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ABSTRACT Early detection of age-related disease symptoms in older people by the use of daily activity data
is one of the central challenges of home sensor systems. This paper focuses on dementia scale classification
from daily activity data collected using sensors that can be deployed in actual residential environments.
Activity data collected by four sensors (a door sensor, human motion sensor, location sensor, and sleep
sensor) were obtained by recording 56 older adults living in common residences. We analyzed the effects of
different types of sensor data, such as time spent in an individual room according to human motion sensors,
location in a facility, and sleep patterns, on dementia detection. We then developed a feature extraction
method related to daily activity patterns based on a clustering algorithm and analyzed its effectiveness. In the
experimental evaluation, we trained binary classification models to classify dementia scale scores based
on the Mini-Mental State Examination (MMSE) from these datasets. The experimental results show that a
maximum accuracy of 0.871 was obtained with a linear support vector machine (SVM) model by fusing the
door, location, and sleep features and by clustering activity patterns using the X-means algorithm.

INDEX TERMS Dementia, activities of daily living (ADLs), multisensor fusion, machine learning.

I. INTRODUCTION
Dementia is one of the major causes of disability and depen-
dency among older people worldwide. It is predicted that
the number of patients with dementia will reach 152 million
by 2050 [1]. Dementia is a syndrome in which the abil-
ity to think, remember, and perform everyday activities is
decreased [2]. A cure for dementia has not been identified,
but treatments to relieve the symptoms have been devel-
oped [3]. Thus, the early detection of dementia symptoms
is important to slow progression and to support patients and
their families. From this perspective, some computer science
researchers have started to develop computational models
to identify people with dementia by using various types of
activities. In these studies, researchers recorded individual
behaviors and automatically predicted clinical scores based
on sensor data [4], [5]. Many studies based on daily activity
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have developed systems that automatically detect dementia
from activity data collected unobtrusively. In recent research,
activity data have been collected from an environment where
a large number of sensors are installed, such as a smart
home. Features related to residents’ daily behaviors or activ-
ities of daily living (ADLs) that can be extracted based on
activity recognition have shown effectiveness in classify-
ing dementia. However, some difficulties are encountered
in building such specific sensor networks in the residences
of users.

This research aims to apply a system in actual care facilities
for elderly people rather than perform an experiment in a
sensor room where a large number of sensors are installed.
We propose and evaluate a method to discriminate dementia
scale scores obtained by a dementia screening test, namely,
the Mini-Mental State Examination (MMSE), from activity
data measured by installing simple (low-cost) sensors in an
actual residential facility. Furthermore, by developing a clas-
sification model for each of the many independent sensors,
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we can compare the effectiveness of the measurements using
each sensor.

For this purpose, we propose an effective feature extrac-
tion method by referring to a study that analyzed activity
patterns during daily activities [6] to improve the dementia
detection accuracy. Specifically, the main idea is to extract
typical activity patterns by unsupervised dimension reduction
algorithms and cluster them from a set of ADL samples
observed in all participants in the experiment. A feature set
composed of typical activity patterns is appropriate for com-
paring the activities of different people. In this paper, we refer
to the extracted behavioral features based on daily activity
patterns as bag-of-activity patterns (BoAPs) and verify their
effectiveness in classifying dementia scale scores. The main
contributions of this study are summarized as follows.

A. AN ACTIVITY SENSING DATASET COLLECTED FROM
MULTIPLE SENSORS IN A REAL ENVIRONMENT
We collected an activity dataset from participants in residen-
tial facilities using four different sensors over two months
to extract indoor daily activities. The dataset, which was
collected from the actual living environment of elderly par-
ticipants, included location and sleep information of the par-
ticipants and information from the door sensor and human
motion sensor in the room. Two months of data collection
under these realistic conditions enabled us to model the daily
behaviors of the participants. Furthermore, it is possible to
compare and analyze the contribution to the estimation of
information obtained from multiple aspects, such as time
spent in an individual’s room by motion sensors, location in
a facility, and sleep patterns.

B. FEATURE EXTRACTION BASED ON EIGEN BEHAVIORS
Daily activity patterns vary among individuals, so extract-
ing effective activity features related to classifying dementia
scale scores from such diverse activity samples is still a
central challenge. We propose a method to extract activity
features by relating diverse activity samples to typical activity
patterns that are learned using dimension reduction or clus-
tering algorithms. We show that the activity pattern features
extracted from an actual living environment are effective at
classifying the differences in dementia scale scores. Collect-
ing the activity dataset and extracting the features from these
datasets were conducted in a fully autonomous manner.

C. FUSING OF VARIOUS SENSOR DATA AND COMPARING
DIFFERENT SENSING TYPES
By comparing classification models of the dementia scale
from different types of sensor data, we analyze the sensor fea-
tures that are effective for detecting dementia. This study also
addresses a novel challenge in investigating the possibility
of automatic classification of dementia scale scores by inte-
grating the features obtained from various sensors. We show
that fusing these features obtained from various sensors can
improve the classification accuracy of the dementia scale.

II. RELATED WORKS
A. ANALYZING DEMENTIA FROM PHYSICAL ACTIVITY
DATA
The procedures for the clinical diagnosis of dementia include
an interview, a physical examination, and a neurological
examination to determine the presence or absence of demen-
tia and its symptoms. Electroencephalography (EEG) is a
pathologically valid indicator in the diagnosis of demen-
tia [7], and the effectiveness of EEG-based sensing as an
approach for the early detection of cognitive function has
been shown [8]–[10]. Wu et al. [11] detected the degree of
dementia based on EEG information. In recent studies, cog-
nitive function has been detected from a variety of data,
including speech, language, gait, and facial expression [12].
Jarrold et al. [13] detected the type of dementia from speech
based on acoustic features and language. Many of the predic-
tors of dementia levels can be interpreted as general cognitive
deficits that are well-known features of dementia, such as
decreased memory ability and decreased accuracy and speed
of movements. For elderly health monitoring, activity perfor-
mance should be sensed during daily life without burdening
the user.

