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ABSTRACT The rapid proliferation of wireless networks poses a great challenge of effective coexistence
management amongst a plethora of wireless communication protocol users that are co-located and contend-
ing for the ever scarce spectrum available. For effective spectrum utilization and optimum performance of
existing wireless networks and for the realization of new wireless networks, coexistence management of the
wireless spectrum is the key to ensure the performance of multiple wireless networks in close proximity.
This paper provides a comprehensive review of state-of-the-art coexistence protocols in wireless networks.
The paper not only discusses wireless interference detection techniques in detail but also provides various

coping mechanisms to counter the interference.

INDEX TERMS Coexistence management, wireless signal identification, cross technology interference,
ISM bands, spectral analysis, interference aware routing, spectrum monitoring, deep learning, Q-learning,

machine learning, interference management.

I. INTRODUCTION

Wireless networks like Wireless Personal Area Net-
work (WPAN) mostly use the ISM (Industrial, Scientific and
Medical) band for communication which is a collection of
unlicensed frequency bands reserved globally for ISM appli-
cations. Due to high number of existing ISM users and with
the upcoming next generation wireless technologies includ-
ing Industrial Internet of Things (IIOT) and Cyber-physical
systems (CPS), the spectral coexistence within ISM band is
a growing concern in research community.

The resulting Cross Technology Interference (CTI) would
result in packet drops and subsequent retransmissions which
would cause latency and low spectral efficiency. Hence coex-
istence management schemes play a significant role in order
to ensure the QoS of wireless networks in an already con-
gested spectrum [1].

Wireless networks are highly dynamic with unknown and
complex radio spectrum occupancy and varying spatial envi-
ronments that change with respect to time with user mobil-
ity. They are affected by multiple factors such as multipath,
fading effects, intentional jamming, unintentional interfer-
ence caused by spurious RF signals from electrical machines
etc. CTI interference is an addition to the existing chal-
lenges faced by wireless signals. The importance of existing
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commercial wireless applications in the ISM bands is unde-
niable as we are highly dependent on internet based services
such as positioning (Google Maps), transport services (Uber),
communication applications (WhatsApp, WeChat), delivery
services (Postmates) etc. This is just a facet of the services
that we consider essential in our daily lives from the many
internet based applications available. With the growth in
technology, connectivity at all levels has exponentially grown
and so have the number of users.

Coexistence Management would be the key enabler of the
innovative technologies being envisioned. Since unlicensed
bands are the basis of many future wireless networks, it is
imperative to coordinate the heterogeneous transmissions
over space, time and frequency so that bare minimum com-
munication is maintained instead of a complete network fail-
ure due to rising interference.

In the rest of the paper, Section II provides the introduc-
tion and technical specifications of several wireless com-
munication technologies along with their interference foot
prints. Section III discusses the various coexisting challenges
of shared spectrum. Section IV gives a general introduc-
tion to Machine Learning (ML) techniques that are widely
used in the works analyzed in the coming sections. The
survey of the state of the art interference detection tech-
niques are presented in Section V followed by the survey
of solutions/schemes to tackle wireless coexistence problem
is provided in Section VI. Section VII lists the future works
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and open challenges of this research area. The conclusion is
discussed in Section VIII followed by references.

Il. WIRELESS NETWORKS

In this section Wireless Networks using ISM band are
discussed along with their technical specifications and
bandwidth utilization. Moreover the applications which these
networks are targeting and due to the dense nature of deploy-
ment, the interferences these networks cause with other wire-
less networks are analyzed.

A. IEEE 802.15.4 BASED LR-WPANS

Wireless Sensor Networks (WSNs) are based on the IEEE
802.15.4 standard comprising of low power sensing nodes
that are spatially distributed. Sensing nodes gather data from
the environment and synchronize the data to a central sink
directly or via peer to peer data forwarding. WSNs are imple-
mented in following scenarios.

« BANs (Body Area Networks) [2] for the collection
of blood pressure, temperature, heart rate, respira-
tion rate, oxygen saturation levels, pulmonary pressure
levels etc. [3]-[7].

« Patient monitoring and rehabilitation [8].

o Home based WSNs for home automation and secu-
rity [9], [10].

« Wild life [11] and habitat monitoring [12].

« Disaster monitoring in fires [13], tsunami [14], earth-
quakes [15]-[17] and landslides [18].

« Environment monitoring for air pollution, deforestation,
weather, water quality [19], agriculture [20], [21].

« Industrial environment monitoring in sensor data aggre-
gation [22] and machine health monitoring [23].

« Security applications such as area surveillance [24]—[26]
and target tracking[27].

« Infrastructure monitoring such as in sewerage system
monitoring systems [28].

o Ground, ship and air based logistics tracking [29].

o Space based WSNs [1] for e.g. Nanosatellite based
WSNs, LEO (Leo Earth Orbit) based WSNs [30], indoor
WSN in the ISS (International Space Station) [31].

WSN nodes often operate in harsh environments with lim-
ited power resources and on-board signal processing capa-
bility. Other derived standards include ZigBee, ISA100.11a,
Wireless HART (Highway Addressable Remote Transducer
Protocol), MiWi (Microchip Wireless), SNAP (Synapse Net-
work Appliance Protocol), Thread, 6LoWPAN (IPv6 over
Low-Power Wireless Personal Area Networks), RF4CE
(Radio Frequency for Consumer Electronics).

Due to a variety of applications and usability of WSN,
different coexistence scenarios with different technologies
are possible. An empirical analysis of WSN coexisting with
WiFi is studied in [32]. A more comprehensive study is done
in [33] for coexisting WSN, WiFi and Bluetooth networks.
Asymmetric interference is observed in the case of WiFi
which corrupts the Frame Error Rate of WSN transmissions
by 41%, whereas in the inverse experiment, WiFi remains
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unaffected by concurrent WSN transmissions. The effect of
BL is less severe causing 10% FER (Frame Error Rate) to
WSN transmissions.

B. WIFI

Wi-Fi (Wireless Fidelity) is a Wireless Local Area Network
(WLAN) based on the IEEE 802.11(b, g, n, a, ax, ah) family
of standards. WiFi comprises of wireless Access Point (APs)
that uses ISM frequencies of 2.4/5.8 GHz to provide users
/stations (STA) with wireless access to the internet.

Interference due to the spectral overlap between Wi-Fi and
WSN channels and extreme proliferation of WiFi connec-
tivity is a huge challenge for future networks. In compari-
son with WSN, higher powered WiFi signal exhibit highly
dynamic channel characteristics as per WiFi usage (for exam-
ple reading, streaming and audio streaming). Moreover it
exhibits bursty transmission patterns that can easily corrupt
WSN transmissions.

The effect of WiFi enabled radio over WSN and Bluetooth
based devices is discussed in [34] and [35]. On selecting
overlapping WiFi (2437 MHz) and WSN (2435 MHz) chan-
nels, WiFi reduces the throughput of WSNs by 22% while
remaining unaffected by WSN transmissions. In contrast
if the frequency separation between WiFi center frequency
(2462 MHz) and WSN channel (2405 MHz) is adequate,
no interference was reported. WiFi also degraded the per-
formance of BL by reducing throughput by 36%. In return
WiFi also faced a throughput reduction by 6% due to
BL transmissions.

C. BLUETOOTH

Bluetooth (BL) [36] is a low powered device to device com-
munication protocol also known as the IEEE 802.15.1 [37].
It is a Wireless Personal Area Network (WPAN) that uses low
range radio links and a Master/Slave architecture. BL is used
in many low powered devices such as

« Hearing aids [38], medical devices[3]

o Hands free, wireless audio headsets [39]

« Vehicle locking [40], vehicle stereo control

« PC to PC communication, Wireless mouse/keyboards/

printers

o Gaming consoles

« Industrial Bluetooth Mesh Networking [41]

o BL based direction finding for cm level positional

accuracy [42], [43]

o Advertising services [44], [45]

Bluetooth Low Energy (BLE) is a variant of BL that uses
40 channel (2 MHz) as compared to 79 channels (1 MHz)
of the classic BL. BLE is designed for prolonged low power
operation and also supports for supports mesh networking.

The effect of low power signals of Bluetooth enabled
devices on WiFi based devices is presented in [46]. The effect
of BL interference on WSN is studied in [47]. Experimen-
tal analysis reported an increased PER (Packet Error Rate)
by 60% (non-beacon enabled WSN) and 100% (beacon-
enabled) due to BL.
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TABLE 1. Wireless networks specifications.

