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ABSTRACT With an estimation of 220 million people playing badminton on a regular basis, it was
particularly popular in Asia but has growing popularity in different regions of the world. The demands of
the relevant products, such as shuttlecocks and rackets, are also increasing in the sports industry. Synthetic
shuttlecock, produced to offer similar experience and feel as feather shuttlecocks to players, is a more
economical alternative to feather shuttlecocks. In addition to maintaining high throughput production for
synthetic shuttlecocks with cost reduction, a more substantial improvement in quality control is desired as
well. Since the defect detection of synthetic shuttlecocks is a challenging task, it heavily relies on human
visual inspection at present. The existing manual quality-inspection process is not only error-prone but also
considerably less efficient. In this paper, we propose an intelligent system to overcome these difficulties and
bridge the gap between research and practice. Two cylinder grippers are designed to automatically deliver the
shuttlecocks, a camera is used for capturing images and an end-to-end objection detection approach based on
the Transformer model is investigated to recognize defects. Empirical results show that the proposed system
obtains encouraging performancewithAP50 value of 87.5% and outperforms othermethods. Ablation studies
demonstrate that our approach can considerably boost the detection performance of synthetic shuttlecocks.
Moreover, the processing speed is much faster than human operators and suitable for industrial applications.

INDEX TERMS Synthetic shuttlecocks, defect detection, intelligent system, transformer model, cylinder
gripper.

I. INTRODUCTION
The beginnings of badminton can be traced back to mid-
19th century and the origin of the game was played with
feather shuttlecocks [1]. However, it was until 1950s that
the synthetic shuttlecocks were invented and badminton had
a much wider appeal. With an estimation of 220 million
people playing badminton on a regular basis, its increasing
popularity is not confined to Asia but has been expanded
to different areas. Badminton is one of the top ten most
popular participation sports in the world [2] and made its
Olympic debut as an official medal sport at the 1992 Summer
Olympics. Although both feather and synthetic shuttlecocks
contain sixteen leaves and one cork head (shown in Figure 1),
feather shuttlecocks are made from goose or duck and the
synthetic shuttlecocks comprise of plastic or nylon materials.
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Because feathers are more expensive and brittle, synthetic
shuttlecock is increasingly demanding for its high durability
and low cost.

There are two different types of synthetic shuttlecocks,
one is single-piece injection-moulded (right-handed side of
Figure 1) and another is two-part skirt design [3]. Since
single-piece injection-moulded synthetic shuttlecock has
been the mainstream design and dominated the market for
the past 50 years, the discussion of this paper will focus
on this type. During the manufacturing process, several
types of damages and defects might happen to affect quality
and decrease performance. Therefore, in addition to provid-
ing mass production to ensure the competition in the syn-
thetic shuttlecock industry, there is an urgent requirement
to develop new techniques with high quality and low cost.
In the production of synthetic shuttlecocks, items require to
be inspected for any defects before shipment to customers.
Currently, many companies still heavily rely on operators or
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quality assurance experts to perform the task. Manual visual
inspection is inefficient and problematic which can’t assure
stable and accurate operation. The incapability of identifying
the flaws could result in a significant loss to the company.
Figure 2 displays four commonly seen defects in the synthetic
shuttlecock which include short shots, redundant filaments,
stains and air traps. These images present the following char-
acteristics and pose the corresponding challenges [4]:
• Multiple defects in the same image: There are some
defects, which may belong or not to the same defect
type, existing in the same image with intersection or
interference. These variations are challenging and may
lead to erroneous recognition.

• Various size defects: It is rather difficult to identify an
irregular defect pattern for the same type [5] and detect
small-size defects on the curved surface of synthetic
shuttlecocks.

With the progressive development of neural networks,
Artificial Intelligence (AI) has been applied with great suc-
cess in various fields and the manufacturing industry is no
exception. Many companies have already used AI related
techniques to overcome their existing limitations and bottle-
necks for the purpose of fitting into the Industry 4.0 paradigm.
However, to the best of our knowledge in the synthetic shut-
tlecock industry, there are not enough research works which
focus on the defect detection. In this paper, we establish
an automatic inspection system based on machine vision
techniques for shuttlecock defect detection. An integrated
equipment is designed to preform vision inspection and
reduce manual workloads. Our end-to-end defect detection
algorithm is based on the Transformer model [6]. Since the
learning situation of this study is frommulti-class imbalanced
and small data sets, we also apply data augmentation tech-
niques to improve the performance of our model in detecting
defects.