Daily activity performance is an important indicator
of functional health. The inability to perform necessary
activities during daily life is associated with increased
health care utilization and the risk of developing demen-
tia. Hodges et al. [14] used wearable devices (radiofrequency
identification (RFID) bracelets) and RFID-tagged objects to
detect indicators of cognitive impairment, such as demen-
tia and traumatic brain injury, by monitoring individuals
performing a well-defined routine task (making coffee).
By extracting activity features using a motion sensor system,
Hayes et al. [15] investigated the associations among walk-
ing speed, the amount of daily activity in the participants’
residences and the level of mild cognitive impairment (MCI,
high or low). To longitudinally monitor the daily activities
of users in the home and to detect and evaluate health func-
tions, it is necessary to automatically detect activities from
data collected by unobtrusive sensors. Currently, with the
development of ubiquitous computing, inexpensive and reli-
able sensors have enabled accurate pattern recognition from
activity sensing data. Recently, researchers have tried to auto-
mate health assessments, including daily activities, based on
sensor data. Akl et al. [16] acquired motion sensor data over
an average period of three years and calculated several mea-
sures associated with subjects’ walking speeds and general
household activities to detect MCI. Dawadi et al. [17] inves-
tigated the relationship between the ability of a participant
to complete an activity and the health assessment (demen-
tia or cognitively healthy). In addition, Alberdi et al. [5]
extended this work by extracting features associated with
ADLs from a sensor system to estimate a health function
score. Robben et al. [4] developed an ambient sensor mon-
itoring system to collect sensor data in a participant’s resi-
dence and proposed an algorithm for quantifying the changes
in everyday behaviors.
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FIGURE 1. Overview of the dementia scale score classification.

Many studies on the estimation of cognitive functions
based on ADLs show that large-scale sensing systems such as
smart homes enable activity recognition or feature extraction
corresponding to daily living behaviors. There are several
challenges in implementing such activity sensing environ-
ments in actual residential facilities for elderly individuals.
Prediction models depend on the different floor plans of the
residential facilities and the measured environment.

On the other hand, [18] reported that the frequency of
social activity is associated with dementia, and [19] showed
that both social interaction and intellectual stimulation may
be relevant to preserving mental function in elderly indi-
viduals. From these findings, [20] proposed a method to
extract daily activity information based on the time spent in
each room from indoor positioning information using mobile
beacons and evaluated the classification accuracy of dementia
scale scores.

B. DETECTING PHYSIOLOGICAL DISEASE FROM SLEEP
ACTIVITY
Dementia causes sleep disorders, such as day and night
reversal, difficulty falling asleep, and midway awakening
problems [21], [22]. On the basis of more than 9 years of
research, Hahn et al. [23] reported that changes in sleep pat-
terns cause dementia and that respiratory rate, heart rate, and
body movement are the main physiological parameters that
indicate sleep quality. Previous research applied the differ-
ences in sleep behavior estimated from the bedroom and the
participant’s position to detect dementia and has shown that
sleep duration and sleep patterns differ according to dementia
scores [5], [17].

Monitoring sleep behavior in depth is known to be effective
at estimating health status. EEG is a typical sensing method
for identifying specific patterns in sleep, and many studies
have been conducted on methods of automatically detect-
ing sleep patterns, such as the automatic classification of

sleep stages [24], [25]. Paradiso et al. [26] collected activity
and respiration levels during sleep using noninvasive micro-
biosensors embedded in objects such as clothing items to
identify patients with mood disorders. Nam et al. [27] used a
pressure sensor to obtain behavioral data during sleep, such as
bodymovement and heart rate, to estimate health status. From
the viewpoint of achieving a collection of sleep behaviors
without burdening the user, such as by wearing a sensor,
contact-free bed sensors can now provide high monitoring
accuracy [28]. Therefore, we attempt to estimate the dementia
scale score from the sleep state acquired by a bed sensor
and the biological signals during sleep rather than to perform
sleep activity recognition based on an individual’s location
information. Sleep sensor information enables a comparative
analysis of the contribution to the estimation of dementia
from information obtained from different sensors, such as
location information and information from human motion
sensors.

C. POSITION OF THIS RESEARCH
The main difference between this paper and many previous
ones analyzing health assessments based on activity data is
that we analyze data sensing methods to introduce a demen-
tia estimation system into users’ actual living environments.
In this study, we used a sensing method that can be easily
implemented in actual living environments to collect sleep
information and location information, including outings and
movement information. Different types of sensors have dif-
ferent advantages and disadvantages in terms of price, relia-
bility, and user acceptability for sensing in the home. Since
the type of sensors that can be installed depends on the living
environment, we investigate whether the behavioral sensor
data acquired by door and human motion sensors in addition
to indoor positioning are effective at detecting dementia. Fur-
thermore, we aim to extract the differences in individual activ-
ity patterns from sensor data collected in an easy-to-install
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FIGURE 2. Distribution of the MMSE scores (y-axis) with respect to age
(x-axis). The horizontal line represents 23 points, which is the threshold
for dementia suspicion, and the vertical line represents the mean age.

way and automatically extract features of ADLs that are
known to be effective in estimating the dementia scale score.
While many previous studies have shown that features of
daily activities extracted by sensing systems contribute to the
estimation of dementia, they have not focused on comparing
the contribution of features obtained frommultiple sensors or
on fusing features extracted from different types of sensors.
The purpose of this study is to determine the best method for
collecting activity data that is effective for the classification
of dementia scale scores frommultiple types of sensors and to
evaluate whether the accuracy of the model can be improved
by fusing different types of sensor information.

III. RESEARCH OVERVIEW AND DATASET
A. OVERVIEW OF DEMENTIA SCALE CLASSIFICATION
Fig 1 shows an overview of the dementia scale score classi-
fication. The procedure for developing a classification model
for the dementia scale from a behavioral dataset collected by
a variety of sensors is shown here.
1. Extract features for dementia detection from the data

from each sensor (IV-A).
2. Extract features based on typical activity patterns

extracted by using dimension reduction and clustering
algorithms (IV-B).

