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ABSTRACT Plant growth prediction is challenging, as the growth rate varies depending on environmental
factors. It is an essential task for efficient cultivation in controlled environments, such as in plant factories.
In this paper, we propose a novel deep learning network for predicting future plant images from a number
of past and current images. In particular, our focus is on the estimation of leaf shape in a plant, because the
amount of plant growth is commonly quantified based on the leaf area. A spatial transform is applied to
a sequence of plant images within the network, and the growth behavior is measured using a set of affine
transform parameters. Instead of conventional sequential image fusion, the affine transform parameters for
all pairs of successive images are fused together to predict the shape of the future plant image. Then, an RGB
reconstruction subnet divides the plants into multiple patches to make global and local growth predictions
based on hierarchical auto-encoders. A variety of experimental results show that the proposed network is
robust to dynamic plant movements and can accurately predict the shapes of future plant images.

INDEX TERMS Plant growth prediction, sequential image, shape estimation, spatial transformer network,
hierarchical network.

I. INTRODUCTION
In the agricultural industry, plants have recently been culti-
vated in closed environments such as plant factories, where
the light, humidity, temperature, and CO2 concentration are
controlled to improve the plant harvest. In this closed plant
system, it is important to understand how the environmental
conditions affect plant growth, so as to provide efficient plant
cultivation [1]–[5]. Plant growth models for effectively man-
aging plant cultivation have been studied in the field of agri-
cultural research [6], [7]. However, plant growth prediction
is challenging, as the growth rate varies greatly depending on
environmental factors. Nevertheless, it is an essential task for
efficient cultivation in controlled environments.

This study attempts to predict the future dynamic growth
behaviors of plants from a sequence of plant images via
deep learning. Given a time-series of past and current plant
images, as illustrated in Fig. 1, we aim to predict a future
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plant image in by concentrating on the overall shapes of
leaves. As a plant grows over time, the area for the leaves
gradually increases, and their shapes change geometrically.
Estimating the complex motions of the leaves is essential for
growth predictions, and conceptually, is a similar problem to
the prediction of future video frames in the field of computer
vision [8]–[10].

There are very few previous works in the literature spe-
cializing in plant growth prediction [11], [12]. They were
mainly based on adopting an auto-encoder [13] with ConvL-
STM [14] as the backbone of the network. And recently, the
authors in [16] proposed a plant growth prediction method
which adopts the spatial transformer network (STN) [15]
in the U-Net with ConvLSTM structure. We observe that
the overall shape of plant leaves is beneficial because the
area and weight of leaves are popular quantitative factors
to measure plant growth. Motivated by this observation, the
task of plant growth prediction is divided into two processes
of shape prediction and RGB reconstruction. For the shape
prediction, we propose to leverage the spatial transform, and
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FIGURE 1. Future plant image prediction on spatial transform parameter
domain. S is the gray shape image, F is the RGB foreground image, and I
is the RGB image.

this is inspired by STN [15], which has also been applied for
future video frame generation [17]–[19].

In this paper, we propose a novel deep network for pre-
dicting the future of plant growth from a sequence of plant
images. The network aims to generate a plant image at a
future time, from which we can easily and quantitatively
measure the degree of growth. The multiple leaves within a
plant exhibit distinct shapes, sizes, and orientations, and can
vary dynamically over time. Also, even though a sequence of
plant images is captured at a fixed time interval, the growth
rate of a plant may not be constant, and its growth behaviors
(e.g., shape, and orientation) can be diverse in each plant
sample. Thus, we need a sophisticated algorithm to address
these challenges. In our framework, we attempt to model
the growth behaviors of the leaves with the affine transform
which comprises rotation, scaling and translation. To perform
the affine transform in for convolutional neural networks
(CNNs), we use the STN, which creates affine transform
regression parameters. For each pair of adjacent images,
we determine the affine transform parameter set (θ in Fig. 1)
which indicates the quantification of plant growth. Then,
we estimate an affine transform parameter set by combining
past parameters to generate a future plant image as illustrated
in Fig. 1. In other words, the shape prediction is made on
transform parameter domain. As the rate of growth of leaves
varies,the sizes of leaves change as they continue to grow.
To accurately predict plant growth, it is necessary to accu-
rately predict the growth of both small and large leaves. As a
result, the RGB reconstruction subnet divides the plant into
several patches, and predicts local growth with hierarchical
auto-encoders. A variety of experimental results show that
the proposed network is robust to dynamic plant movement,
and can accurately predict the shape of the future plant
image.