WiFi WiFi WiFi BL Microwave
Technology WSN 802.11b/g 802.11a 802.11n IEEE 802.15.1 BLE Owen LTE-U
868.3/902- 2.4 GHz 5.8 GHz 2.4/5.8 GHz 2.4 GHz 2.4 GHz 2.45 GHz 35,5
Frequency 928/2400- /915 MHz GHz
2483.5 MHz
Channels 1/10/16 14 24 24 79 40 - -
Bandwidth 0.6/2/5 22/20 5/10/20 20/40 1 2 60 10/20
MHz
Modulation BPSK/O-QPSK BPSK-Barker, OFDM CCK, DSSS, | GFSK, n/4 GFSK Can be Same as
Scheme QPSK-Barker, or OFDM DQPSK, modelled LTE
QPSK-CCK /CCK, 8DPSK asa
Barker, OFDM frequency
sweeping
AM-FM
signal [51]
Data Rate 20/40/250 Kbps | 1,2,5.5,11 Mbps 6-64 Mbps < 600 Mbps | 3000/2000/1000 | 1000 Kbps - Same as
Kbps LTE
Medium CSMA/CA CSMA/CA CSMA/CA CSMA/CA FDMA and FDMA and | - LBT
Access TDMA TDMA
Transmission < 0dBm < 20 dBm < 20 dBm < 20 dBm <10 dBm <10 dBm 6 dBm to 23 dBm
Power 33 dBm
Coexistence Energy Energy detection Energy Energy FHSS FFH and - LBT
detection based based CCA detection and | detection Channel
CCA (Clear Carrier Sense | based CCA Blacklisting
Channel based CCA
Assessment)
Communication | Star, P2P (Peer Infrastructure/BSS (| Infrastructure | Infrastructure | Star Star, - NA
Topologies to Peer) Basic Service Set), (BSS), (BSS), Broadcast,
Adhoc/IBSS Adhoc Adhoc Mesh
(Independent BSS) (IBSS) and (IBSS) and
and Mesh/MBSS) Mesh Mesh
(MBSS) (MBSS)

D. MICROWAVE OWEN

Microwave Owen (MW Owen) is a household appliance used
for cooking and reheating food. MWOs use magnetron tubes
to generate RF (radio frequency) waves in the 2.4 GHz fre-
quency band. It generates a 60 MHz wide signal synchronized
with the AC mains frequency i.e. 50/60 Hz with a nearly 50%
duty cycle. The spurious radio power leakage from MWOs in
orders of 16 dBm to 33 dBm seriously interferes with low
powered technologies in the ISM band.

The effect of MWO on BL is studied in [48] with results
showing that MWO degrades the BL transmissions within
a distance of 5Sm. In [49] the propagation characteristics of
MWO are studied. Overall MWO interferences have known
transmission patterns and often have short term occurrences
as they are typically operated for several minutes for heating
purpose.

E. LTEU
LTE (Long Term Evolution) is a 3GPP (3rd Generation Part-
nership Project) standard for cellular communication as pro-
posed in 3GPP Release 8 utilizing licensed frequency bands
as purchased by the service provider. To meet the exponential
increase in cellular users and the high QoS requirements
of voice and data, 3GPP is now leveraging the power of
unlicensed spectrum.

LAA (Licensed Assisted Access) in Release 13 intro-
duced the provision of offloading downlink data in
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unlicensed bands. Extended LAA in Release 14 extended
this to uplink traffic as well. NR (New Radio) based
Release 16 provides a new standalone mode of unlicensed
spectrum usage without anchoring with a 4G or 5G licensed
anchor. Release 17 proposes an advancement in the Enhanced
Mobile Broadband (eMBB) to implement NR in the 52.6 GHz
to 71 GHz band.

A study of LTE and WiFi interference is studied in [50]
discussing the detrimental effects of greedy LTE transmis-
sions on WiFi. Without scheduling or coping mechanism,
LTE severely degrades WiFi transmissions.

A summary of these Wireless Network technologies with a
detail comparison with respect to specifications is presented
in Table 1.

Ill. CHALLENGES
A. SPECTRAL CONGESTION
With the massive proliferation of Wireless Networks and the
upcoming IOT (Internet of Things) and 5G Networks, it is
evident that many heterogeneous networks will coexist due to
the scarcity of RF spectrum [52] as shown in Fig. 1. Existing
ISM users include:

o Wireless Sensor Networks (WSN) based on ZigBee,

6LoWPAN, LoRa etc.

o Bluetooth and Bluetooth Low Energy

o WiFi (802.11) — 2.450 GHz and 5.800 GHz

« Wireless Local Area Networks
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FIGURE 1. Collocated wireless networks.

e Microwave Owen

« Digital Enhanced Cordless Telecommunications (DECT)
phones

o Pet trackers

« Automobile locking key

Future candidates for ISM band users would result in more

congestion in the RF spectrum and new spectrum sharing
paradigms as there is an increased motivation to leverage
the unlicensed band to achieve QoS requirements. Several
upcoming wireless technologies are discussed below:

o IoT (Internet of Things) is an all-encompassing frame-
work comprising of a massive amount of heterogeneous
sensors interconnected through the internet. IoT based
applications include smart cities, smart homes, agricul-
tural monitoring, traffic monitoring, weather monitoring
etc.

« Internet of Medical Things (IoMT) is a sub category of
IoT involving data acquisition from health sensors in
hospital wards, at home patients, senior citizens’ health
monitoring etc.

« Internet of Industrial Things (IIOT) is a mission crit-
ical variant of IoT existing in manufacturing plants,
grid monitoring applications etc. which requires high
reliability and stringent time constraints. The key tech-
nologies used alongside IIoT are cloud computing, edge
computing, machine learning etc.

+ 5G New Radio (NR) is the improved radio access tech-
nology (RAT) using both 6 GHz and mmWave fre-
quencies. With improved spectral efficiency, frequency
reuse, enhanced OFDM modulation schemes, MIMO
and beamforming, NR is expected to deliver the through-
put and QoS requirements of 5G and beyond.

o« NR-U (NR Unlicensed) [53] was proposed in 3GPP
Release 16 that leveraged unlicensed bands for both
uplink and downlink operations.

o CPS (Cyber-physical systems) are the next generation
computing systems in which the computing elements
interact with the physical components and they are
interconnected with each other. The gathered data is
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shared with one another to make informed control
decisions.

« UWB (Ultra wide band) is a short range data transfer
protocol that uses a very low power, high bandwidth
signal using frequencies between 3.1 GHz to 10.6 GHz
and are capable of delivering high data rates.

e« D2D-U (Device to Device) is a variant of D2D (device
to device) communication which was proposed in 3GPP
Release 12. D2D enables UE (User Equipment) to
directly communicate with a UE in its vicinity with-
out routing via a BS (Base Station) using licensed or
unlicensed frequency bands. D2D-U uses unlicensed
spectrum to achieve this one hop communication.

B. COMPLEX SPECTRUM

With diverse communication protocols and heterogeneous
wireless networks being collocated as shown in Fig 2, the
resulting spectrum is complex and dynamic. Wireless sig-
nal recognition techniques identify the technology type of
all heterogeneous signals present in the spectrum by using
frequency, bandwidth, modulation type and symbol rate
estimation [54].

The effects of cross technology interference are asymmet-
ric as the varying power levels of different wireless networks
leave some technologies such as WSN5s to be more vulnerable
to interference.

C. EXISTING COEXISTENCE MECHANISM

There exists no inter technology coordination mechanism for
efficient shared medium utilization.

D. WSN VULNERABILITIES
« Open Signal Structur
« Low powered node
o Coexistence with conventional/intelligent jamming
signal

IV. MACHINE LEARNING

Machine Learning (ML) is an artificial intelligence (AI) tech-
nique that aims to replicate the human cognitive skills i.e.
to study data and infer decisions based on its learning. The
term ML was first used in 1959 [55] by Arthur Samuel from
IBM in a study for a self-learning algorithm for learning
a game of checkers. The algorithm was provided the rules
and the directions and was trained within 8 to 10 hours of
playing with a human. Sixty years of research has pushed
the research boundaries even further and ML is amongst the
driving forces of research in this era with applications ranging
from bio medics, telecommunications, agriculture, finance,
economics, language/speech recognition, behavior analysis,
gameplay, search engine etc.

Survey in [56] is a comprehensive resource for ML
related works in the context of wireless communications.
A brief introduction to several ML algorithms is provided
below.
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FIGURE 2. CTI in 2.4 GHz ISM band.