3. Develop a model to estimate the dementia scale score by
machine learning using the activity feature set (V).

B. DEMENTIA SCALE TEST
We recorded the indoor daily activity datasets in two nurs-
ing residential facilities in Japan. We recruited 56 Japanese
participants. Daily life behavior data were collected using
the four types of sensors during a two-month period. The
Research Ethics Committee of the Nippon Telegraph and
Telephone West Corporation reviewed and approved the col-
lection of data and the corresponding research using this
dataset. The dataset, excluding personal information (age,

TABLE 1. Statistics of the participants and the number of participants in
the high- and low-scoring groups on a dementia scale.

sex, name, and audio) that could be used by a third party to
identify and discriminate against the participants, was shared
only among the coauthors of this study for the purpose of aca-
demic research. Only the following age and sex information
was collected and shared: the average age of the participants
was 78.43 (± 9.63) years old, and the participants included
24 male participants and 32 female participants. Written
informed consent was obtained from all the participants or
from a capable family member before the following data were
collected.

The participants initially completed the MMSE [29],
a dementia screening test. In the MMSE, if the score is below
23 points, the likelihood of dementia is high, and a score
below 27 points is defined as suspicious for MCI [30]. Fig 2
plots the scores against the ages of the participants. In this
dataset, because of the number of participants suspected of
having dementia, we classified participants into two groups,
namely, dementia suspicion or no dementia suspicion, instead
of three groups (dementia, MCI, or other). The task of esti-
mating the dementia scale score is defined in this study as the
two-class classification of high- and low-scoring groups on
a dementia scale based on the threshold of 23 points on the
MMSE.1 The information of the experimental participant’s
high/low-score groups collected by each sensor is given in
Table 1.

C. ACTIVITY DATASET FROM FOUR DIFFERENT SENSORS
In this section, we describe how to collect the activity dataset.
Although the two residential nursing facilities hosting the
participants are very different, they have individual rooms
with a bed and a toilet and a shared space for free com-
munication among the residents. To collect the indoor loca-
tion data, we used a Bluetooth Low Energy (BLE) beacon,
Biblle 3, which was produced by George and Shaun Co., Ltd.
This Bluetooth beacon has a small radio transmitter (6 ×
0.6 × 2.2 cm, 9.07 g) that sends signals within a radius of
10-30 m (interior spaces). These beacons are cost-effective
and can be installed with minimal effort. We installed ref-
erence access points (APs), which are the receivers for the

1The MMSE is a cognitive function test, but the test results do not always
match the results of the diagnosis of dementia. Therefore, the proposed
classificationmodel that identifies and estimates high/lowMMSE scores (the
value of one indicator that investigates dementia) does not estimate the actual
diagnostic results of dementia.
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Bluetooth signal, in the participants’ rooms and the shared
spaces of the residential facilities. We estimated the position
of a participant with a beacon using the received signal
strength indication (RSSI) of the Bluetooth signal and the
location coordinates of the APs. Additionally, we installed
three types of single sensors (door sensors, human motion
sensors, and sleep sensors) in the participants’ private rooms
to collect information on their daily activities using a sensing
method different from indoor positioning.

The door sensor (DS1A-A01WH) and human motion sen-
sor (HM92-01WHC) were produced by Nissha Co., Ltd.
These sensors were installed on the entrance doors and
ceilings of private rooms to detect the entry/exit and pres-
ence/absence, respectively, of the participants in the private
rooms. The sensors do not need to be replaced because they
use solar cells, and they record the opening/closing of the
door and presence/absence of the participant as binary values
and wirelessly transmit them. Although the interval at which
data are collected is irregular, the door sensor periodically
transmits its current state every 20-30 minutes, even outside
of the open/close timing. In the case of the human motion
sensor, the sensor sends the detected status at a maximum
interval of once every 5 seconds.

The sleep data of the participants were acquired by using
a noncontact vital sensor (MS-106) produced by Mio Cor-
poration. A bed sensor with a 24-GHz microwave Doppler
sensor (13.35 × 12.12 × 2.6 cm, 246 g) was installed on the
ceiling or at the top of the wall in private rooms. Microwaves
were used to detect the left and right sides of the sensor at
32◦/58◦ angles within a range of 1.4-3 m, and two patterns
of biological signals were obtained for each of the sensing
results from the two directions. Specifically, the heart rate,
respiratory rate, body movement level, and whether the par-
ticipant was in his or her bed were estimated using the sensing
results.

The number of participants and recording days were dif-
ferent for each sensor. The participant-level averages for the
location, door sensor, human motion sensor, and sleep sensor
data were 31.3, 42.4, 42.5, and 33.4 days, respectively.

IV. ACTIVITY FEATURE EXTRACTION
Fig 3 provides an overview of the feature extraction method
for the participants’ dementia scale score categories from the
time series data acquired from each sensor; the steps are listed
as follows:

1) Represent the activity feature vector of one sample as
the activity of one day and prepare an activity sample set
containing the samples corresponding to all the dates.

2) Discover the typical activity patterns from the activity
samples by using clustering and dimension reduction
algorithms.

3) Extract the activity feature vector of an activity sample
using typical activity patterns.

4) Transform the activity samples observed from each par-
ticipant into one sample for each participant.

Daily activity data generally have a specific structure and
regularity. When daily activity patterns are compared, health
conditions can also be compared [31]. Based on these find-
ings, we represent an activity feature vector for a unit of one
day.

Extracting activity types from behavioral data is impor-
tant for estimating health status. It has been reported that
changes in activity patterns correspond to changes in health
status [32]. Riboni et al. [33] focused on detecting abnor-
mal behaviors of MCI patients from sensor data and built a
system for early detection. Extracting patterns of activities,
such as those proposed by Dawadi et al. [34], is based on an
activity recognition algorithm that requires the collection of
participants’ activity events by many sensors. In this study,
we applied dimension reduction and unsupervised clustering
algorithms to obtain features that represent daily activity
patterns from automatically extracted features based on data
from easily installed sensors.