II. RELATED WORKS
A fundamental limitation of CNN is the lack of spatial invari-
ance to the input data. It is difficult to cope with various
spatial variabilities with 2×2 pixel unit operation. The spatial
transformer network (STN) [15] was proposed to learn invari-
ance to spatial changes such as translation, scale, and rotation.

FIGURE 2. Spatial transformer network on shape domain. Figure inspired
by [15].

And, it has been popularly applied to motion estimation
[17], [19] and future frame prediction [18], [20], [21].

One study [17] proposed a dual adversarial trainingmethod
in which the network is largely divided into two branches.
The first predicts a future frame directly while the other
does a future flow. The outputs of the two branches are
fused to predict a future frame. In [18], a future frame was
predicted in the transformation space. The affine transform
for the frame prediction was learned by fusing a sequence
of consecutive affine transform parameters from the input
video. The network generates the affine transform parame-
ters for a future frame against the affine inputs. Although
this seems to be similar to our work, they are quite dif-
ferent in terms of network architecture, separate estima-
tions of shape and content, and the network input and
output.

As an example of video prediction studies without the
STN, [22] proposed a network for predicting future frames
by separating motion and content information into two
branches. [23] proposed a network comprising of two pro-
cesses: pose estimation and image generation. After estimat-
ing the poses of the input images, a future framewas predicted
on the pose domain, and was then reconstructed through
image generation.

In recent years, there have been studied a few works to
predict a future plant image using deep learning networks.
Research on plant growth prediction is at an initial stage
and its approach primarily comes from future video gen-
eration. The conventional works of plant growth prediction
commonly employ an auto-encoder structure combined with
ConvLSTM [11], [12] which has been already studied for
video prediction [22], [23], multiple auto-encoders (corre-
spond to multi-inputs) are fused through ConvLSTM. The
network accepts label images (the segmentation of leaves)
as well as plant RGB ones, and it generates both the label
and RGB images in the future. Reference [12] adds GAN
to an auto-encoder with ConvLSTM to ensure image gen-
eration. Also, by extending [11], multiple auto-encoders are
hierarchically fused in 1/2 and 1/8 resolutions through Con-
vLSTM. The LSTM [24] based fusion has also been replaced
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FIGURE 3. Overall architecture of the proposed network for plant growth prediction.

with a simple concatenation of CNN-based channels. In [16],
at first, time series gray images of plants are globally matched
through STN, and then shape prediction is performed through
U-Net with ConvLSTM. After that, the final prediction result
is obtained by combining the RGB image.

Unlike the conventional works for plant growth prediction,
the proposed network first predicts the shape of a future
plant image on spatial transform domain and then, an RGB
image is reconstructed from the shape. Also, the existing
methods were evaluated with a small dataset with a short
time interval, but we conducted vast experiments with three
different datasets with distinct plants.

III. SPATIAL TRANSFORMER NETWORK
A spatial transformer module was introduced to provide spa-
tial transformation capabilities with a neural network archi-
tecture [15]. It consists of three parts: localization net, grid
generator, and sampler as illustrated in Fig. 2. The affine
transformation matrix denoted as θt in Fig. 2 is estimated
from the t-th shape frame St by the localization net which is
composed of convolution and fully connected layers, and θt
is given as follows:

θt = flocal(St ) =
[
θt1 θt2 θt3
θt4 θt5 θt6

]
(1)

According to the parameters from the localization net, the
grid generator calculates a sampling grid that determines the

points to be sampled on the input feature map.