Specifically, there are two main contributions in this paper:
• We devise an automatic defect detection system for
synthetic shuttlecocks covering hardware design and
software development. The hardware design ensures
quick integration with existing industrial processes and
the software development improves the effectiveness of
defect detection. Companies, especially for small and
medium-sized enterprises (SME), can greatly benefit
from the development of this economical and technical
design.

• We propose an end-to-end objection detection approach
based on the Transformer model to simultaneously
detect and classify the defects for synthetic shuttlecocks.
The experimental study indicates that our model can
achieve satisfying results and possess much higher effi-
ciency in contrast to human inspection.

The remainder of this paper is organized as follows.
Section 2 reviews several techniques and research methods
related to the work of this paper. The proposed equipment
design and network architecture are described in Section 3.
We discuss the experiments and report the results in Section 4.

FIGURE 1. A feather shuttlecock (left) and synthetic shuttlecock (right).

FIGURE 2. Four types of defects in synthetic shuttlecocks.
Figure (a) contains stains (white box), short shots (green box) and
redundant filaments (black box). Figure (b) contains air traps (blue box).

In Section 5, we present conclusions and discuss future
research directions.

II. RELATED WORK
In this section, we will review several works related to our
research including deep learning based detectors and defect
detection tasks.

A. DEEP LEARNING BASED DETECTORS
Object detection, one of the most important and challenging
problems in computer vision, aims to detect object instances
of predefined classes in images [7], [8]. Recently, deep learn-
ing based approaches have become the most popular solution
in this research field and can be divided into one-stage detec-
tor and two-stage detector [9]. The YOLO series [10]–[13]
and RetinaNet [14] are two well-known one-stage detectors.
The representative work for two-stage detectors is the R-CNN
(Regions with CNN) series including R-CNN [15], Fast
R-CNN [16], Faster R-CNN [17] and Mask R-CNN [18].
One-stage detectors apply a single network to directly predict
the object classification and position. On the other hand,

VOLUME 10, 2022 37413



C.-S. Lin, H.-Y. Hsieh: Automatic Defect Detection System for Synthetic Shuttlecocks Using Transformer Model

two-stage detectors first generate several candidate regions
and then refine the classification and localization of the
regions in the second step.

The YOLO network uses a single CNN to process input
images and directly calculates the classification confidences
and position coordinates of the object. With its end-to-
end network structure, the detection speed can be greatly
improved. RetinaNet is another one-stage object detector
which contains two building blocks, feature pyramid net-
works (FPN) and focal loss. The use of FPN could improve
multi-scale object predictions. The focal loss is designed to
handle the class imbalance by reshaping the standard cross
entropy loss.

R-CNN, a two-step object detection framework, uses an
external selective search to generate candidate object regions
which are then fed into individual CNN to extract fixed length
feature vectors for the purpose of object classification and
bounding box regression. Unlike R-CNN which feeds about
2k candidate object regions to a CNN for each image, Fast
R-CNN only needs the original input image to generate
Region of Interests (RoI) by selective search for speeding up
the computation. After that, a ROI pooling layer and two full
connection layers are appended to classify object category
and fine-tune ROI position. To overcome the computational
burden of selective search algorithm, Faster R-CNN intro-
duces a novel region proposal network (RPN), which is a fully
convolutional network (FCN), to extract candidate regions.
Instead of using only bounding boxes, Mask R-CNN adds
an additional mask branch based on Faster R-CNN to locate
exact pixels of each object instance. Therefore, the model
is able to provide three outputs which include a class label,
a bounding box and a mask for each candidate region.

B. VISION BASED DEFECT DETECTION
Defect detection plays an essential role to ensure product
quality in a broad range of manufacturing industries, such as
civil, energy and plant. The defects on the product not only
can affect the appearance but also could cause safety issues.
Traditionally, defect detections are conducted by human
experts but manual visual inspection is usually error-prone
and costly. With the rapid development of computer vision
and machine learning techniques, nowadays vision based
defect detection has attracted more attention and gradually
been adopted by industries.