A. DAILY SENSOR FEATURES
First, to acquire the behavior trend, we extracted activity
features from time-series sensor data segmented by days.
In previous sensing systems, specific activity features asso-
ciated with ADLs were extracted (e.g., time spent on toilet
needs at night, daily sleep duration) [4], [5]. In this study,
we designed features that are less dependent on differences
among sensor types or living environments, considering their
application to actual living environments. Table 2 shows the
hourly activity features that can be automatically extracted
from each sensor. The daily activity sample x was obtained
by concatenating the sensor features calculated for each hour.
This approach for extracting features based on hourly sensor
values is not limited to the four types of sensors used in this
study and can be applied to other types of sensor data that are
not used in this study.

1) Door and human motion sensor features: The door
and human motion sensors output a value of 1 when
they detect an action. We extracted feature values of
24 dimensions by calculating the total count for which
the event (door movement or human detection) was
observed within each hour.

2) Indoor positioning features: The indoor location data
obtained using the mobile beacons captured the amount
of time that the participants spent in each room
daily. We calculated these durations using the location
data [20].
a) When anAP receives a signal from a beacon (ID of the

participant), a data sample is added to the database.
The data are composed of the following attributes:
(1) ID, M of the AP; (2) ID, P of the beacon; and
(3) RSSI, the RSSI of the signal. Each AP M has
a coordinate of position PosM = (Xax ,Yax) in the
residential facility.

b) Every participant lives in one of the two residen-
tial facilities. Therefore, we need to extract common
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FIGURE 3. Overview of the feature extraction method.

activity features that are independent of the residential
facility. Common features in both residential facilities
are the shared space and private rooms of the partici-
pants. We classify the positions, Pos, into three types:
a shared space (shared living and recreation rooms)
(C = 1), a participant’s own room (C = 2), and other
places, including other participants’ rooms (C = 3)
in the residential facility (an example is shown in
Figure 1).

c) The location where participant P stays from time T
to time T + 1 is estimated using the RSSIs. Let the
RSSI vectors of all the Bluetooth signals detected
by an AP in location C ∈ {1, 2, 3} be RSSIT ,C =
{rssiC,1, . . . , rssiC,NT ,C }, where NT ,C corresponds to
the number of times the signals were received by the
APs in location C from time T to time T + 1. rssi
[dBm] is a negative value (RSSI > −80), and we
normalize the RSSI by wC,n = 80+ rssiC,n.

d) The probability that participant N stays in location C
from time T to time T +1 is PrT ,C =

∑NT ,C
n wC,n/Z ,

where Z =
∑

C
∑

n wC,n.
We calculate PrT ,C as the probability of the partici-
pant staying in a location at each time T from 0-23.
PrT ,C is calculated for each day for all the participants.
In addition to the percentage of the day spent in each
location, we calculate the maximum distance moved at
each time. DistT is calculated as the maximum distance
[m] between the AP where the signal was detected at
each hour and the AP of the participant’s own room. The
dimension of the location activity feature space is 96.

3) Sleep sensor features: For each hour, we calculate
the average of the eight sensor output values for heart
rate, respiratory rate, and body movement levels and
the average of the binary value of whether the patient
is in bed based on the sensor’s estimate. The eight
biological signals to be acquired are listed as follows:

TABLE 2. Extracted sensor features.

heart rate, ‘‘heart rate level’’, ‘‘left heart rate level’’, and
‘‘right heart rate level’’; respiration, ‘‘respiration level’’,
‘‘left respiration level’’, and ‘‘right respiration level’’;
and body movement, ‘‘left body movement level’’ and
‘‘right body movement level’’. The dimension of the
sleep feature space is 216.

B. FEATURE EXTRACTION BASED ON ACTIVITY PATTERNS
From the sensor features (daily activity samples) calculated in
Section IV-A, we extract features based on activity patterns
that are expected to be effective at classifying the dementia
scale score. The activity data matrix (the number of all the
participants’ daily samples (n) × the number (d) of daily
activity features) was composed by using all the participants’
daily activity samples (data samples) (xi), so the matrix is
represented as X = [x1, . . . , xi, . . . , xn] ∈ Rd×n. Using
unsupervised dimension reduction and unsupervised cluster-
ing algorithms of the activity data matrix, we obtain a set of
typical daily activity patterns. Principal component analysis
(PCA), sparse coding (SC) [35], and an autoencoder (AE)
[36] are used for dimension reduction. Additionally, since the
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number of activity clusters is unknown, we use X-means [37]
as a clustering algorithm.

1) PRINCIPAL COMPONENT ANALYSIS (PCA)
PCA is commonly used for dimension reduction with a trans-
formation matrix A ∈ Rd×dp by projecting each input data
sample xi in dataset X into a lower-dimensional data sample
x∗ ∈ Rdp . Let the lower-dimensional dataset be X∗; then, the
transformation is written as x∗ = AT x and so X∗ = ATX .
In the setting of dimension reduction for activity analysis, X
is set as the activity data matrix. In PCA, A is optimized so
that the variance of projected data samples x∗ is maximized.
It is well known that the optimized A can be obtained as
an eigenvector ev of the covariance matrix of the input data
set (X ), so A is represented as A = [ev1, . . . , evdp ], where
ev1 denotes the first principal component, which is the eigen-
vector corresponding to the largest eigenvalue. Therefore, A
is composed of eigenvectors corresponding to the largest dp
eigenvalues. We regard these first dp principal components as
typical activity patterns in all activity samples.