(
x ti
yti

)
= θt

x t+1i
yt+1i
1

 = [θt1 θt2 θt3
θt4 θt5 θt6

]x t+1i
yt+1i
1

 (2)

In the above, (x t+1i , yt+1i ) are the target coordinates of the
regular grid in the (t + 1)-th shape frame, (x ti , y

t
i ) are the

source coordinates in the t-th frame for defining the sample
points, and θt is the affine transformation matrix. Finally, the
sampler applies bilinear sampling to the input t-th frame to
create an output (t + 1)-th frame by using the sampling grid.
Further details are provided in [15].

IV. THE PROPOSED METHOD
In this section, we describe the overall architecture of the
proposed deep network for plant growth prediction. As illus-
trated in Fig. 3, it consists of two subnets for estimating the
shape and RGB images of a plant in the future. Our work is
primarily motivated by the development of technologies for
controlling environmental factors (e.g., LED light) in closed
cultivation environments, and ultimately aims to maximize
plant harvest. To adaptively control these factors, we first
attempt to identify the past and current growth behaviors, and
to estimate the growth rate in the near future. Then, the factors
are configured accordingly based on the sequential change in
growth over time. For example, the wavelength and intensity
of LED lights can be determined optimally based on the
history of plant growth. Therefore, it is essential to accurately
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predict future plant growth, given the current environmental
conditions.

A. PROPOSED NETWORK ARCHITECTURE
In this paper, we propose a novel deep learning algorithm for
predicting a future plant image from a number of time-series
plant images at past and present times which are captured
at a top view. In particular, our focus is placed on the esti-
mation of leaf shape in a plant because the amount of plant
growth is commonly quantified by the leaf area. For this rea-
son, we designed a shape-based growth prediction network,
as illustrated in Fig. 3.

From the estimation, the degree of growth can be quan-
titatively measured. The shape difference between adjacent
plant images corresponds to the amount of growth, and can
be described by the spatial transform parameters (rotation,
scaling and translation) when the growth is modeled by the
STN. The STN is applied as a single transformation to the
whole leaves of a plant, as the overlap between leaves makes
it difficult to segment whole leaf boundaries.

Our work is highly inspired by motion estimation and
video frame generation, which have been widely studied
in the field of computer vision. Although both are quite
similar to each other, the problem of plant growth pre-
diction is specifically characterized by the certain aspects.
First, the time interval between neighboring plant images is
significantly longer than the conventional video prediction
task. Whereas a video frame interval is typically within tens
of milliseconds, the interval between plant images ranges
from several hours to even a day. Thus, leaf movements
are more dynamic. Second, a single plant contains several
leaves whose shapes, sizes, and orientations change over
time. As a plant grows, neighboring leaves overlap, and the
orientation of a leaf can randomly vary. These types of motion
are distinct from those of objects frequently observed in
natural videos. Finally, it is difficult to find a motion vector
in the plant images, because all leaves are similar to each
other in terms of color, texture, and shape. There are far
fewer feature points than common natural images, and it
would be undesirable to apply the existing motion estimation
techniques (such as optical flow) to plant images. This moti-
vated us to consider spatial transform-based alignment in this
paper.

Recently, spatial transform (e.g., affine transform) has been
implemented within a neural network. A spatial transform
consists of scaling, rotation, translation, and non-rigid defor-
mation. The transformation is performed globally done on
the entire image, unlike the conventional feature map. More
specifically, the spatial transform is applied to a pair of
successive plant images at different times, and find a set
of parameters, θ (which collects several affine transform
parameters in a matrix form actually) to describe the degree
of growth. In other words, the amount of growth is quanti-
fied by a set of affine transform parameters. The parameter,
θ is learned for every pair of neighboring images, and it is

multiplied by its importance map as learned in the network.
Then, the multiple θ ’s are combined to estimate the next
spatial transform parameter for the output. Next, the learned
transform parameter is applied to a current image as shown
in Fig. 3, and the result becomes a future shape image.
The process of finding a set of affine transform parameters
is important, because it determines the degree of growth
prediction. In practical, there are several obstacles that can
degrade the accuracy of image alignment. For example, if the
transform is performed on RGB domain, the extent of growth
detection is adversely affected by background signals, leading
to inaccurate spatial transform. This is why we perform the
transform on shape domain.