A. SUPERVISED LEARNING
Supervised Learning models use labeled/known data to train
a model which then optimizes its performance by adjusting
its weights in iterative learning cycles. Several supervised
learning algorithms are discussed below.

o SVMs (Support Vector Machines) involve the mapping
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data, Xpn is the train sample and dpay is the Manhattan
distance.

@
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of n inputs into an n dimensional feature space with
an appropriate hyperplane segregating different classes.
The hyperplane can be a linear, radial or polynomial ker-
nel that best separates all classes. The hyper parameter
equation for SVM is given in Equation 1 in which w is
the weight vector, b is the bias term and x is the input
data.

wix+b=0 1)

KNN (K nearest neighbors) is a non-parametric algo-
rithm that works on the basis of similarity/proximity
of data belonging to the same class. Labelled data is
plotted in an n-dimensional feature space. To classify a
new sample, it is mapped in the feature space and its
proximity to “k” neighbors on the basis of a distance
metric such as Euclidean distance, Manhattan distance
etc. is checked. The most prevalent class label amongst
“k’ neighbors is then assigned to the new sample on
the assumption that same class label data lies in close
proximity.

Consider a training dataset consisting of N training
points (xn, yn) with x being the test sample and
y being its class label. For a test sample to be classified,
feature extraction is performed to calculate M features.
To classify the signal, the distance calculation between
test sample and train sample is done for all features.
The distance formula can be Euclidean as in Equation 2
where Xty is the test data, X,y is the train sample and
deyc is the Euclidean distance. Or the Manhattan distance
can be used as defined in Equation 3 where xty, is the test
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Apan = Z Xt — Xpm 3)
m=1

B. UNSUPERVISED LEARNING

Unsupervised Learning models use unlabeled/unknown data
for training and self learns data characteristics and hidden
relations and clusters data having similar features. Unsuper-
vised learning comes in handy when unlabeled data is avail-
able. Several unsupervised learning algorithms are discussed
below.

o K-Means Clustering algorithm clusters unlabeled data
into k (a predefined value) clusters. All samples are
mapped and initial cluster centroids are randomly ini-
tialized. Each sample point is associated with a cluster
based on its distance with the centroids. After assigning
all samples, the centroid is recalculated and adjusted and
the process is iterated repeatedly till centroid location
becomes fixed.

Clustering is done on the basis of Equation 4 where
S is the cluster set, x is the input sample and Xmean 1S
the mean of all samples in a particular S.

k=1 xe$§

o GAN (Generative Adversarial Networks) generates data
that resembles the unlabeled training data. GAN model
is based on a Generator module that generates new
samples and a Discriminator module that distinguishes
between true and generated samples. It is a two person
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zero-sum game where in each iteration the discriminator
is rewarded/unchanged for successfully distinguishing
between true/fake samples or penalized for being fooled.
Similarly the generator is also rewarded for fooling the
discriminator or penalized conversely.

V. INTERFERENCE DETECTION

In order to manage CTI in any wireless network, comprehen-
sive information of the spectrum at a given time is necessary.
Interference identification is performed to identify signals of
interest and interfering signals. All identified signals can be
studied to infer their transmission patterns and spectral char-
acteristics which then can be used intelligently in mitigating
or avoiding interfering signals.

A. RSSI AND IQ BASED DETECTION TECHNIQUES

These techniques perform detection based on the raw radio
sample received by the WSN receiver. Raw data maybe high
resolution IQ (In-phase and quadrature) samples received
from SDRs (Software Defined Radio). SDRs are high pro-
cessing power radios that are used sparingly in most networks
for resource rich task (such as Cluster Head (CH) operation,
image processing etc.). Most WSN networks comprise of
low power WSN motes that have limited sensing and signal
processing capacity. Energy sampling in these low cost motes
yields low resolution RSSI samples that are the highly filtered
version of the IQ samples. An overview of both IQ and RSSI
based techniques is provided in Table 2.

In [57], a lightweight interference detection algorithm is
presented using signal bursts making this technique suit-
able for implementation on lower end resource constrained
devices. Feature extraction for spectral, time domain and
clear channel assessment (CCA) based features was per-
formed. The classification task was performed via a mul-
ticlass support vector machine (SVM) and three variants
of classification trees (CT) for accuracy comparison. The
scheme was trained using real data collected in presence of
varying interferers (single or multiple interferers present) and
in varying environments such as varying node to interferer
spatial distance and line of sight (LOS)/NLOS availability.
The technique was validated using Contiki OS and WSN
Crossbow motes. The proposed method achieved a classifi-
cation accuracy of greater than 90%.

Authors in [58] are the first to use Deep Convolution
Neural Networks (DCNNs) for Wireless Interference Iden-
tification (WII). To optimize the detection process on high
resolution IQ data, the authors have used compressed sensing
snapshots of IQ data belonging to WiFi, WSN and BL that
are synthetically generated using VSG (Vector Signal Gen-
erator). Classification was performed via a CNN classifier
and NFSC (neuro-fuzzy signal classifier) proving that the
proposed CNN structure outperforms the NFSC by 8.19%.
A classification accuracy of 95% was achieved on greater
than —5 dB signal conditions.

The single class identification of [58] is modified to
multi label classification in [59]. Each individual signal class
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(utilized signal) is augmented by adding a weighted sum of up
to six interfering signals from the remaining classes. If same
class interferers were added, WSN and BL achieved 100%
classification accuracy as minimal spectral overlap is present
within their channels. WiFi classification accuracy was 78%
since there exists a spectral overlap within the considered
bands. If different class interferers were added, WiFi and BL
accuracy was 95% and WiFi accuracy was increased to 90%.

The data driven approach of [60] also uses deep learning
(DL) for WII. WSN, WiFi and BL data is synthetically gen-
erated and classified via CNN. Three different signal repre-
sentations i.e. raw 1Q data alongside with its amplitude/phase
notation and FFT (Fast Fourier Transform) notation are used
for accuracy comparison. FFT signal representation performs
the best giving a gain of 5% in moderate to high SNR
(Signal to Noise Ratio) environment and a gain of 20% in
low SNR environment.

Deep learning is used in [61] to identify good condition
WSN signals from concurrent 802.11 beacon, 802.11 video,
802.11 file transfer, BLE, and microwave oven interferers.
Real life collected data is trained on a custom CNN in Python.
Micro level interference detection i.e. detection on a sam-
ple basis yielded 75%, 83%, 69%, 80%, 84%, 98% respec-
tively. A Macro level classification is further proposed to fine
tune the detection. The classification labels of samples in
10s macro were windowed to find the dominant interference
leading to a classification accuracy of 93%. The thresholds
for finding the dominant interference have been allocated as
per experimental findings.

An optimization in the CNN structure of [58] is proposed
in [62] alongside LSTM (Long short-term memory), ResNet
(Residual Network) CNN and CLDNN (Convolutional Long-
Short Term Deep Neural Network) based deep learning. All
schemes except for ResNet yielded higher accuracy. Careful
selection of band size resulted in training time reduction as
overlapping classes are merged. Effect of training SNR value
was also studied and found that CNN trained with —2dB data
effectively classified data belonging to any SNR value while
reducing the training time by 30 times.

RSSI based histogram features and RSSI time based fea-
tures in [63] capture the distinctive characteristics of both
streaming (LTE, DVBT-Digital Video Broadcasting Terres-
trial) and non-streaming technologies (WiFi). A custom
threshold based detection rule then identified the exact signal
type. Results show that sub-nyquist sampling based RSSI
(Received Signal Strength Indicator) samples yielded 92%
accuracy which is promising to be implemented on resource
constrained devices. PCA (Principal Component Analysis)
and random sub sampling is also studied for reducing the
dimensionality of data.

CTI detection in sub GHz ISM bands is studied in [64]
targeting three LPWAN (low-power wide-area network) pro-
tocols that are IEEE 802.15.4, LoRa (Long range) and Sig-
fox. A spectrum manager framework is proposed that is
trained offline to classify various technologies, create REMs
(radio environment maps) of the environment and perform
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appropriate spectrum management decisions. Raw IQ data
and its FFT representation are classified using a CNN. For
low SNRs (less than 10 dB), FFT based classification is
significantly superior keeping in mind FFT conversion does
bear a processing overhead. However for SNRs above 10 dB,
both raw IQ and FFT performed similar.

LTE TXOP (transmission opportunity) can be adjusted
intelligently in presence of WiFi traffic. In [65] ns3 is used
for generating test data of saturated and unsaturated Wi-Fi.
Network is saturated when no increase in throughput occurs
with the increase in packet arrival rate Based on traffic sat-
uration status, optimal coexistence schemes can be applied.
Frame and packet based features are used along with CNNs
for classification.