2) SPARSE CODING (SC)
The objective of the SC algorithm is to decompose the activity
data matrix (X ∈ Rd×n) into ds basic elements (dictio-
nary) (D ∈ Rd×ds , ds < d) and sparse coefficient arrays
(α = [α1, . . . , αN ] ∈ Rds×n). In SC, we regard the ds basic
elements (dictionaries) as the typical activity patterns in the
activity dataset. The optimization problem in SC is expressed
as follows:

arg min
D∈C,α∈Rds×n

N∑
i=1

||xi − Dαi||2 + λ||αi||1, (1)

where

C , {D ∈ Rd×ds : dTj dj ≤ 1,∀j = 1, . . . , ds} (2)

In the optimization setting, the coefficient α of the sparse
decomposition is obtained by minimizing the error: ||xi −
Dαi||2 with `l penalties: ||αi||1. λ is a model parameter
that controls the trade-off between sparsity and minimization
error.

To solve this optimization problem, we applied an alterna-
tive optimization technique, referred to as online dictionary
learning [35], which optimizes with respect to each of the two
variables D and α when the other variable is fixed.

3) AUTOENCODER (AE)
TheAE is used to transform the data into a lower-dimensional
space of feature vectors by an unsupervised learning neural
network. The objective of the AE is essentially to learn the
encoding matrix from the original input data (x ∈ Rd ) to
low-dimensional space (Rda , da < d)) as close as possible
to its original input data. The optimization problem in the AE
is expressed as follows:

arg min
W∈Rd×da

N∑
i=1

||xi − σ (WTσ (Wxi + b1)+ b2)||2, (3)

where σ () is the activation function in the neural network.
We applied the rectified linear unit function as σ (), and
b1 ∈ Rda and b2 ∈ Rd are bias vectors. The W, b1, b2 are
optimized using the backpropagation algorithm based on the
adaptive moment estimation (Adam) optimizer [38] in this
study.

4) X-MEANS
Dimension reduction is a qualitatively easier representation to
clearly separate the data clusters. To identify typical activity
patterns, clustering algorithms can be used to assign the
activity samples into K clusters. As a feature representation
method, we used the X-means algorithm [37], which is an
extension of the K-means algorithmwith the ability to choose
the number of clusters (K) based on information criteria.
First, the optimization problem in both K-means and X-
means is set as follows:

arg min
R∈RN×dk ,µ∈Rd×dk

N∑
i=1

dk∑
k=1

ri,k ||xi − µk ||2, (4)

ri,k =


1, (k = arg min

j
||xi − µj||2)

0, (k 6= arg min
j
||xi − µj||2).

(5)

µk are d-dimensional centroid vectors of the kth cluster. ri,k
is the binary indicator variable. If the ith sample is assigned
to the kth cluster, ri,k = 1; otherwise, ri,k = 0. To solve
this optimization problem, an alternative optimization tech-
nique is applied to optimize with respect to each of the two
variables ri,k and µ when the other variable is fixed. In X-
means [37], the optimal number of clusters X is determined
by recursively running 2-means until the Bayesian informa-
tion criterion (BIC) stops improving.

5) HYPERPARAMETER SETTING
For dimension reduction by PCA, we set the cumulative
contribution rate thc = 0.9 as the threshold. For SC, we set
the basis of the dictionary ds = 100 and λ = 1. For the AE,
we set the dimension of the middle layer da to 20, the number
of epochs to 100, and the minibatch size to 64.

C. TRANSFORMATION TO PARTICIPANT-BASED FEATURE
VECTOR
To train the classification models of MMSE by using a
data set that consists of a set of samples per participant,
we need to convert the daily activity dataset XM of person
ID M , which is composed of feature vectors per day, into
the person-based activity dataset XP with a feature vector per
participant (Fig 3).

We calculate the statistics of the daily activity features.
Statistical features (called ‘‘Stats’’), which are directly calcu-
lated from the daily sensor features, comprise a comparative
method with the proposed feature extraction methods based
on typical activity patterns.

Consider the daily activity matrix (sample set) of a partic-
ipant whose ID isM represented as XM , composed of a daily
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activity sample {x1, x2, . . . , xNM }, where NM is the number
of measurement days of the participant. We describe how
to convert XM ∈ RNM×d to the person-based feature vector
XPM ∈ Rd with five types of features: (i) statistical features,
and features extracted based on (ii) PCA, (iii) SC, (iv) AE,
and (v) X-means in Section IV-B.
(i) XP with statistical features: To represent the repre-

sentative feature of a person, we calculated the mean vector
mean(XM ) of XM and standard deviation vector std(XM ) of
XM along the dimension of a day. The person-based feature
vector XPM is represented by concatenating mean(XM ) and
std(XM ) as XPM = [mean(XM )T , std(XM )T ]T .
(ii) XP extracted based on PCA: XM is converted to

lower-dimensional data X∗M = ATXM by projection for
dimension reduction with PCA. The person-based feature
vector XPM is represented by concatenating mean(X∗M ) and
std(X∗M ), XPM = [mean(X∗M )T , std(X∗M )T ]T .
(iii) XP extracted based on SC: After training the SC

model, all activity samples X are decomposed into ds basic
elements (D) and sparse coefficient arrays (α ∈ Rds×N ).
Coefficient values αk,n in α, which are almost zero, are
implemented to denote the weight of the kth basic element
to represent the nth activity sample.

The corresponding α∗M ∈ Rds×NM is calculated by encod-
ing the data set XM as a sparse combination of the basic ele-
ments D, so we set X∗M = α

∗
M . The person-based feature vec-

tor XPM is calculated as XPM = [mean(X∗M )T , std(X∗M )T ]T

in the same manner as PCA.
(iv) XP extracted based on AE: After the AE model is

trained, the activity matrix XM is encoded into X∗M as follows:

X∗M = σ (WXM + B1),

where

B1 = [b1, . . . , b1] ∈ Rda×NM . (6)

The person-based feature vector XPM is calculated as XPM =
[mean(X∗M )T , std(X∗M )T ]T in the same manner as PCA.
(v) XP extracted based on X-means: After the X-means

model is trained, the indicator variable ri,k is used to convert
XM to XPM . Let the indicator matrix, which has ri,k as each
value, be R ∈da×N . The indicator matrix for activity samples
of person ID M can be written by RM ∈da×NM . XPM is
calculated as XPM = sum(RM ).
In this paper, we refer to the extracted activity features

based on the daily activity patterns by PCA, SC, AE and
X-means as BoAP features. In total, five feature sets were
acquired by extracting the Stats features and four BoAP
features for each participant.