The learned transform parameter is applied to both the
shape image and its RGB at the current time, thereby pro-
ducing their predictions for the next time. A shape image is
generated only for calculating the loss on shape domain. The
transformed RGB image is close to the ground truth, but it
still shows some incorrect estimations particularly in local
regions. The leaves of a plant exhibit heterogeneous growth
behaviors. In other words, each leaf in a plant may grow in
diverse directions, and the growth rate can be different for
each leaf. These heterogeneous shape changes and move-
ments of the leaves make it challenging to predict a future
plant image using only the STN.

The global plant growth is predicted using the shape esti-
mation subnet. In contrast, the RGB reconstruction subnet
focuses on the growth of the local leaves of the plant. Plants
produce leaves of different sizes, and all leaves grow at dif-
ferent growth rates. Thus, we employ the RGB reconstruction
subnet after the STN module to estimate the local growth of
the leaves. In the RGB reconstruction subnet, a plant image
is divided into multiple patches, these patches are passed
through a hierarchical auto-encoder.

The input to the RGB reconstruction subnet is obtained
by transforming the plant foreground image using the set of
affine transform parameters already learned from the shape
prediction subnet. The affine-transformed RGB foreground
is then divided into four patches that are passed through the
encoder. After encoding, the four feature maps are concate-
nated into two features, which are summed to the encoded
features of the upper parent layer. In addition, the output (two
subimages) of the current layer is summed to the input in
the next parent layer. This process is repeated until the top
layer. Finally, to create a complete plant image (including the
background), the current plant image It+1 is fused with the
reconstructed plant foreground F̂t+1 to replenish color and
image details sufficiently. The proposed method can predict
both the large and small leaves of the plant.

B. LOSS FUNCTION
When the proposed network is trained, the L1 norm, also
called the Least Absolute Deviation (LAD), is adopted as the
loss function. With L1 norm, we can obtain the output RGB
image which is less blurred than Mean Square Error (MSE)
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FIGURE 4. Performance comparison according to loss function (L1, MSE
and SSIM).

and SSIM. Fig. 4 shows the result images for L1, MSE, and
SSIM. The formula for the L1 norm is as follows:

L1(X ,Y ) =
p∑
i=1

|Yi − Xi| (3)

Here, Xi and Yi are the i-th pixel values of the images X and
Y, respectively, and p is the total number of pixels.

The overall loss function consists of three sub-losses,
as follows.

L = LSTN + LShape + LFG + LRGB (4)

The first term, LSTN in (4) is the loss measured in the STN
module of the shape prediction subnet. For each pair of
adjacent inputs as shown in Fig. 3, the STN is applied to
quantify the growth during a time interval. The prediction
performance of the STN is reflected to LSTN , and the L1 loss
between the prediction of STN (̃St−2, S̃t−1, S̃t in Fig. 3) and
its ground truth is calculated as

LSTN =
2∑

k=0

L1(̃St−k , St−k ) (5)

The second term, Lshape in (4) is the loss measured for the
output of the shape prediction subnet. It is the L1 loss between
a ground truth shape and the shape prediction subnet output,
and is determined as follows:

LShape = L1 (̃St+1, St+1) (6)

Next, LFG in (4) is the loss measured for the output of the hier-
archical RGB foreground reconstruction net. It is the L1 loss
between the ground truth foreground and RGB foreground
prediction subnet output, and is determined as follows:

LFG = L1(F̂t+1, St+1 � It+1) (7)

In the above, � means the element-wise multiplication
Finally, LRGB is the loss for the final RGB image and it is

given as follows:

LRGB = L1(Ît+1, It+1) (8)

V. EXPERIMENTAL RESULTS
Our network was implemented using the PyTorch framework
on a PC with a NVIDIA RTX 3090 GPU. For loss optimiza-
tion, we adopted an Adam optimizer with a batch size of

FIGURE 5. Acquisition of our Butterhead dataset in a plant factory.

eight [25]. The initial learning rate is 0.0001 and is divided
by 8 for every 20,000 iterations.