To address the surface-anomaly detection problem [19],
a two-stage architecture is proposed to learn from a small
number of defected training data. The first stage called the
segmentation network is used to perform at the level of
individual image pixels. The second staged is a decision net-
work which uses the output from the segmentation network
as the input to learn the probability of anomaly presence
in the image. Pavement crack detection is a critical task due to
the complicated pavement conditions and has been studied for
decades. A CNN-based architecture is modelled as a multi-
label classification problem to predict the crack at the pixel
level [20]. Moreover, a novel strategy to modify the ratio of

positive-to-negative training data is also proposed to address
the severely imbalanced problem.

Since the demand for wind power has considerably
increased due to environmental concerns, the quality assur-
ance of wind turbine blade (WTB) has become an imper-
ative issue as well. A YOLO-based small object detection
approach (YSODA) supports the multiscale feature pyramid
to inspect WTB defects by amalgamating features in the lay-
ers of CNN [21]. The resulting detection accuracy of YSODA
reaches 91.3% which outperforms YOLO model (88.7%).
However, the detection speed is 24 fps which is slower
than YOLO (30 fps) due to the additional feature extraction.
To locate four different types of damages on WTB, the faster
R-CNN algorithm with Inception-ResNet-v2 architecture is
proposed and achieves 81.10% mean average precision [22].
The detection speed is 2.11 seconds and it is faster than
human-based analysis which requires 20 seconds to 3minutes
depending on the difficulties.

As a valuable and rare natural resource, the identification
of wood defects can reduce the waste of wood materials
and improve the automated processing in the wood industry.
An improved SSD algorithm with a DenseNet backbone is
proposed to detect three types of wood defects including live
knots, dead knots and checking [23]. The transfer learning
method is applied on the ImageNet data set to address the
labelled data scarcity issue and the mean average precision
value is about 96.1%. In addition, Faster R-CNN with the
ResNet pre-training model is used to find wood panel surface
defects and achieves an average accuracy of 80.6% on a
synthetically augmented dataset [24].

Local binary pattern (LBP) is one of the most powerful
local feature extraction methods by estimating the local con-
trast of an image between pixels [25]. An improved ver-
sion of LBP features is employed for porosity detection on
stone images [26]. To handle the color images, a multi-
resolution and noise-resistant of LBP is introduced to extract
color/texture features and identify surface defects [27].
Completed Local Quartet Patterns (CLQP) operator, which
is rotation invariant and gray-scale invariant, extracts fabric
image local texture features for localizing surface defects
with 97.66% detection rate [28].

Since defect data set is inherently difficult to obtain,
data augmentation of training samples is also an important
research topic in this area. A generative adversarial net-
work (GAN) is proposed to exaggerate the small defects
within the images and also expand the defected samples [29].
Another GAN-based approach, cycle GAN, takes pairs of
defect images to exchange their colors and textures to gen-
erate new defective data without changing the distribution of
color and grain in the dataset [30].

III. AUTOMATIC DEFECT DETECTION SYSTEM FOR
SYNTHETIC SHUTTLECOCKS
The framework of the proposed intelligent system for shut-
tlecocks inspection is shown in Figure 3. During the training
stage, the images are collected by the camera device followed
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FIGURE 3. The framework of our proposed automatic defect detection system for synthetic shuttlecocks where the top is the training process while the
bottom represents the inference stage.

FIGURE 4. The experimental equipment layout of the shuttlecock defect detection system and close-up images of main components.

by human annotation. In order tomake ourmodel more robust
and prevent overfitting, we adopt data augmentation to obtain
more training data without extra labor cost. An end-to-end
objection detection approach based on the Transformermodel
with multi-layer representations is proposed to detect the
defects of shuttlecocks effectively. In the inference phase, the
on-line inspection is conducted on our designed experimental
equipment which is integrated with the trained model.