V. EXPERIMENT
We perform a two-class classification task on the high/low
MMSE scores of the experimental participants and evaluate
the classification accuracy in two different experiments. First,
to analyze the effectiveness of each feature group, we train
classificationmodels with five sets of features for each type of
sensor and report the classification accuracies of models with

each feature group (Experiment 1). In the first experiment,
we used all samples obtained from each sensor.
Second, we compare the feature groups of the different

sensors and analyze the effectiveness of fusing features from
multiple sensors (Experiment 2). For this purpose, we used
only daily activity samples, which consist of data observed
from all sensors. Samples for which sensor data are missing
are removed from the dataset in Experiment 2.
Third, we compare the accuracy of the classification mod-

els based on daily activity samples and classification models
using person-based feature vectors to clarify the effective-
ness of the proposed BoAP features (person-based features)
extracted for each participant in Experiment 3.

A. EXPERIMENTAL SETTING
Leave-one-person-out cross-validation is conducted to evalu-
ate the performance. The balanced accuracy (mean accuracy
for both classes) is selected as the evaluation criterion for
the classification because the numbers of samples are imbal-
anced. The majority baseline when all samples are classified
into one majority class is set to 50%.
We explain the machine learning models for the classifica-

tion of the MMSE score as follows.

1) PERSON-BASED BoAP APPROACH
As classification models to be trained with the proposed
BoAP features (person-based features), we use a linear sup-
port vector machine (SVM), a logistic regression (LR)model,
and a random forest (RF) model. Because the sample size
is equal to the number of participants in our approach
(using person-based features) and the sample size is small,
we do not use a nonlinear classifier such as a deep neu-
ral network (DNN) or a long short-term memory (LSTM)
network [39], which would require many training samples,
in Experiments 1 and 2. We normalize the data such that
each feature has a mean of zero and a standard deviation
of one.
The parameters of the SVM are optimized using a nested

cross-validation scheme, with C parameter values selected
from [0.01, 0.1, 1, and 10]. The parameters of the RF are
optimized similarly using a nested cross-validation scheme,
with the numbers of trees per forest selected from [10, 100,
and 200]. The number of random samples per tree is set as
the square root of the size of the training sample set. For the
feature sets, independent-sample t-tests between the activity
features and the high/low scores on the dementia scale are
performed for feature selection. Variables with significant
differences based on p < 0.1 are selected for the training
process.

2) DAY-SAMPLE-BASED APPROACH
Our proposed method for classifying each person’s demen-
tia scale score is an approach that effectively extracts a
person’s activity features from a daily activity sample and
then estimates the MMSE from the daily activities of each
person. However, such a person-based classification method
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TABLE 3. Experiment 1: Balanced accuracy of the model for each sensor feature set. Row 2 denotes the method of feature extraction. The features
(excluding Stats) are the proposed method’s BoAPs, which represent the difference in activity patterns.

TABLE 4. Experiment 2: Comparison of the classification accuracy of each sensor feature set.

cannot provide sufficient samples for classification training
because the number of samples is equal to the number of
participants.

In Experiment 3, we analyze the effectiveness of our
approach using person-based features by comparison with
classification models trained based on daily activity samples
(see the left-hand side of Fig 3). In the approach using the
daily samples, daily activity samples observed from a par-
ticipant are assigned to the MMSE label of that participant.
In this approach, all daily samples (total N=1034) are avail-
able as training data; thus, for the approach using the daily
samples, we use DNN and LSTM classifiers in addition to
SVM, LR, and RF models.

For the DNN, we use a fully connected feedforward neural
network consisting of two hidden layers, with dropout after
each layer. We set the number of units in each hidden layer
to 100, the number of epochs to 100, the minibatch size to
64, and the dropout rate to 0.5. We use the Adam optimizer
and set the learning rate to 0.001. For the LSTM classifier,
we stack a sigmoid layer on top of the LSTM neuron to
accomplish two-class classification. We set the number of
hidden dimensions equal to 20 and apply dropout before the
fully connected layer. In the LSTM case, the sensor features
are learned as time-series features with a length of 24 (ND ×
24) corresponding to the feature vectors extracted for each
hour (24 hours in total). The other network settings are the
same as for the DNN. In the inference phase of the day-
based approach, a class label (dementia or no dementia) is
output by the trained model for each day sample; therefore,
we need to convert the label set (inferred class) for each day
sample into labels for the participants. We use a majority
voting method for this purpose, meaning that the class label
that is assigned for the greater number of days is taken as
the final dementia scale classification result for the partici-
pant. The features used for the training process are selected
using independent-sample t-tests, similar to the approach
used in the person-based method, except for the LSTM
classifier.

B. EXPERIMENT 1: CLASSIFICATION WITH DAILY
ACTIVITIES COLLECTED BY EACH SENSOR
To discuss the effectiveness of the feature groups, we trained
models with five sets of features for each type of sensor.
Table 3 shows the classification results of these models. For
the door, human motion, location, and sleep sensors, the
highest model accuracies (0.647, 0.725, 0.694, and 0.631,
respectively) outperform the classification accuracy of the
baseline (0.5). This result shows that each obtained sensor
data point has a certain effectiveness in classifying dementia
scale scores. Comparing the mean accuracy of each machine
learning model, the X-means algorithm is the most effective
for door sensors, indoor positioning, and sleep sensors (0.595,
0.632, and 0.565, respectively), while PCA is especially
effective for human motion sensors (0.708).