Three datasets were used to evaluate the performance of the
proposedmethod and to compare it with the existingmethods.
The resolution of the image is 128 x 128. The training images
were rotated by 90,180 and 270 degrees and were reversed
left and right for data augmentation. First, The Aberystwyth
leaf evaluation dataset [26] was used for experiments. It is
composed of time-series image sequences of Arabidopsis
Thaliana plants [27]. There are four sets of 20 Arabidopsis
Thaliana plants which have been grown in trays. As the plants
grow, the leaves are overlapped each other, allowing 10 out of
20 plants to be used in the experiment. For the experiments,
the plant data are divided into a training (nine plants) and
test (one plant) datasets. Each frame is taken in a 15-minute
time lapse sequence. In order to observe the growth of plants
more dynamically, the time interval between input images
was increased to 1 days. A subset of these images have been
hand-annotated to provide the ground truth of a plant.

Second, we conducted the evaluation with another dataset,
named as Komatsuna [28]. The dataset consists of five
Komatsuna plants, four amongwhich are assigned to training,
and one is to test. The images in the dataset are taken from a
top view as in the previous dataset. Originally, the dataset has
a time interval of one hour between adjacent plant images,
but the time interval is changed to a three-hour interval to
increase the amount of growth between input images. This
makes plant growth prediction more challenging.

Finally our own dataset was created in this study for further
evaluation, and it is named as Butterhead. Fairly butterhead
lettuce [29] has grown in a plant factory for 13 days as shown
in Fig. 5. It includes the image sequences of ten Butterheads
with one day interval. For the experiments, the plant data are
divided into a training (eight plants) and a test (two plants)
datasets. For our network, the leaves are segmented from an
RGB image to generate the shape image.

A. THE SHAPE PREDICTION SUBNET
The shape prediction subnet was evaluated to explore the
extent to which it could learn plant growth using the STN.

VOLUME 10, 2022 37735



T. Kim et al.: Novel Shape Based Plant Growth Prediction Algorithm Using Deep Learning and Spatial Transformation

FIGURE 6. Prediction of shape images and their prediction errors.
(a) ground truth St+1, (b) predicted shape S̃t+1 using STN, (c) the
input St , (d) difference image between (a) and (b), (e) difference image
between (a) and (c).

TABLE 1. Comparison of PSNR, SSIM and CS for the Aberystwyth leaf
evaluation dataset [27].

It was trained using sequential shape image sequences with
one-day intervals. It learned the affine transform parameters
between the present and future plant shapes by fusing the
transform parameters for the past pairs of shape images in
the input sequence.

TABLE 2. Comparison of PSNR, SSIM and CS for the Komatsuna
dataset [27].

The generated parameters at the shape prediction subnet
were used to predict a future RGB image from the current.

TABLE 3. Comparison of PSNR, SSIM and CS for our Butterhead dataset.

Fig. 6 (b) shows the shape images generated by the shape
prediction subnet. Fig. 6 (d) shows the difference between
Fig. 6 (b) and its ground truth, Fig. 6 (a), whereas Fig. 6 (e)
shows the difference between the current shape, Fig. 6 (c) and
Fig. 6 (a). The former represents the estimation error of the
network, and the latter indicates the amount of plant growth
from the current time t to the future t + 1. Notably, Fig. 6 (b)
shows the future shape image as predicted from the current
image in Fig. 6 (c).
As can be observed, the prediction of the proposed subnet

is much closer to ground truth than the current. Even though
the proposed subnet does not predict the future shape per-
fectly, its prediction is located near to the future. In particular,
the errors between large leaves decrease significantly when
Fig. 6 (d) is compared to Fig. 6 (e). It means that the pro-
posed shape subnet can predict the overall shape of a plant
accurately.