A. EXPERIMENTAL EQUIPMENT LAYOUT
In order to address the shuttlecocks inspection, we develop
a machine vision system to automate the whole process as

shown in Figure 4. The system mainly consists of a fixture,
two cylinder grippers, three lighting sources and a computer
vision based detection module. The fixture which is made of
Polyoxymethylene is used to hold the shuttlecock with rotat-
ing capability. Within the computer vision based detection
module, there is an IDS LE AF camera with M12 liquid lens
installed to capture images and a defect detection model to
identify anomalous conditions. To ensure a full coverage of
360 degrees, the fixture will automatically rotate 45 degrees
for eight times in every inspection and the camera will take
eight images per shuttlecock accordingly. A stepper motor
(17PM-K405-P3VS) is used to rotate the fixture after an
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FIGURE 5. The Left cylinder gripper removes the shuttlecock from the fixture after
inspection and the right cylinder gripper moves the next shuttlecock to be inspected.

image has been inspected by our defect detection model.
It usually takes 0.4 seconds for one rotation. Two cylinder
grippers are used to deliver the shuttlecock where the right
gripper takes the shuttlecock to the texture for inspection
and the left one will send the shuttlecock to the designated
position based on the examined result (Figure 5). The distance
between right (left) cylinder gripper and the fixture is about
45 (60) cm. Due to the light conditions inside the equipment
layout, it is necessary to have carefully-placed lights to ensure
the quality for camera shooting. We setup three LED lights
(top, right and left lights) to illuminate the shuttlecock.

B. DATA ACQUISITION
The defects of the shuttlecock during production can appear
in different forms. Some of them are due to the quality of raw
materials, while others are caused by machine malfunctions.
There are four types of defects:

1. Short shots: The main reason of short shot defect is
that molten plastic does not completely fill the cavity.
A remedy to avoid short shots is to adjust the mold
temperature.

2. Redundant filaments: If the injection pressure is too
high, melt plastics may overflow and flash defect will
occur. As a result, the defective items either will be
discarded or require additional process.

3. Stains: Material is a critical cause of defects in injec-
tion moulding process. When material is contaminated
with foreign particles, it could induce black-specks and
affect the quality of finished product.

4. Air traps: This defect is caused by lack of vents and
can result in incomplete filling and packing. The issue
is usually resolved by adding air vents.

In order to train the proposed neural network to accurately
detect the shuttlecock defects by vision based approaches, it is
important to acquire images from the production line. Once
the images have been collected, they will be labelled to form
the ground truth by experts from the shuttlecock industry.
We use LabelMe software [31] to annotate images for object
detection task and convert the generated json file to standard
COCO format [32].

Since the training data from the shop floor is often
highly scarce especially in defect detection field, insuffi-
cient labelled data can’t generalize well and may lead to
overfitting problems. Data augmentation is a technique to
alleviate limited training dataset issue without collecting new
data [33]. In addition, because the collection and labelling of
defect samples in shuttlecock manufacturing industries can
be tedious and time-consuming, data augmentation provides
an effective approach to diversifying the data distribution.
There are various basic image augmentation techniques such
as brightness adjustment, random cropping, flipping, scaling,
rotation and adding noises. Since the shuttlecock is put on
the fixture, we do not consider those augmentation techniques
with deformation strategy. Therefore, we propose the use of
horizontal flipping and adding noise. Flipping is one of the
most common augmentation approach and has been proven
useful on popular datasets such as CIFAR-10 and ImageNet.
To reduce the network’s tendency of learning high frequency
features, adding Gaussian noise essentially could have data
points in all frequencies to distort the high frequency features.
It is worthwhile to note that adding Gaussian noise will not
change the labelled results but flipping techniquemodifies the
label by mirroring the image along the central axis. The aug-
mented data are expected to represent a more comprehensive
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dataset which minimizes the difference between the training
data and new observations.

C. TRANSFORMER-BASED DEFECT DETECTION BY
MULTI-LAYER REPRESENTATIONS
Driven by the development of deep neural networks, the per-
formance of object detection has been significantly improved
and used in many applications. In this paper, we formulate
the defect detection of shuttlecocks as an object detection
problem by directly predicting a set of bounding boxes and
the corresponding defect labels. DETR [34], a simple end-
to-end architecture with CNNs and Transformer, is proposed
to solve the object detection task. Motivated by DETR, our
proposed model is built upon it by following a similar prac-
tice and further exploring the multi-layer representations of
Transformer decoders to enhance the performance. In this
section, we first introduce the architecture of the proposed
method followed by the optimization objective.