The highest accuracy among all the sensors was obtained
with the features extracted based on activity patterns. Each
model improves the accuracy by 0.066-0.183 points com-
pared to the same machine learning model in Stats. This
result indicates that BoAPs are more effective features for
dementia scale score classification than Stats are, which
are extracted directly from the sensor features. Among the
machine learningmodels, the highest accuracy for all sensors,
except the human motion sensor, was achieved by the linear
SVM, so only the linear SVM was used in the following
experiments.

C. EXPERIMENT 2: FUSING THE MULTISENSOR FEATURES
In this section, we compare the feature groups of the different
sensors and analyze the effectiveness of fusing features from
multiple sensors. Although different participants provided
data for each installed sensor, 37 participants agreed to have
their data recorded by all the sensors. Because the mea-
surement dates differed for each sensor, we extracted only
the daily activity sample collected by all four sensors for
each participant. The total number of days of measurement
data acquired from all experimental participants was 1034.

VOLUME 10, 2022 38939



A. Minamisawa et al.: Dementia Scale Score Classification Based on Daily Activities Using Multiple Sensors

TABLE 5. Comparison of the highest classification accuracy between the
single-sensor scenario and the multisensor scenario. Column 4 shows the
number of improved model in the multisensor scenario.

TABLE 6. Confusion matrix for the highest accuracy in Experiment 2:
Estimation results of the classification model for each participant’s
high/low MMSE scores.

We evaluated the balanced accuracy of the four types of
sensor features: door features (D), human motion features
(H), location features (L), and sleep features (S). The fused
features of each sensor produced 15 features. Five linear SVM
models, which are based on the activity pattern forms in each
case, are built for evaluation.

Table 4 shows the classification accuracy for the fusion of
each feature set. In Columns 2-5, when we compare the accu-
racy of each sensor by using the common measurement data,
the features extracted from the location and sleep sensors (the
mean accuracy values are 0.664 and 0.690, respectively) are
more effective than those from the door and human motion
sensors (the mean accuracy values are 0.590 and 0.481,
respectively).

Columns 6-16 show that the model can be improved by
the fusion of features obtained from multiple sensors. Row
2 shows that among the 11 multisensor patterns, the classi-
fication accuracy of four sensor combinations (D+H, H+L,
L+S, and H+L+S) in Stats is better than that of any of the
single sensors selected for fusion. Row 3 shows that the clas-
sification accuracy of the PCAmodel is higher for the combi-
nation of two sensors (D+H, L+S). Similarly, rows 4-6 show
that the model improves in two cases for SC (D+H, D+L),
five cases for AE (D+L, H+L, L+S, D+L+S, H+L+S), and
seven cases for X-means (D+H, D+L, H+L, L+S, D+H+L,
D+L+S, H+L+S). Table 5 summarizes the highest accuracy
of each single-sensor and multisensor case in Table 4 and the
number of sensor combinationswhosemodels were improved
by sensor fusion. These results indicate that the model can be
improved by the fusion of features obtained from multiple
sensors. The highest accuracy of 0.871 is obtained by fus-
ing the door, location, and sleep features and clustering the
activity patterns by the X-means algorithm. Table 6 shows
the confusion matrix; 8 of the 31 participants in the dementia
group were incorrectly identified as being healthy. The high-
est mean accuracy of 0.773 in Experiment 2 is obtained for the
combination of the location and sleep sensors. Table 7 shows
the classification accuracy of each machine learning model
for the combination of the location and sleep sensors, and the
highest accuracy is obtained with the features extracted based
on activity patterns when using any machine learning model.

TABLE 7. Comparison of machine learning models for the feature
combination that yielded the highest mean accuracy in Experiment 2.

TABLE 8. Experiment 3: Comparison of classification accuracy of models
trained on day-based and person-based samples.

D. EXPERIMENT 3: CLASSIFICATION PER PERSON VS. DAY
SAMPLES
We compare the proposed person-based BoAP method with
the day-sample-based (day-based) method to clarify the
effectiveness of BoAP for the feature representation of each
participant. For day-based classification, the activity sample
set (N=1034) can be used to train the classification models,
so the number of samples meets the minimum requirement
for nonlinear algorithms, including DNNs. This section com-
pares the accuracy of the day-based and person-based clas-
sification methods with the fusion of indoor positioning and
sleep features, which was the sensor combination with the
highest mean accuracy in Experiment 2. In day-based clas-
sification, we evaluate the classification accuracy of models
trained on daily samples using DNN and LSTM classifiers in
addition to SVM, LR, and RF classifiers. Each classification
model is trained on the daily sensor features and outputs
classification results for the participants for all days.

Table 8 compares the classification accuracy results of
the day-based and person-based methods for each machine
learning model. In day-based classification, the RF and DNN
models obtain the highest accuracy of 0.720. The results of
the person-based method show the highest accuracy for each
machine learning model in Table 7, and the accuracy of all
machine learning models is higher with the person-based
method than with the day-based method. These results indi-
cate the importance of classifying dementia based on typical
activity features for each person rather than using each day as
a sample.

The reason why the person-based method yields better
accuracy even though the number of samples is small is dis-
cussed as follows. The hypothesis behind the sample-based
method is that all daily samples observed from a partici-
pant with dementia characterize dementia because all daily
samples are annotated as dementia samples in this case.
However, this hypothesis might be too strong when modeling
the specific behavioral features of dementia because it is
unclear what and when specific activity patterns of partici-
pants with dementia are observed, and not all daily samples
(daily behavior) always display the characteristics of demen-
tia. This finding is consistent with the result (Table 7) that
the sample-based method is less effective for the dementia
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TABLE 9. Ablation results for the feature groups.

TABLE 10. Balanced classification accuracy for different measurement
times.

classification task than the person-based method. From the
experiments reported in this section, we conclude that the
person-based method of learning effective feature represen-
tations from daily samples of participants with dementia is
effective for dementia classification.