In energy conservation WSN schemes using LPL (low
power listening) and LPP (low power probing) rendezvous
mechanisms, nodes are duty cycled i.e. periodically put to
sleep and awakened on detection of WSN transmission. How-
ever they may be switched on inadvertently due to interfer-
ence signals that are readily available in ISM bands. This
false wake up issue is countered in Zisense [66] where RSSI
is used to detect the presence of WSNs apart from interferers
hence conserving energy, increasing PDR and reducing false
wakeups.

SNR boosting has been proposed in [67] to fine tune the
training process. Dataset of [58] is utilized which has been
recorded for 21 SNR values. SNR bagging identifies the small
subset of the SNRs that provide most optimal classification
results for all test SNRs. Moreover due to smaller training
dataset, training time is reduced by 30 times.

A study on interference effect on bit error rate and bit error
locations has been done in [68] by using MATLAB generated
WSN signals under the influence of three interferers. Inter-
ferers include CW (continuous wave) jammer (spurious radio
signal), matched signal interference (intelligent jamming sig-
nal matched to the signal being transmitted) and WiFi signals.
Using Monte Carlo simulations, the error free and erroneous
packets were statistically analyzed and nine distinct features
were identified and subsequently classified using an SVM.

Unsupervised learning self learns data classes of unlabeled
data. Autoencoder based unsupervised signal classification
is proposed in [69] that distinguishes LTE signals from
anomalous signals present. Autoencoders are unsupervised
ML algorithms that take unlabeled dataset, encode it to a
compressed code and then aim to reconstruct the input data
whilst learning the underlying data patterns. Three variants
of autoencoders were trained with LTE signals and tested
with LTE and WiFi signals. Resulting classification accuracy
and low training time (47s) makes this approach practical for
deployment in real life scenarios.

A spectral analysis framework for resource constrained
edge devices is provided in [70]. PDF (Probability Density
Function) based feature extraction is done for considered
signal classes that are ZigBee (without interference) and
ZigBee in presence of CW (Continuous wave) jamming sig-
nal, matched signal (deceptive jamming), thermal noise and
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WiFi signal. Resulting features are classified using SVM and
Random Forest with SVM providing better accuracies and
lower prediction time.

ADS-B (Automatic Dependent Surveillance-Broadcast) is
an aeronautical surveillance system used by air traffic con-
trollers to monitor signals transmitted by aircrafts regarding
their velocity, position, identification etc. In [71], over the air
ADS-B signals are captured and decoded to find the airplane
IDs that are used as labels for the captured 1Q radio sample.
Six different ML and DL models are used for classification
with CVNN (Complex Valued Neural Network) resulting in
the highest classification accuracy of 99.8%.

B. SPECTRAL SIGNATURE ANALYSIS BASED DETECTION
TECHNIQUES

Computer Vision (CV) techniques aim to mimic human
vision by training systems to observe images and extract
important information. Signals exhibit distinctive signatures
when analyzed in frequency domain. Spectral analysis tech-
niques yield snapshots of signal signatures that can be pre-
sented as an image classification task in CV.

In [72], Grad-cam architecture is used for classification
between thirteen different wireless technologies. Signal col-
lection was done via USRP (universal software radio periph-
eral) radio and 10ms observation window spectrograms
were computed. Average classification accuracy of 94% was
obtained.

Other spectral analysis techniques can be used for inter-
ference detection and identification (IDI) instead of basic
spectrograms. Choi William Distributions (CWD) is used
in [73] for signal spectral analysis. The CWD transforms
of six different wireless signals including LFM (linear fre-
quency modulated), Costas codes, BPSK, Frank, T1, T2,
T3 and T4 signals are classified using a CNN. The overall
classification accuracy is 93.7% for SNRs greater than and
equal to -2 db.

An anomaly detector for a spectrum manager is pro-
posed in [74] to identify anomalous signal behavior such
as the absence of a legitimate signal or the sudden appear-
ance of an unwanted signal. Interpretable features such as
signal bandwidth, class etc. are used by the Adversarial
Auto Encoder (AAE) to recreate the signal and localize any
anomaly present. AAE is used as a reconstruction based
anomaly detector which is useful for comprehensive spec-
trum monitoring to detect missing transmissions, out of band
spurious signals, high transmit power signals etc. for each
band. Moreover WII using AAE yielded 100% classification
accuracy.

IDI using spectrograms and deep learning in ISM can be
extended to all radio bands facing the same issue of con-
current interferers. Spectrogram based interference detection
is implemented in [75] for an LTE cellular service provider.
Eight known LTE signal interferers are identified arising from
external/atmospheric, inner LTE system and inter cellular
system based sources. This is a routine time consuming task
for cellular engineers to manually label these interferences.
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TABLE 2. RSSI and 1Q based detection.

Time
Method Signal Classes Dataset Feature Set Classifier (Constraint to Accuracy Year
hardware)
Real-time IEEE 802.11b/g/n | Real RSSI Samples Spectral Features Classification | Testing Time 90%-97% 2018
Interference IEEE 802.15.4 captured using (channel number) Trees 620 us
Identification via IEEE 802.15.1 TelosB WSN motes
Supervised BLE and Intel AC7260 Time Domain RFCT
Learning [57] 802.11 NIC card Features (Burst
length, Burst mean Multiclass
power, Crest factor, | SVM
Envelope ripple)
CCA Mode
Wireless IEEE 802.11 b/g Synthetic NA CNN Training time >95% 2017
Interference (3 channels) Compressed sensing NFSC 20 ms (SNR>=-5 dB)
Identification with 1Q snapshots
Convolutional IEEE 802.15.4(2 generated using VSG
Neural Networks channels) SMBV100A
[58] and RSA6114A
IEEE 802.15.1(10 | Spectrum analyzer
channels)
Post processed data
for 21 different SNR
levels
Multi-Label IEEE 802.11 b/g Dataset same as [58] NA CNN Training time IEEE 2018
Wireless (3 channels) 390s per epoch | 802.11(90%)
Interference Multi-label signals
Classification with IEEE 802.15.4 (2 generated by adding IEEE
Convolutional channels) signals 802.15.4(95%)
Neural Networks
[59] IEEE 802.15.1 (10 IEEE
channels) 802.11(95%)
End-to-End IEEE 802.11 b/g Same as [58] NA CNN (1Q) Training time At-10dB 2018
Learning From (3 channels) CNN (Amp 60s per epoch
Spectrum Data: Crawdad Dataset in Phase) CNN-IQ (76%)
A Deep Learning IEEE 802.15.4 (2 FFT, IQ and Amp- CNN (FFT)
Approach for channels) Phase CNN-Amp
Wireless representations Phase (80%)
Signal IEEE 802.15.1 (10
Identification in channels) CNN-FFT
Spectrum (85%)
Monitoring
Applications [60]
Interference Source | 802.15.4 Real RSSI dataset NA Micro level Testing time 93% f-measure | 2018
Identification for Wi-Fi beacon collected through real classification 1ms per sample
IEEE Wi-Fi video signals using CC2530 via CNN
802.15.4 Wireless streaming 802.15.4, TL-
Ser'lsor Networks Wi-F 1 file transfer WN722I:I WiFi, TI- Macr.o leV§1
Using ) BLE iBeacon CC2540 BLE and cl'a551ﬁcatlon
Deep Learning [61] | MWO MWO via rule based
: labelling
window
Deep Learning for IEEE 802.11 b/g Same as [58] NA CNN Average 89.5% 2019
Interference (3 channels) LSTM Training
Identification: Crawdad Dataset in ResNet time(108s)
Band, Training IEEE 802.15.4 (2 | FFT, IQ and Amp- CLDNN
SNR, and Sample channels) Phase
Selection [62] EEE 802.15.1 (11 representations
channels)
Wireless Wi-Fi (5540 Real RSSI dataset Standard Deviation | Decision - 92% 2017
Technology MHz) captured using USRP | No of peaks based on
Recognition Based radios with real LTE Average power learned
on RSSI LTE (806 MHz) Base station, DVBT level thresholds
Distribution at Sub- station and WiFi AP | Visible noise peak
Nyquist Sampling DVB-T (482
Rate for MHz)
Constralned LTE + WiFi
Devices [63]
38607
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TABLE 2. (Continued.) RSSI and 1Q based detection.