B. RGB PLANT IMAGE RESULTS
The quantitative and qualitative performance comparisons
were made using the RGB plant images. In addition, the
plant growth predictions were evaluated through existing
video prediction networks [22], [23] and plant growth meth-
ods [12], [16]. Video predictions are conceptually simi-
lar to plant growth predictions, in that they predict object
motion. LSTM [12], Concat [12], MC-Net [22], HP-Net [23]
and [16] were evaluated for the future plant image generation,
and Fig. 7 shows the experimental results. Fig. 7 (g) visu-
ally demonstrates the effectiveness of our proposed method,
relative to the existing methods in Fig. 7 (b) [12] and
Fig. 7 (c) [12]. [12] introduces twomethods, which are similar
to each other. The only difference is how to connect encoders
and decoders. One uses concatenation, and the other does
LSTM. Fig. 7 (d) [23] and (e) [22] show the results of HP-Net
and MC-Net for video prediction, respectively. Video frame
generation is very similar to plant growth predictions in that
the motion of an object is predicted over time. In other words,
the exercise of objects corresponds to the growth of plants in
our work. Fig. 7 (f) shows the results of the recently pro-
posed state-of-the-art plant growth prediction method. The
left column of Fig. 7 shows RGB images at different times,
and the right column shows the ground truth shapes and shape
prediction errors. Fig. 7 (b-g) in the right column are obtained
by masking the predicted plant image with its ground truth
shape. The green regions in the masked images indicate
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FIGURE 7. Prediction of RGB plant images. (a) ground truth It+1, (b) LSTM [12], (c) Concat [12], (d) HP-Net [23], (e) MC-Net [22],
(f) STN-LSTM [16] and (g) the proposed.

correct prediction while the strong gray regions (originally
the color of the background soil in the left column) represent
the prediction errors.

TABLE 4. Coverage scores of the shape images in Fig. 11.

As shown in both Fig. 7 (b) and (c), the conventional
plant growth methods often fail to correctly predict the

shapes of the leaves, and some shape distortions often occur.
We observe the distorted shape in Fig. 7 (b) and the disappear-
ance in (c) of the leaf in the red box of the first plant. The con-
ventional video prediction methods, Fig. 7 (d), and (e), show
the distorted shapes of the leaves as compared to the ground
truth It+1. It can be observed that the techniques in video
prediction are not appropriate for plant growth predictions
because they focus only on future frame predictions without
preserving the shape of plant leaves. Fig. 7 (f) predicts better
than the existing methods, but the prediction performance is
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FIGURE 8. Prediction of RGB plant images on the Komatsuna dataset.
(a) ground truth It+1, (b) LSTM [12], (c) Concat [12], (d) HP-Net [23],
(e) MC-Net [22], (f) STN-LSTM [16] and (g) the proposed.

inferior to that of the proposed method only for certain leaves
with large growth changes. In contrast, the proposed method
successfully estimates its shape in Fig. 7 (g), compared to
the ground truth in Fig. 7 (a). In addition, if the capability
of growth tracking is compared, the conventional methods
Fig. 7 (b) and (c) fail to track the leaf movement in the red
box of the third plant from the left, and the leaf still remains
at the current time.

This failure to track the leaf movement produces large
errors on the right side of the leaf. However, the proposed
method consistently tracks the leaf movements, resulting
in fewer errors in the shape prediction, as confirmed in

FIGURE 9. Prediction of RGB plant images on our Butterhead dataset.
(a) ground truth It+1, (b) LSTM [12], (c) Concat [12], (d) HP-Net [23],
(e) MC-Net [22], (f) STN-LSTM [16] and (g) the proposed.