E. FEATURE ANALYSIS
To discuss the feature groups that contribute to classifica-
tion accuracy, we conduct feature ablation tests while fusing
indoor positioning with sleep features, which is the highest
mean accuracy sensor combination in Experiment 2. Table 9
shows the classification accuracy when one feature group is
removed from all the features used in the case of Stats and
PCA, where the accuracy is high when all feature groups are
used. The accuracies of the linear SVMmodels, excluding the
features related to the probability of staying in each area and
themoving distance, are particularly low. This result indicates
that the indoor location information of the participants is
important for accurate classification. Rows 6-9 show that
the accuracy of the model decreases when the sleep features
related to heart rate, respiration, and body movement are
excluded, as well as the state of being in bed. This result
indicates that biological information during sleep also has the
potential to improve the model accuracy.

Next, to analyze the effective measurement time for clas-
sification, we compare the model accuracy when using only
the features of each time period in the X-means algorithm
of Experiment 1. Table 10 shows the linear SVM model
accuracy when using only three hours of the sensor features
extracted for each hour in Section IV-A. The classification
accuracy of each time for the location and sleep sensors shows
that an accurate model can be obtained when the features
after 18:00 are applied. This result suggests that monitoring

activity at night is effective for estimating the dementia scale
score category.

VI. DISCUSSION
In this study, we compare multiple sensors from various
aspects, with a focus on introducing sensor networks for
estimating the dementia scale score in an actual living envi-
ronment.

Indoor positioning can provide an approximate location
of the participants at each time. More accurate indoor posi-
tioning algorithms using the RSSIs are surveyed in [33].
In general, we need to develop a large-scale reference point
set to estimate accurate positions. However, we aimed to be
as independent of the collection environment as possible and
applied a simple method to extract features. In this study,
location information based on indoor positioning contributed
the most to classification, but participants needed to carry a
beacon at all times during sensing. Because the sensor system
is expected to be applied in living facilities with different floor
plans, some challenges arise in extracting features that are
unified under different environments.

Although door and human motion sensors are relatively
inexpensive and easy to install and can collect movement
information for each participant, the accuracy of estimating
the dementia scale in this experiment was lower than the accu-
racies of the indoor positioning and sleep sensors. Similar
to indoor positioning, some difficulties are encountered in
realizing an estimation model that can be adapted to different
living facilities. Furthermore, sensors that measure activity
data may also detect the behaviors of individuals other than
the subject. Because the sensors are not associated with the
participants themselves, the approach is available only for
those participants who live alone or in a private room that
utilizes door and human sensors.

In this experiment, sleep data, including biological infor-
mation recorded by bed sensors, were effective for classify-
ing dementia scale scores. The sleep data acquired by the
noncontact sensor are the least affected by the monitoring
environment among the sensors used in this experiment, so it
is relatively easy to continue collecting data over a long time
in a stable sensing environment. Collecting sleep data from
elderly individuals can be utilized for various nursing care
support systems, such as the analysis of sleep stages and
sleep quality [40], [41]. In future works, to identify patterns
according to dementia scale scores, we will focus on building
more elaborate models using sleep sensor data by extract-
ing features that represent the differences in detailed sleep
patterns. The sensing method may be effective in support
systems, including dementia detection.

In this study, we created two classes based on MMSE
scores, but we did not estimate the results of doc-
tors’ diagnoses, and the experimental participants with
extremely low MMSE scores included bedridden persons.
Brodaty et al. [42] showed that MCI symptoms do not nec-
essarily progress to dementia and that recovery can be
expected. Early detection of MCI is much more important
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than estimating MMSE scores in support systems for elderly
people. Because of the small number of participants with
MCI in this dataset (refer to Fig 2), we did not attempt
to address the classification of MCI. Based on this study,
future studies should focus on long-term data collection and
tracking of changes in the MMSE for participants with MCI
using a sensing system that can be implemented in actual
living environments.

Moreover, it is difficult to understand what specific behav-
ioral characteristics are related to the feature values extracted
based on activity patterns. When assuming the development
of a support system for medical professionals to analyze
dementia scale scores, it is desirable to use interpretable fea-
ture values, such as the time asleep and amount of movement.
Detailed analyses of the features extracted using dimension-
ality reduction algorithms such as PCA and AEs are provided
in [43], [44]. Future work should focus on the visualization
of features based on activity patterns that can be applied to
estimate dementia accurately.

VII. CONCLUSION
In this study, we collected activity sensor datasets by
installing multiple sensors in participants’ residential facil-
ities and built a dementia scale score estimation model.
We also proposed a method for extracting features based on
activity patterns to automatically acquire differences in daily
activity types, which are expected to be effective at detecting
dementia from sensor data.

In Experiment 1, the accuracy of all the sensors was
higher than the baseline, thus showing that the four sensing
methods used in this experiment were effective at estimating
the dementia scale. Experiment 2 showed that indoor posi-
tioning was particularly effective for collecting behavioral
data, as it could capture general activities all day, and that
activity sensing using sleep sensors was particularly effec-
tive at recording sleep rhythms and detailed sleep states.
Experiment 3 showed, through comparison with the day-
based method, that the person-based method learns effec-
tive feature representations for dementia classification from
participants’ sample data. Throughout the three experiments,
the activity-pattern-based features were particularly effective.
The extracted activity vectors represent differences in daily
activity patterns and can be regarded as effective features for
classifying dementia scale scores.

We aimed to provide insight into the types of sensors and
activity features that may be applied for dementia classifi-
cation. Future tasks will include the development of sensing
methods that can be adapted to different living facilities, the
construction of models for estimating dementia levels, and
the analysis of activity pattern features that are effective for
improving the classification accuracy. However, this work
has demonstrated the possibility that easily installed and
unobtrusively collected in-home behavior data can estimate
the dementia scale score. Further model improvement can
be expected by collecting larger datasets for location and
sleep information. We conclude that our results suggest the

possibility of analyzing the activity patterns specific to
dementia and realizing an early dementia detection system
by feasible data collection in a real-world environment.
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