboard Adhoc network of each UAV, it will
be transmitted to and stored by the onboard processing unit.
At each step, the target flight position is sent to the flight
controller one by one from the onboard processing unit. Once
the next flight position is received, the flight controller will
calculate the trajectory according to the next flight position,
current position, flight speed, and direction. Then the real-
time state of each UAV is sent to the host machine from the
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FIGURE 7. The test scenario with 2 UAVs and 50 tasks used in the
experiments, mission area, tasks, task paths, and trajectories are
illustrated.

flight controller. Finally, the real-time state of the scenario,
UAVs, and tasks is updated and displayed in the host machine.

Fig. 7 shows the test scenario in the experiments.
The mission area was bounded by (99.83◦E, 40.43◦N ),
(99.83◦E, 40.61◦N ), (100.03◦ E, 40.43◦N ) and (100.03◦E,
40.61◦N ), where N represents northern latitude and E repre-
sents east longitude. Fifty tasks were uniformly generated in
the mission area. The airport was located at the bottom left
corner outside the mission area, which is not illustrated in the
figure. Due to hardware limitations, the number of UAVs was
set between 2 to 4 in the experiments, and the executing time
of tasks was set to 0 since the flight controllers cannot hold
the positions of fixed-wing UAVs.

The task paths and trajectories illustrated in Fig. 7 were
obtained by the proposed MOACS. As shown in the figure,
the trajectories do not always follow the task paths, especially
when the next task is close to the current one and the steering
angle is big (as shown in the red dashed circle in Fig. 7).
This is caused by the limitation of the turning radius, and
the trajectories driven by the flight controller will be like
‘‘8’’, which leads to unnecessary cost. Thus in real-world
applications, the flight distance may be of great difference
even the cost of Euclidean distance is almostly the same.

The turning radius of each UAV is determined by its flight
speed, while the flight speed is controlled by its onboard flight
controller and varies from time to time. In this experiment,
the flight speeds of the UAVs were set to 180 km/h. Due to
the properties of the flight controller, the flight speed of a
UAV might be more or less than 180 km/h sometimes. As the
flight speed was time-varying, the flight time of UAVs was
not only determined by their flight distance. Therefore, both
the flight time and distance were taken as metrics to evaluate
the algorithms.

The result given by each investigated algorithm is a Pareto
front set that contains several task paths, but only one task
path could be sent to the onboard modules and displayed in
the host machine. In most real-world applications, the main
advantage of multiple UAVs is efficiency compared with a

TABLE 3. The maximum and total flight distance of the UAVs along the
task path of the proposed MOACS, NSGA-II and MOPSO (unit: kilometers).

TABLE 4. The maximum and total time used to finish all the 50 tasks
along the task path of the proposed MOACS, NSGA-II and MOPSO (unit:
minutes).

single one. The time used to finish all tasks is usually more
important than the total time used by all UAVs, and it equals
the maximum time used by each UAV. Therefore, the task
path whose maximum cost is minimum is sent to the onboard
modules as the real task path of the UAVs.

B. EXPERIMENTAL RESULTS
The maximum and total flight distance to finish all fifty
tasks with a different number of UAVs are shown in Table 3.
Both the maximum and total flight distances with the pro-
posed MOACS are the smallest. Compared with NSGA-II
and MOPSO, the total flight distance used by all UAVs is
decreased by up to 23.98% and 15.83% respectively, while
the maximum flight distance of each UAV is decreased by up
to 25.16% and 23.86%.

The maximum and total time used by a different number
of UAVs to finish all fifty tasks are shown in Table 4. Both
the maximum and total time used by a different number of
UAVs with the proposed MOACS are always the smallest.
Compared with NSGA-II and MOPSO, the total flight time
used by all UAVs is decreased by up to 26.34% and 17.94%
respectively, while the maximum time of each individual
UAV is decreased by up to 28.46% and 20.95%.

As shown in Table 3 and 4, as the number of UAVs
increases, the maximum flight distance and time decrease,
while the total flight distance and time increase. Since all
UAVs depart from the depot and return to the depot after
finishing all tasks, additional flight distance and time are
needed when the number of UAVs increases, thus the total
distance and time increase. Note that when the number of
UAVs is four and the task allocation algorithm is NSGA-II,

VOLUME 10, 2022 56385



S. Wang et al.: Cooperative Task Allocation for Multi-Robot Systems Based on MOACS

the ID of the UAV with maximum flight distance is 4, while
that with the maximum flight time is 1. The difference is
caused by the time-varying flight speeds of UAVs. When
turning the flight direction, the speed will decrease, and when
the trajectory is a long straight line, the speed will increase.
Therefore, the ID of the UAV with maximum flight distance
may be different from that with maximum time used to finish
its tasks.

VI. CONCLUSION
In this paper, a novel MOACS approach has been presented
to solve the task allocation problem of multi-robot systems.
Since multiple objectives are considered, the standard ACS
cannot be applied to solve this problem directly, and a
Pareto front-based MOACS algorithm is proposed. In the
proposed MOACS, a novel solution construction method is
proposed to cope with the multiple salesmen and objectives,
which aims to minimize the total cost of all vehicles and
balance the cost of each vehicle. Besides, a novel global
pheromone update rule is proposed to avoid fast convergence
and local optima. Simulation results have shown that the
proposed approach has better performance than other well-
known approaches within limited iterations over different
scenarios. In addition, by computing the IGD values, the
proposed approach is shown to be more efficient. Hardware-
in-the-loop experiments on multiple UAVs also show that the
proposed approach can significantly decrease the flight time
and distance of the UAVs. In future work, we are interested
in solving the task allocation problem with multiple vehicles
performing a complex task cooperatively or a vehicle per-
forming several tasks simultaneously.
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