A Convolutional Sigfox Real dataset captured | NA CNN trained - CNN-IQ (95%) | 2019
Neural Network LoRA using Sigfox, LoRA on IQ
Approach for IEEE 802.15.4 and IEEE 802.15.4g CNN-FFT
Classification of Interference Class | transmitters and a (97%)
LPWAN (Sigfox and LoRa, | B200mini USRP .
Technologies: LoRa and board. CNN trained
Sigfox, LoRaand | 802.15.4, 802.15.4 on FFT
IEEE 802.15.4¢g and Sig, 802.15.4
[64] and Sigfox and
LoRa)
Machine Learning LTE-U Synthetic data histogram of Inter- CNN (H-IFS) - 96% 2021
Enabled Wi-Fi WiFi Saturated generated using NS-3 | frame Spacing (H-
Saturation Sensing WiFi Unsaturated | used to model a WiFi | [FS) CNN (H-IFS
for Fair Coexistence network having 1 and AD)
in Unlicensed access point with average duration of
varying values of 1ES (AD CNN (H-
Spectrum [65] e Noofactive (AP) IFS,AD.CP)
nodes collision
. Packet length percentage (CP)
. Contention
window
. Packet arrival
rate
ZiSense: Towards ZigBee Real dataset captured | On Air time Rule based - 97.3% True 2014
Interference WiFi using TelosB motes, Min Packet Interval | detection Positive Rate
Resilient Duty BL LAN Traffic V2ona | Peak to average (WSN)
Cycling in Wireless | MWO laptop, BL headset Power Ratio
Sensor Networks and a microwave. Under noise floor
[66]
Efficient Training IEEE 802.11 b/g Dataset same as [58] NA CNN Training time 100% (At 20 2020
of Deep Classifiers (3 channels) reduced by 30 dB)
for Wireless Source ResNet times due to
Identification using | IEEE 802.15.4(2 SNR bagging
Test SNR Estimates | channels) CLDNN
[67]
IEEE 802.15.1(10
channels)
Identifying Distinct | ZigBee and CWJ MATLAB simulation | PDF features (area SVM - 4.4508% test 2020
Features based on between bins, data error for
Received Samples ZigBee and averaged area of SNR> 5dB
for matched signal bins, non-zero bins,
Interference maximum peak)
Detection in ZigBee and WiFi
Wireless Sensor Derived features
Network Edge (Variance, standard
Devices [68] deviation, entropy,
mean value,
maximum value)
Towards Enhancing | LTE Real LTE signals I component Deep auto Training time 99.98% (Deep 2021
Spectrum Sensing: (USRP SDR and Q component encoder 47s (Deep auto auto encoder)
Signal WiFi (802.11ax) GNU Radio toolkit) Amplitude value Variational encoder)
Classification Using | WiFi (802.11ac) and synthetic WiFi Phase value auto encoder
Autoencoders [69] signals (MATLAB LSTM auto
WLAN toolbox) encoder
Developing Novel ZigBee Real ZigBee signals PDF features (area SVM - 98% 2021
Low Complexity (DIGI XBee nodes) between bins,
Models using ZigBee and CWJ and interferers (Pluto | averaged area of Random
Received In-phase SDR and MATLAB) bins, non-zero bins, | Forest
and Quadrature- ZigBee and maximum peak)
phase Samples for matched signal
Interference Derived features
Detection and ZigBee and WiFi (Variance, standard
Classification in deviation, entropy,
Wireless Sensor ZigBee and mean value,
Network and GPS thermal noise maximum value)
Edge Devices [70]
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TABLE 2. (Continued.) RSSI and 1Q based detection.

Large-scale real- ADS-B signals Real signal collected 1Q samples for DL DL models 99.8% (CVNN | 2021
world radio signal using SM200B SDR models (CNN, LSTM at 20 dB)
recognition with and an HP Laptop and CVNN)
deep learning [71] Bi spectral
transform features ML models
for ML models (KNN,
Decision
Trees and
SVM)

Labelled dataset provided by a cellular company was pro-
cessed for spectrogram analysis and classification performed
using AlexNet yielding 95% accuracy.

The spectrum aware framework proposed in [76] identifies
all signals present to assist spectrum managers in optimiz-
ing spectrum sharing. A manual feature extraction via RSSI
histogram based features was performed and classified via
a Fully Convolutional Neural Network (FCNN) and a com-
bined Decision Tree (DT) and Random Forest (RF) based
classifier. Automatic features were detected via three CNNs
using raw 1Q data, RSSI data and spectrograms. The CNNs
trained on spectrograms and IQ based data yielded highest
classification accuracy.

In [77] deep convolutional networks are used for spectrum
monitoring in radar bands. The scope of this work was to
detect whether a radar signal is present (with or without
interferers) or absent (only interferers present) via CNNs. The
spectrum monitoring network may aggregate these measure-
ments to create spectral occupancy maps that would help in
identifying secondary users and their transmission patterns.
A classification accuracy of 98.6% was achieved using a
signal spectrogram based CNN which was further improved
t0 99.6% using a composite amplitude and phase data repre-
sentation of the same IQ data. Note that standalone amplitude
and phase data representations performed poorly.

Recent developments for Citizens Broadband Radio Ser-
vice (CBRS) suggested the use of 3.5 GHz (3550-3700 MHz)
band which is originally being used by federal occupants
such as US ground and ship based radars and SPN-43 air
traffic radar. The proposed architecture uses environmental
sensors to detect radar presence and a spectrum access system
to coordinate CBRS transmissions in contrast to the high
priority radar transmission. In [78], IQ data from anten-
nas capturing radar and CBRS transmissions is collected
and spectrograms are computed. A variety of classifica-
tion schemes are used. Classical techniques included energy
based detection which sums the energy across a time period
and sweep integrated energy detection which extracts the
peaks (highest SNR portion of the signal) followed by
energy detection. Machine learning techniques included
SVM, KNN (k-nearest neighbors) and GMM (Gaussian
mixture model). Moreover, amongst the six deep learning
models used for classification, Inception V1 performed the
best. Overall a custom defined CNN yielded the highest
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classification accuracy of 99.7% amongst all techniques
compared.

In [79], cellular signals were detected via cyclo stationary
analysis based spectral correlation function (SCF). Real life
data collection of GSM, UMTS, and LTE signals at receivers
placed in sub-urban areas was done. In the first experiment,
GSM, UMTS, LTE and AWGN samples were converted to
SCF representations and classified using a CNN. The results
reported a lower classification accuracy of 92% which is
due to the misclassification of low SNR signals as noise
signals. Hence a two part solution was proposed, initially a
spectrum sensing task was done to assess if signal is present
(Class 1) or not (Class 0). For Class 1 dataset, all signals
classes were merged as one class and the remaining AWGN
samples were assigned to Class 0. This spectrum sensing gave
an intermediated classification accuracy of 96%. A subse-
quent CNN trained on separate UMTS, LTE and GSM signals
resulted in 98.5% accuracy. A study of data representations of
IQ samples (FFT, Amplitude Phase and SCF) was also done
with SCF being the best representation. Proposed CNN also
performed better than an SVM and various DL algorithms
that were trained with a reduced SCF (R-SCF) notation.

A novel spectral analysis technique called quarter- spectro-
gram (Q-spectrogram) is proposed in [80]. Single label data
of LTE, WiFi, FBMC and radar and their multi-label com-
bination signals were captured and spectrograms were gen-
erated. A condensed spectrogram was created by extracting
two vertical sections containing most information from the
normal spectrograms (128 x 128 pixels) and concatenating
them horizontally. This reduced image was then vertically
split and the sections are concatenated horizontally. Resulting
Q-spectrograms (64 x 64 pixels) are quarter the size of the
original spectrogram and are information dense. The resulting
data was classified using various deep learning models.

The detection of signal and interference is a multi-label
task. For a study involving multiple signals, single label
signals (one signal at a time) as well as mixture signals
(all possible signal combinations of single-label signals)
have to be generated which is a cumbersome task. In [81],
a discriminative dictionary learning (DL) algorithm is pro-
posed for the multi label signal identification by using sin-
gle label data (BL, BLE, FHSS1, FHSS2, WiFil, WiFi2).
The learned features are classified using ZF (zero-forcing),
MF (matched filter), LR (logistic regression), SVM and
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NN (neural network) classifiers resulting in the probabilities
of each signal class present.

A combined CNN and LSTM architecture is proposed
in [82] using both raw I/Q signals samples and their spec-
trograms. The CNN captures the visual spectral signatures
present in the spectrograms whereas the LSTM extracts
the time-series signal characteristics of the raw I/Q signal.
By integrating the FDA (frequency domain analysis) with
the conventional raw radio signal analysis, a 10% increase
in classification accuracy is achieved.