Fig. 7 (g). Table 1 presents the quantitative results with
the peak signal-to-noise ratio (PSNR) and structural similar-
ity index measure (SSIM) [30] for 31 RGB plant images.
And the coverage score (CS) [11] is used, which mea-
sures the accuracy of shape prediction. The CS is calcu-
lated as the ratio of the intersection to the union between
two shapes. The CS for two shape images, St+1, S̃t+1 as
follows:

CS(St+1, S̃t+1) = Overlap(St+1, S̃t+1) (9)

Here,Overlap(·) is the intersection over union (IoU) between
the inputs. As listed in Table 4, the proposed network
achieves the highest CS value. As listed in Table 1, the
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FIGURE 10. Comparison between ‘before auto-encoder’ and ‘after
auto-encoder’. (a) ground truth It+1, (b) the RGB input It , (c) the output of
the shape prediction subnet S̃t+1, (d) the final output of the proposed
network Ît+1.

FIGURE 11. Impact of the number of the inputs on the shape prediction
performance. (a) three inputs three inputs (It , It−2 and It−3), (b) one
input It , (c) three inputs (It , It−1 and It−2), (d) four inputs (It , It−1, It−2
and It−3).

proposed method achieves the best quantitative quality as
expected from Fig. 7.
Fig. 8 shows the experimental results for the Komatsuna

dataset. Fig. 8 (b) shows the distorted shapes of the leaves

FIGURE 12. STN performance comparison between shape and RGB
domains. (a) ground truth It+1, (b) the RGB input It , the predicted image
F̃t+1 on (c) RGB domain and (d) Gray domain.

because of the incorrect prediction of their growth direction.
In Fig. 8 (c), certain parts of the leaf are overgrown and the
edges of the leaf are blurred. The leaf shape is not smooth and
severely distorted in Fig. 8 (d). It is observed that plant growth
prediction result in Fig. 8 (e) is better than other conventional
methods, but the right leaf of the plant was predicted to
be larger than the ground truth. FIg. 8 (f), as in Fig. 7,
shows slightly inferior prediction performance of leaves with
large growth changes. However, the proposed achieves better
growth prediction, and the shapes of leaves are well predicted.

Experimental results using our own Butterhead dataset
are shown in Fig. 9. As shown in Fig. 9 (b) and (c), the
overall shapes of the leaf are very distorted for the existing
methods. In addition, Fig. 9 (b) shows the distortion of the
background is particularly severe. In the second and third
images of Fig. 9 (d), there are some leaves which are not
found in the ground truth. Compared to the conventional
methods, Fig. 9 (e) was quite predicted well in terms of the
overall leaf shape. However, some leaves are predicted to be
under-grown and certain leaves are blurred, as shown in the
third column of Fig. 9 (e). In Fig. 9 (f), blurring appears at the
boundary between the plant and the background, and it can
be also observed in some leaves. As confirmed in Fig. 9 (g),
the proposedmethod is generally well-predicted in the overall
shape of leaves, and certain leaves that are difficult to predict
are alsowell-predicted. Tables 2 and 3 present the quantitative
results of PSNR and SSIM for the Komatsuna and Butterhead
datasets, respectively, and the proposed method achieves bet-
ter quantitative performance.
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C. ABLATION STUDIES
In the proposed network, the shape subnet generates spatial
transform parameters, which are applied to the present RGB
image. The result image corresponds to the future prediction
of the present one. Then, it passes through the RGB recon-
struction subnet for further enhancement. The output of the
shape subnet still lacks full growth prediction. For example,
if the final output of the shape prediction subnet, S̃t+1 is
compared to Ît+1 in the red boxes of Fig. 10 (c) and (d), the
leaf size is quite different. The STN is capable of predicting
the overall structure of leaves in a plant very well, but it
sometimes fails to predict themovement of small local leaves.
This can be further improved by the auto-encoder as shown
in Fig. 10.