Our network architecture to address the defect detection
of shuttlecocks is depicted in Figure 6. It mainly contains
three components: a CNN backbone to extract feature rep-
resentations of the input image, a transformer framework to
model one-to-one set prediction utilizing all layers of decoder
representations and feed forward networks (FFNs) to predict
the bounding boxes and class labels.

1) BACKBONE
A conventional CNN backbone is used to extract the orig-
inal pixel-level feature sequence for a given input image
xεR3×H0×W0 where H0 is height, W0 is width and there
are three channels. The typical lower-resolution feature
map fεRC×H×W is set C = 2048, H = H0/32 and W =
W0/32. In this paper, convolutional layers from ResNet-50
model [35] are taken as the backbone. It can be divided into
five stages. The stage one, which starts with a convolutional
layer followed by a batch normalization and activation func-
tion, is the input stage to compute the initial feature maps.
The second to fifth stages contain a set of convolution blocks
and identity blocks where there are three convolution layers
in each block.

2) TRANSFORMER
The Transformer model has become the main architecture
for many natural language processing tasks and has recently
been adapted to computer vision tasks. The self-attention
mechanism of the transformer is capable of modelling the
interactions on all pairwise elements and is able to eliminate
duplicate predictions for set prediction. It is composed of
an N-layer encoder and decoder. The encoder first applies
a 1× 1 convolution to convert the dimension of the feature
map from C to a smaller dimension d, resulting a new feature
map z0εRd×H×W. Since the encoder requires a sequence as
input, the feature map z0 is flatten and embedded to form
a one-dimensional sequence feεRd×HW with embeddings of
size d. Then fe with positional encodings is fed into encoder
layers to get encoded sequence features as the encoder output.

Afterward, with the multi-head attention mechanism in the
decoder, N decoder output embeddings are generated from
encoder outputs and N learned object queries. The output
embeddings will be supplied to the next FFN layer to yield
predictions.

3) FFN LAYER
To make the final detection prediction after the decoder layer,
the last component is the FFN layer. The multi-layer percep-
tron is the regression branch to predict center coordinates,
height and width of the bounding box. The linear projection
layer is the classification branch which applies a softmax
function to predict the class labels. Additionally, there is a
special class label ø used to indicate that no target class is
detected within the box. Existing DETR only takes the last
layer output of the decoder to perform object detection. Since
only relying on the final layer representation could lead to
information loss, we explore the potential of adopting multi-
layer representations of decoder outputs for both bounding
box regression and class prediction. Given the output repre-
sentation of each decoder layer {hi}Ni=1, we concatenate all
hi to form a representation hc for class prediction and hb for
bounding box regression. Subsequently, hc is sent to the Class
FFN and hb is fed to Bounding Box FFN to finish the final
detection work.

There are two steps in optimization objective where the
first step is to produce an optimal bipartite matching and
the second step is to minimize the loss between the matched
pairs obtained from the first step. Given a fixed-size set of
N predictions, we perform a bipartite matching to align the
system predictions ŷ = {ŷi}

N
i=1 to ground-truth labels y. The

best permutation of N elements between ŷ and y is σ̂ which
minimizes the matching cost defined below:

σ̂ = argmin
σ∈∂N

N∑
i=1

Lmatch
(
yi, ŷσ (i)

)
(1)

where Lmatch
(
yi, ŷσ (i)

)
is a matching cost between the

ground-truth yi and the predicted result at index σ (i). Since
the objection detection task needs to consider both the class
and bounding box prediction, the Lmatch is defined as

Lmatch
(
yi, ŷσ (i)

)
=−1{ci 6=∅}p̂σ(i) (ci)+1{ci 6=∅}Lbox

(
bi, b̂σ (i)

)
(2)

where ci is the target class label and bi is the bounding box of
the ground truth. Accordingly, b̂σ (i) is the predicted box and
the prediction probability of class ci is p̂σ(i) (ci). The 1{ci 6=∅}
is an indicator function where the value will be 1 if {ci 6=
∅} is true and 0 otherwise. Hungarian algorithm could be
employed here to find the one-to-onematching [36]. Note that
bounding box loss Lbox is defined as the linear combination
of the generalized IoU loss Liou [37] and the L1 loss. The
introduction of Liou is used to mitigate the relative scaling
issue occurred in L1 loss.