An overview of spectral analysis based technique overview
is provided in Table 3.

VI. COEXISTENCE MECHANISMS

With the current and envisioned future signals operating in
ISM bands, more robust coexistence mechanisms need to be
designed to counter the deficiencies of the existing coexist-
ing methods. Interference awareness needs to be introduced
instead of using generic coping mechanism to most efficiently
counter each type of interference.

A. SOFTWARE BASED MECHANISMS

A survey of software based coping mechanisms is pro-
vided below in which modifications to the protocol stack is
proposed.

An interference detection and coping mechanism is pro-
posed in [83] as each interference calls for a unique mitiga-
tion solution as per its transmission characteristics. Received
RSSI samples are quantized to four power levels. Consecutive
samples having same power level are represented in a com-
pressed form using run length encoding. Resulting sequence
is analyzed to determine legitimate bursts. All detected burst
are clustered using k-means to validate the interference spe-
cific cluster formations. The trained model is tested in a real
office environment yielding 90% classification accuracy. The
Chrysso protocol which ordinarily performs channel switch-
ing in presence of interferers is modified to use Specksense
for channel blacklisting. The proposed Specksense integrated
Chrysso solution outperforms the regular Chrysso by 30%
increased PRR.

SoNIC [84] uses a reactive interference detection scheme
triggered on received corrupted packets. Six packet based and
RSSI based features are calculated and classified via SVMs
and DTs.

TIM [85] normally operates in passive mode perform-
ing basic link quality monitoring and RSSI variance check.
On detecting interference, it switches to the active mode
and subsequently packet and time based features are cal-
culated. Instead of explicitly identifying the interferer type,
TIIM simply learns channel characteristics that could be best
countered using known coping mechanisms. For each signal
observation, all coping mechanisms are simulated and the
optimal cost-benefit technique is selected.

A statistical analysis of WiFi packet arrival demonstrated
that WiFi packets are highly clustered [86] and having white
spaces in between that can be utilized opportunistically
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by WSNs. A pareto model based white space estimation of
WiFi is done by WSN nodes and the most optimal frame
size is adapted to achieve best throughput in the remaining
whitespace duration. Results showed the proposed protocol
WISE outperformed B-MAC and OppTx whilst having con-
siderably low overhead.

A simple IDI (Interference detection and identification)
is proposed in [87] that uses RSSI based feature extrac-
tion (maximum channel usage duration, maximum chan-
nel clear duration, channel usage ratio/active ratio, signal
periodicity). This lightweight IDI in combination with
decision tree (DT) based classification yielded 95.24% accu-
racy. Proposed scheme consumed less memory when com-
pared with an FFT based feature extraction and decision
tree solution (14% less) and another solution using the
same lightweight feature extraction with logistic regression
(3% less). Depending upon the type of interference, distinc-
tive coping mechanisms are proposed but not implemented.

Crosszig [88] is a combined IDI and coping solution.
It detects interference using physical layer features. It intro-
duces a minimal amount of error correction code. On encoun-
tering long burst errors, Maximum Ratio Combining (MRC)
based packet recovery is done. If high packet failures occur,
a Reed Solomon (RS) code based redundancy is triggered
which is adaptive as per packet reception ratio (PRR) hence
adding optimal redundancy only. The scheme is validated
against a fixed RS, adaptive RS and a packet merging
based scheme. Crosszig intelligently outperforms these three
schemes as per the interference level whilst keeping the code
overhead low.

Bursty WiFi traffic introduces burst corruptions in WSN
data which is difficult to correct by traditional forward error
correction (FEC) due to the presence of consecutive errors
present in one block while other blocks remain error free. This
results in a high decoding delay and waste of redundancy.
ZiXor [89] is a modified FEC scheme that uses modulo-k
XOR operations. If k black redundancy is added, starting
from 1% bit, all k-apart bits are XORed and form 1% redundant
bit and so on. This ensures that each bit of an error burst
are mapped to a different redundant block making recov-
ery possible. Amount of redundancy is adaptively config-
ured as per historic calculated block error rate. Moreover,
if non bursty errors are dominant, system switches to fountain
codes.

BuzzBuzz [90] studied the effect of simultaneous WSN
and WiFi transmissions and realized the concept of interfer-
ence domains. If WiFi and WSN are far apart (fore.g. 115 m)
it is in asymmetric interference region where WiFi dominates
and corrupts WSN thus requiring FEC. However in case of
symmetric interference domain caused by WiFi and WSN
being close (less than 15m), WSN can trigger WiFi to back
off introducing errors in header only causing retransmission
of entire packet. Proposed solution uses multi headers (MH)
i.e. an extra header/preamble is added in the payload which is
then preceded with another header. In the event of symmetric
interference region, all corruptions would occur in the first
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TABLE 3. Spectral signature analysis.

Time
Method Signal Classes Dataset Feature Set Classifier (Constraint to Accuracy Year
hardware)
Spectral ATSC Real radio spectrum | NA VGG CNN Training 94% 2017
Detection and ISM(Bluetooth, WiFi) data-RSSI sample time(10 min
Localization of | LTE UL captured using for 200
Radio Events LTE DL USRP board epochs)
with Learned DVBT
Convolutional WiMAX Classification
Neural Features | FM time(1.5ms)
[72] GSM DL
GSM UL
TETRA
P2P
P25
Convolutional BPSK Synthetically Choi William | CNN - 93.7% (At 2017
Neural LFM generated in Transform SNR>= -2 dB)
Networks for Costas codes MATLAB with followed by
Automatic Frank code different values of image post
Cognitive T1-T4 SNR processing
Radio
Waveform
Recognition
[73]
Unsupervised GSM, LTE, TV broadcast Used real HackRF Spectrograms | Adversarial auto Classification | Approximately | 2019
Wireless signals in 800 MHz , 900 SDR Dataset, encoders time (0.91 100%
Spectrum MHz and other sub GHz Electrosense Dataset micro sec)
Anomaly bands and a synthetic
Detection with dataset
Interpretable
Features [74]
Using Deep DECT Real Dataset Spectrograms | AlexNet NA 95% 2019
Convolutional Neighbor UE provided by a
Neural TDD Asynchronous. TDD Chinese cellular
Network to Ultra-far GSM Spurious, company
Recognize LTE GSM Inter-mod LTE
Uplink Spurious
MMDS
Interference
[75]
Towards low- Wi-Fi Real dataset Histogram Manual features Training time | 87.2% 2019
complexity (Publically distribution Sls 88.0%
wireless LTE available) captured features for Fully connected 19s 95.3%
technology o ] ) u;ing USRP radios Manual Neural networks 100s 97.8%
classification Digital Video Broadcasting withreal LTE Base | feqqure Random Forests 1500s 97.1%
across multiple Terrestrial (DVB-T) station, DVBT Decision Trees 950s
. station and WiFi AP
environments
[76] Auto feature
extraction
RSSICNN
IQ CNN
Image/Spectrogram
CNN
Spectrum Radar signal identification | Real Dataset using Spectrograms | CNNs trained on - 99.6% 2017
Monitoring for | in presence of interferers USRP N210
Radar Bands commercial Long-Term RADAR TXM and Spectrograms
using Deep Evolution (LTE) 906 MHz | a USRP N210 Amplitude
Convolutional WLAN-2.462 GHz measurement Phase
Neural capable device in
Networks [77] Interferers present in 0 to 5 | the 0.906,2.4 and
GHz band 2.3 GHz band

Class 0 —Radar Present
radar-only

radar and WLAN

radar and LTE samples.

Class 1-Radar not present
LTE-only

WLAN-only

Noise.
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TABLE 3. (Continued.) Spectral signature analysis.