Next, we study the impact of the number of the inputs
on the performance in the shape prediction subnet. Fig. 11
shows the difference between a ground truth and the predicted
shape image. Notably, the number of inputs is fixed to four
in the proposed network. As expected, it can be observed
from Fig. 11 that additional inputs lead to fewer errors.
Fig. 11 (a) and (c) show the results for the three inputs,
however their timestamps are different. In Fig. 11 (a), the time
interval between the inputs is not uniform, and it shows the
largest error, worse than even a single input, (b). Although the
network accepts four inputs for simplicity in this paper, it can
be easily extended to more inputs. We also studied the perfor-
mance differences between the shape and RGB domains. For
the proposed network, training was conducted on the shape
domain rather than RGB to find affine transform parameters
for the future plant image prediction. Shape domain is a gray
image domain in which only foreground of plants without
background exists. The reason for training the network on
shape domain is that we aimed to predict the plant growth,
as measured by the overall area of leaves in a plant. Spatial
Transformation on RGB domain tends to be easily affected by
the surrounding environment such as soil, pot and other plants
rather than a plant in the image. In addition, in the process of
acquiring a top view plant image, even a marginal change in
the plant position makes the dataset useless.

As shown in Fig. 12 (d), if training was conducted
in the shape domain, the plant predicted for the future
would be closer to the growth of the ground truth. In this
study, this results was visualized by targeting a single leaf
in the plant to clearly observe the difference in growth.
As shown in the zoom-in leaf of Fig. 12, the size of the
leaf on shape domain is predicted more accurately than that
on RGB.

For the ablation study of the RGB reconstruction sub-
net, we conducted experiments on Arabidopsis Thaliana
plants [27]. In the far left column of Fig. 13, there are RGB
and shape images of ground truth. The second column shows
the result of configuring the RGB reconstruction subnet with
a single auto-encoder instead of hierarchical ones. We can
observe the poor prediction performance for the local leaves
(the blue box) and shape distortion (red box) in Fig. 13,

FIGURE 13. Ablation study results of the RGB reconstruction subnet on
Arabidopsis dataset [27].

FIGURE 14. Ablation study results of the RGB reconstruction subnet on
the Butterhead dataset.

relative to the proposed hierarchical auto-encoders (the fourth
column). The third column shows the result of the proposed
with background. As noted above, in the proposed method,
the image masked with the foreground shape enters the RGB
reconstruction subnet in the proposed method. Without fore-
ground segmentation, the original plant image is used in this
ablation study. As shown in the blue box, the proposed with
background fails to track the growth. Thus, the proposed
technique appears to effectively track the growth of the local
leaves.

Fig. 14 shows the ablation study results from the RGB
reconstruction subnet on our Butterhead dataset. The ablation
study scenarios of Fig. 14 are the same as those in Fig. 13,
except for the dataset used. Each row in Fig. 14 shows show
different plant images at different times. As observed in the
red box, we can see that the proposed technique has grown
closely to ground truth compared to the other two combina-
tions. In the case of the proposed RGB reconstruction subnet,
we can see that it contributes not only to the growth of local
leaves but also to the growth of global leaves. Table 5 lists
PSNR and SSIM values where the proposed RGB reconstruc-
tion subnet achieves a better quantitative performance.
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TABLE 5. Ablation study quantitative results of the RGB reconstruction
subnet with three datasets.

VI. CONCLUSION
In this study, we attempt to predict the dynamic growth
behaviors of leaves in a plant via deep learning, and propose
a deep network for predicting a future plant image from past
and present images. The shape of a plant image is learned, and
its RGB channels are reconstructed. Instead of the traditional
sequential image fusion, our framework adopts the affine
transform to model the growth behaviors of leaves. The affine
transform parameters learned for all pairs of consecutive
temporal images are fused together to predict the overall
shape of the leaves. Then, we employ the RGB reconstruction
subnet after the STN module to estimate the local growth of
the leaves additionally. A plant image is divided into multiple
patches, and they pass through a hierarchical auto-encoder.
The RGB reconstruction subnet reconstructs an RGB image,
with particular focus on the prediction of local movements
and shape changes.

The proposed network is evaluated using a variety of
datasets, including our own Butterhead dataset acquired from
a plant factory. The experimental results show that the pro-
posed network is particularly resistant to the dynamic move-
ments of leaves, outperforming the existing methods in both
qualitative and quantitative ways.

A one-day future image is predicted in this work, and
the time interval can be increased to longer than a day in
the future. In addition, we will establish additional datasets
including various plant growth behaviors.
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