Lbox
(
bi, b̂σ (i)

)
= λiouLiou

(
bi, b̂σ (i)

)
+λL1

∥∥∥bi − b̂σ (i)
∥∥∥
1
(3)
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FIGURE 6. The network architecture.

TABLE 1. Distribution of defects in training / validation / testing datasets.

After establishing the optimal assignment σ̂ of bipartite
matching, the second step is to calculate the loss function
(Hungarian loss) for all matched pairs consisting of class
probability loss and bounding box loss:

LHungarian
(
y, ŷ

)
=

N∑
i=1

−log(p̂σ̂ (i) (ci))

+1{ci 6=∅}Lbox
(
bi, b̂σ̂ (i)

)
(4)

IV. EXPERIMENT AND RESULTS
In this section, we perform the evaluation of the proposed
method to detect the shuttlecock defects including: (1) dataset
construction; (2) evaluation metrics; (3) comparison with
other algorithms; and (4) ablation experiments of using data
augmentation and multi-layer representations.

A. DATASET
The total number of raw images is 857 and the dataset is
labelled by domain experts. It usually takes 5-10 seconds
to annotate a defect depending on the difficulty level. Each
image has one or more defects with the resolution of
3240 × 1833. The dataset consists of four types of defects,

FIGURE 7. (a) The example image; (b) the horizontal flipping image;
(c) the image with Gaussian noise; (d) the image labelled by LabelMe.

short shots, redundant filaments, stains and air traps. The
images are divided into 512 training images, 172 validation
images and 173 testing images, respectively. In Table 1,
we display the statistics of each defect type. In order to have
more number of training data to avoid overfitting, horizon-
tal flipping and adding noise are employed to increase the
number of training images from 512 to 1536. The quantity of
augmented defect types is also added to Table 1. In Figure 7,
we display an example image with data augmentation results
and its annotation by LabelMe.

B. EVALUATION METRIC
Intersection over Union (IoU) is the intersection area of a
predicted bounding box (Bp) and a ground-truth box (Bgt)
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divided by the union area.

IoU =
area(Bp ∩ Bgt )
area(Bp ∪ Bgt )

(5)

A detection is considered to be correct if the IoU is
greater than a predefined threshold. To evaluate the pro-
posed approach, we measure the performance by the evalu-
ation matrix of COCO with different IoU threshold settings.
Precision and recall are two well-known metrics to evaluate
correctness and effectiveness. Recall measures how efficient
the proposed approach is for retrieving correct regions, while
precision indicates how many predicted regions are correct.
However, since a single point value of recall or precision
is not good enough to measure the quality [38], average
precision (AP) is proposed to calculate with precision results
on different values of recall given by a specific IoU threshold
and is defined as

APth =
∫ 1

0
P(R)dR, where th is the threshold (6)

Moreover, to have a more complete evaluation, we also use
mean average precision (mAP) which computes the average
AP across different IoU thresholds from 0.5 to 0.95 with an
interval of 0.05. APth and mAP are two indicators in our
empirical studies.

C. EXPERIMENTAL RESULTS
To validate the proposed approach for the defect detection
of shuttlecocks, we make comparison with other detection
approaches including one-stage detectors (RetinaNet and
DETR) and two-stage detectors (Faster R-CNN and Mask
R-CNN). The pre-trained ResNet-50 is employed as our
backbone network and the hyper-parameter setting of the
model is shown in Table 2. For the other compared algo-
rithms, we also follow similar hyper-parameter settings.
To carry out the comparison experiments, we adopt the
released codes of DETR [39] and the Detectron2 API [40] is
utilized for Faster R-CNN,Mask R-CNN and RetinaNet. The
experiments are conducted on the Windows system with an
11th Gen Intel(R) Core(TM) i9-11900K@3.50GHz, 128 GB
RAM, and NVIDIA GeForce RTX 3090 GPU 24G.

Table 3 shows the performance comparisons of AP for
all defect classes with IoU threshold set to be 0.5 which is
a typical value to use in detection work. The results show
that the proposed method achieves the highest AP in all
classes except for short shots where our model is the second-
best (84.5%). Compared with the second best competitor,
our method increases the detection of redundant filaments
by nearly 3.3% and stains by 1.6%. In the last column of
Table 3, we also demonstrate the inference speed comparison
in terms of frames per second (FPS) for each approach. Our
approach can reach 7.336 FPS and performs better than most
other methods. We observe that our method only introduces
moderate additional time costs compared with DETR. In gen-
eral, it usually takes 4 to 5 seconds for an operator to finish

a shuttlecock inspection. With the accurate detection results
and a much faster processing speed than human experts, our
approach is sufficient for industrial applications.