Deep Learning SPN-43 Real dataset Spectrograms | Energy detection Detection CNN (99.7% 2019
Classification Radar3 OOBE collected using an Sweep based time in FROC)
of 3.5 GHz SPN-43 and Radar3 OOBE | omnidirectional detection
Band Neither antenna and CBS ED (0.4ms)
Spectrograms antenna SVM Custom CNN
with KNN (1.89ms)
Applications to GMM
Spectrum VGG-16
Sensing [78] VGG-19
ResNet-18
ResNet-50
Inception-V1
DenseNet-121
Custom CNN
LSTM
Spectrum GSM Real measurements SCF CNN (SCF) CNN 98.5% (at 9 2021
Sensing and UMTS collected using Amplitude SVM (SCF) Training time | dB)
Signal LTE receivers, Rohde Phase per Epoch
Identification AWGN Schwarz FSW26 FFT CNN (R-SCF) (60 s)
with spectrum analyzer LSTM (R-SCF)
Deep Learning and Yagi DenseNet (R-SCF)
based on antennas are CLDNN (R-SCF)
Spectral employed at the ResNet (R-SCF)
Correlation receiver
Function [79]
Shared LTE Real LTE and WiFi | Q- AlexNet ResNet50 98% 2021
Spectrum Radar samples Spectrogram VGG 16 prediction (ResNet50)
Monitoring WiFi ResNet18 time (Nearly
using Deep FBMC Radar, LTE and SqueezeNet 240 ms)
Learning [80] LTE + Radar FBMC samples InceptionV3
LTE + WiFi generated using ResNet50
FBMC + Radar USRP radios
FBMC + WiFi
WiFi + Radar
Noise
Robust RF Wi-Fi (high occupancy) WiFi, BL and BLE Deep SVM - ZF with 2021
Mixture Signal | Wi-Fi (low occupancy) Signals generated Scattering CNN Algorithm-3
Recognition Bluetooth using VSG. Spectrum ZF provided best
Using BLE features MF AUC (area
Discriminative FHSS1 FHSS signals LR under curve)
Dictionary FHSS2 generated using NN
Learning [81] drone controllers
Signal Wi-Fi Signals generated 1Q samples CNN + LSTM - 92% 2021
Detection and LTE and received using CNN (Spectrograms
Classification 5G USRP radios Spectrograms | LSTM trained on
in Shared Wi-Fi + LTE SVM CNN + LSTM)
Spectrum: A Wi-Fi + 5G RF
Deep Learning | LTE +5G
Approach [82] Wi-Fi + LTE + 5G.

preamble, next preamble/last bytes would be uncorrupted
hence requiring no retransmission.

In Smoggy link protocol [91], an IDI using short term
and long term features are calculated that are studied to be
resilient in static/no mobility, environment mobility, micro
interference mobility and macro interference mobility. Since
cross technology interference is asymmetric, burst probing is
done to estimate PRR on an outgoing link. Resulting link map
is used to find the best link available. Moreover black/white
space of each interferer is modeled using a Pareto model and
transmissions are scheduled accordingly to enable concurrent
transmission.

Coexistence for WiFi and LTE-U is proposed in [92]. Tra-
ditionally LTE-U’s coexistence algorithm opportunistically
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transmit on the most free channel The duty cycle of
LTE-U and Wi-Fi is optimized and adaptively adjusted by
the Q-learning, so as to improve the performance of the
system by allowing LTE-U to occupy the appropriate time
slots on multiple unlicensed channels.. Using Q-learning, the
ON/OFF sequences of the WiFi on different channels were
estimated and busy channels were opportunistically used for
communication. The proposed scheme is compared with tra-
ditional algorithm, average algorithm, LBT (Listen before
Talk) algorithm and CSAT (Carrier-Sensing Adaptive Trans-
mission) algorithm with the proposed algorithm yielding the
highest throughput and fairness factor.

mLTE-U [93] provides coexistence between LTE-U and
WiFi collocated networks. Raw IQ radio samples are
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classified using a CNN to distinguish between LTE and WiFi
symbol as well as multiple concurrent LTE signals, multiple
concurrent WiFi signals and simultaneous LTE and WiFi sig-
nals which cause hidden terminal problem. mLTEU monitors
the channel occupancy of each technology and adaptively
assign best TXOP (transmission opportunity) period and sub-
sequent muting period to ensure fair spectrum sharing.

In [94], a spectrum aware channel blacklisting mechanism
was proposed for industrial internet of things (IIoT) systems
that have stringent QoS requirements. The ever growing
demand for unlicensed spectrum usage has threatened IIoT
systems that share the spectrum with other wireless systems
and are also susceptive to RF jamming and electrical interfer-
ence from surrounding devices and equipment. This coupled
with the fact that most IoT nodes are low complexity resource
constrained nodes for which suitable interference detection
schemes have to be devised. The proposed method performs
real time spectrum estimation using intra-burst sampling pat-
tern (IBSP) which is then used for channel blacklisting. The
busy channels are then catered for in the next channel hopping
sequence.

The LTE-U system uses unlicensed frequency bands in
downlink mode for bandwidth hungry applications. Since
LTE-U and WiFi both share the unlicensed spectrum, the
LTE-U signals will adversely affect WiFi signals whose car-
rier sense medium access will force it to back off. To achieve
fairness between LTE-U and WiFi transmissions, the work
in [95] performs WiFi interference detection for all LTE-U
users through clustering based on CQI (Channel Quality Indi-
cator) and user location. The CQI would reflect the effect of
interference caused by ongoing WiFi transmissions whereas
node location is also a significant parameter for clustering
as nearby nodes are likely to be facing the same interference
levels. The coping mechanism is an optimal power and carrier
allocation strategy. The LTE BS (base station) allocates QCI
(QoS Channel Indicator) values depending upon the user’s
traffic. As per the QoS requirement of the user, the data
is optimally distributed using licensed and unlicensed band
for example a QCI of 1 is allocated if control data is being
transferred (licensed carrier). Results prove that the proposed
technique resulted in the increase in downlink throughput.

In coordinated LTE-U and WiFi coping mechanisms, infor-
mation sharing between the two are provisioned via a proto-
col. In [96], an uncoordinated LTE-U and WiFi coexistence
is proposed which requires modification to the LTE site and
does not require any collaboration between the two tech-
nologies. The LTE contains a technology detection unit that
classifies raw radio samples using CNN. By analyzing the
IFS (inter frame spacing), the WiFi is said to be saturated i.e.
maximum throughput has been achieved or inversely unsatu-
rated. The most optimal LTE ON-OFF durations are adapted
using rule based and Q-learning based algorithms. Apart
from regular Q-learning, ER (Experience Replay) based
Q-learning is proposed in which the Q-table is updated on
the basis of ‘n’ historic experiences. Furthermore a RER
(Reward Selective Experience Replay) based Q-Learning is

VOLUME 10, 2022

also implemented in which ‘n’ historic experiences with the
highest reward are considered for updating Q-table. Results
show the RER scheme performed the best.

D2D-U is a variant of D2D that uses unlicensed spectrum
to communicate in a one hop fashion with other UEs in a
cell. In [97], D2D-U coexistence with concurrent WiFi trans-
mission is proposed as its effect on existing legacy wireless
networks is harmful. An LBT (Listen before Talk) scheme is
proposed in which the D2D users will perform CCA. If the
CCA determines the channel is already occupied, the D2D
user will back off for a certain time and retry. This scheme
ensure a high WiFi throughput while the D2D throughput
is limited. Moreover, duty cycling based scheme can also
be used that uses a fixed transmission duty cycle and favors
the D2D system. A mode selection is done between the two
proposed coping mechanisms for optimal performance based
on WiFi traffic loads.

An overview of discussed techniques is provided in
Table 4.

B. HARWARE BASED MECHANISMS

Hardware based techniques require modifications to the node
hardware such as the requirement of special antennas or the
use of additional helper nodes to manage the network.

A CCP (Central Coordination Point) and SNMP (Sim-
ple Network Management Protocol) based coexistence is
proposed in [98]. The CCP performs WII using a SSU
(spectral sensing unit) that characterizes interference using
NFSC. The CCP is connected via an Ethernet backbone to all
WT (Wireless Technology) masters of each heterogeneous
network. CCP uses SNMPv3 as the management protocol.
The defined MIB (Management Information Base) manages
the spectral, temporal, spatial resources of all WTs. Coexis-
tence amongst technologies is solved as an optimization prob-
lem to ensure minimal or no overlap in frequency, time and
spatial domain. The scope of this work was to demonstrate
the use of SNMP based CCP and a study of channel switch
time, reconnection time and failed reconnects was done.

A CCP [99] is a management entity that uses dedicated
control channels to communicate with all heterogeneous
wireless networks. CCP performs environmental monitoring
by sensing spectral emissions. Based on the radio environ-
ment, it perform optimal resource allocation to each het-
erogeneous wireless networks using Q-learning. Simulation
using WSNss in presence of static interferer (like WLAN) and
a frequency hopping (FH) interferer (like Wireless HART)
show promising results.

In [100] a modified Coexistence Aware Clear Channel
Assessment (CACCA) is proposed for WiFi to make it sen-
sitive to WSN traffic. Proposed MF (matched filter) based
CACCA that used the OQPSK filter (WSN specific) outper-
formed the simpler ED (energy detection) based CACCA,
although both were deemed ok to use. Results show the
increase in WSN throughput due to WSN aware CCA
of WiFi.
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TABLE 4. Software based coping techniques.