To have a more complete comparison, we also list the
comparison in terms of AP50, AP75 and mAP to show the
feasibility of our approach shown in Table 4. On the primary
metric of interest in this research (AP50), we push the score
to 87.5%. On the strict metrics (AP75 and mAP), our per-
formance is almost on par with other approaches. Compared
with DTER, we increase the AP50 score by 1.9% (from 85.6%
to 87.5%), the AP75 score by 2.5% (from 63.0% to 65.5%)
and the mAP score by 3.1% (from 59.5% to 62.6%).

We analyze the prediction results for our approach and
have some observations. First, air trap defect is almost solved
because of its frequent occurrence in the specific area which
is on top of the shuttlecock. Second, several false positives
are caused by the effects of the fixture. The flashes may be
left on the surface of the fixture occasionally and our model
may falsely recognize these flashes as the redundant filament
defect type (Figure 8(a)). Avoiding this mistake requires fur-
ther investigation of materials which are less likely to leave
flashes on the fixture surface or needs additional procedure
before uploading the shuttlecock to the fixture each time.
Note that the current fixture is made of Polyoxymethylene.
Last, there is some misclassification between the stain defect
and short shot defect (Figure 8(b)). The major reason is
that the black-speck position is ambiguous and our model
wrongly predicts this situation as the short shot defect.

TABLE 2. Hyper-parameter configuration.

D. ABLATION STUDIES
Finally, to further verify the value of the proposed modules,
we discuss the impact of multi-layer representations and data
augmentation. Three types of experiments are carried out by
excluding: (1) the data augmentation (DA); (2) the multi-
layer representations of classes (MLR-C); (3) the multi-layer
representations of bounding boxes (MLR-BB). The results
are shown in Table 5 and we find that all proposed compo-
nents have contributed to the task. More specifically, without
applying augmentation techniques, the AP50 score loses 3.4%
(from 87.5% to 84.1%) and mAP drops 1.9% (from 62.6%
to 60.7%). When removing the multi-layer representations
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TABLE 3. The performance comparison of AP with IoU = 0.5 for all defect
types and inference speed comparison listed in the last column.

TABLE 4. The performance comparison in terms of AP50, AP75 and mAP.

FIGURE 8. (a) A false positive example due to the fixture;
(b) a misclassification between the stain defect and short shot defect.

TABLE 5. Ablation experimental results in terms of AP50, AP75 and mAP.

of bounding boxes, the AP75 score decreases 1.9% (from
65.5% to 63.6%). In summary, from these ablation studies,
the proposed method is effective on the defect detection of
shuttlecocks.

V. CONCLUSION
The end customers in the sports industry have high expec-
tations for the quality of shuttlecocks. Nowadays, the defect
inspection is still conducted by human operators and there
are not enough research works in this field. To this end,
in this study, we present a hardware design and vision based
approach to automatically detect defects of shuttlecocks for
industrial application. Two cylinder grippers are used to
deliver shuttlecocks for expediting the production process
without human intervention. An end-to-end network based on
Transformer model is adopted to perform defect detection.
Empirical study shows that the proposed method achieves
promising results with AP50 value of 87.5% and is superior
to other state-of-the-art techniques. Ablation studies show
that the data augmentation, the multi-layer representations of
classes and bounding boxes all contribute to increase the per-
formance of defect detection. With the introducing of multi-
layer representations, our method only brings little additional
time costs and is better than most other existing models.

In the future work, we intend to extend the study further
in several directions. First, to reduce the false positive alarms
caused by the fixture, we will explore the material which is
less prone to leave stains and filaments on the fixture. Second,
to reduce the misclassification between the stain defect and
others, we will investigate the use of high-resolution feature
maps to increase the performance. Third, although the current
platform is already feasible for real-time application, it is
still important to compress the model, reduce the parameters,
and further accelerate the computation. Last, it would be
interesting to apply our detection network to other surface
inspection tasks to validate the robustness.
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