Method Signal Classes Dataset IDI Details Coping Mechanisms Performance Qverhead Year
incurred
Detecting and IEEE Real Data set K Means Interference detection IDI Detection rate - 2015
Avoiding Multiple 802.11b/g/n captured using clustering (90%)
Sources of 802.15.4 C(C2420 radio algorithm Channel Blacklisting
Interference in the 802.15.1 ina WSN PRR (Increase by
2.4 GHz Spectrum testbed with 30%)
[83] WiFi and
Bluetooth
interferences
SoNIC: Classifying | WiFi Real Data set RSSI based Spectral retreat (WiFi) IDI Detection rate - 2013
Interference Microwave captured using features and (87.5%)
in 802.15.4 Sensor Bluetooth TelosB Motes Decision Trees Packet Scheduling
Networks [84] Non and interferers (Microwave) PRR (Increase by
interfering in anechoic 16.4%)
weak link chamber
TIIM: Technology- | 802.11 Real Data set Packet Statistics Reed-Solomon Forward | IDI Detection rate Implementation 2015
Independent BL captured using and Energy based Error Correction (FEC) | (92%) cost/bit overhead
Interference Cordless WSN nodes features and (5.6%)
Mitigation for phone and real Decision Tree Reed-Solomon PRR (Increase by
Low-power FHSS interferers based RSSI-based Packet 30%)
Wireless Networks Cordless classification Recovery (PM)
[85] Wireless Good adaptability
camera Adaptive CCA to the dynamic
Microwave threshold channel
Channel Switching or
No Action
Beyond Co- WiFi Real Data set WiFi Whitespace Adaptive packet size Frame delivery Implementation 2010
existence: WSN captured using detection by based on White space Ratio(Increased by | Overhead(10.9%
Exploiting WiFi TelosB Motes channel sampling duration to 2x,4x as compared | of B-MAC,
White Space and Intel to train a pareto opportunistically utilize | to B-MAC and 39.5% of OppTx)
for ZigBee Atheros NIC model for white whitespaces OppTx)
Performance based WiFi space
Assurance [86] interferer in characterization
office
environment
Machine learning WiFi Real Data set Channel utilization | WiFi (Spectral retreat) IDI Detection rate Nil 2020
based lightweight Microwave captured using based feature (95.24%)
interference Bluetooth WSN nodes extraction and Microwave (Packet
mitigation scheme and real classification Scheduling) Memory
for wireless sensor interferers using Decision consumption
network [87] Tree and Logistic Bluetooth(Retransmit if | (Decreased by 14%
regression model no ACK is received as and 3% as
sporadic interference compared to FFT-
faced due to AFH of DT and LW-LG)
BL)
CrossZig: WSN Real data Physical Layer Packet Merging IDI Detection rate Approximately 1- | 2016
Combating Cross- 802.11 (Light generated using | features (94.3%) 12 FEC bytes per
Technology and Heavy USRP SDR and | (Hamming Adaptive Reed packet
Interference in traffic) GNU Radio distance, Solomon Code Good put
Low-power Signal Power and (Increased)
Wireless Networks Wireless Demodulation Soft
[88] camera (WC) Values) Overhead (4.6%
less than
MWO considered
schemes)
WC+MWO
PRR (Provides
WC+MWO + high PRR for same
WiFi-Light level of redundancy
added)
WC+ MWO +
WiFi-Heavy
Embracing WiFi Real dataset IRS based packet Zixor FEC Throughput Minimal 2017
Corruption WSN captured using error detection (Increased by 47%) | overhead incurred
Burstiness: Fast TelosB Motes Fountain codes
Error Recovery for and WiFi Latency
ZigBee under Wi-Fi Laptop (Decreased by
Interference [89] 22%)
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TABLE 4. (Continued.) Software based coping techniques.

Surviving Wi-Fi WiFi Real dataset Channel quality Hamming Codes or PDR (Increased by | - 2010
Interference in Low | WSN captured using estimation using Reed Solomon Codes 71%)
Power ZigBee TelosB motes packet loss
Networks [90] and WiFi AP Multi Headers Unacknowledged
packets (Reduced
by 50%)
Exploiting WiFi Real dataset Time domain and Packet scheduling in Throughput (More Overhead (Lower | 2021
Interference WSN generated using | Frequency whitespaces than than
Fingerprints for Bluetooth TelosB motes Domain features Beacon/CSMA On | Beacon/CSMA
Predictable and city block scheme) On scheme)
Wireless based
Concurrency [91] identification
LTE-U and Wi-Fi WiFi Synthetic data NA Q learning based Throughput (High) | - 2018
Coexistence LTE-U generated using modelling of WiFi
Algorithm Based MATLAB whitespaces and LTE Fair factor (High)
on Q-Learning in packet scheduling
Multi-Channel [92]
Enhancing the WiFi Data captured RSSI data in IQ Adaptive LTE TXOP IDI Detection rate - 2019
Coexistence of LTE | LTE using a and FFT formats and Muting as per the (SNR>40 dB)
and Wi-Fi in Multiple LTE controlled classified using detection of cross
Unlicensed transmissions environment CNN technology interference | CNN-IQ (98%)
Spectrum Through Multiple Wi- CNN-FFT (99%)
Convolutional Fi LTE n/w
Neural Networks transmissions deployed on
[93] Concurrent USRP radios
LTE and Wi- and srsLTE
Fi software at
transmissions. | 2.437 GHz
WiFi (802.11g)
on Zotac nodes
using 2.4GHz
1 USRP radio
deployed to
collect I/Q
samples
Onboard Spectral ISA100.11a Real data Spectrum Channel blacklisting PDR (Increased by | - 2020
Analysis for RF jamming collected using | reconstruction over 50%)
Low-Complexity IEEE 802.11n | TelosB nodes, using center
IoT Devices [94] WiFi AP and frequency,
USRP radio bandwidth and
based jammer signal spectral
shape
CQI-Based WiFi Simulation K-means Adaptive subcarrier and | Throughput - 2021
Interference LTE-U based work clustering using power control (Increased)
Detection and CQI and user
Resource location
Allocation With
QoS Provision in
LTE-U Systems
[95]
Coexistence IEEE 802.11n | Simulation Technology based | Adaptive TXOP using Throughput - 2021
Scheme for LTE-U using ns-3 recognition based traditional Q learning (Increased)
Uncoordinated LTE on [93]
and WiFi Networks Adaptive TXOP using Fairness
Using Experience WiFi load ER based Q learning (Increased)
Replay Based Q- estimation as in
Learning [96] [65] Adaptive TXOP using
RER based Q learning
Adaptive TXOP using
rule based scheme
Coexistence WiFi Simulation NA Listen before talk Throughput - 2021
Analysis of D2D- D2D-U using Matlab (Increased)
Unlicensed and Wi- Duty cycling
Fi Communications
[97]
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Interference faced by WiFi is the studied in [101] initially
using commercial WiFi TXM/RCVs in presence of various
interferers. A file transferred using a smartphone Bluetooth
acted as a low power interferer to WiFi. BL and WiFi at
Im separation reported a WiFi throughput reduction of less
than 10 Mbps. However at greater separation, throughput
reduction was found to be was minor. Amongst the high
power interferers, the baby monitors and Cordless phones
completely overwhelmed WiFi transmission and observed
throughput was zero while MW Owens reduced the through-
put by 35-90%. A modified WiFi receiver using USRP2
Radio and GNU was done to observe the effect of no Carrier
Sense (CS) so as to determine if WiFi is refraining from trans-
mission or packet collision. Results showed that the effect of
interference is very high causing packet collisions and dis-
connectivity is faced even with no CS. Proposed Technology
Independent Multi-Output (TIMO) uses 2 x 2 MIMO WiFi
TXM/RCVs receiver. On detection of consecutive checksum
failures, TIMO computes soft errors (difference in IQ constel-
lation mapping of received signal with the nearest point). The
rapid increase and decrease of soft errors indicates the inter-
ference duration for which channel estimation and decoding
is initiated. Moreover in the absence of interferer, the MIMO
design also supports for multiplexing hence increasing data
transmission.

A plethora of multi-vendor sensing and automation devices
operating in Industrial WSNs require stringent timing and
reliable performance whilst sharing the same frequency
domain and geographical area. An automated collaborative
coexistence management (ACCM) based approach is pro-
posed in [102] which utilizes a mediator node/CCP. Network
manager nodes of each network share details (periodic data
nodes, allowable delay and aperiodic data) to CCP. CCP
devises a resource plan defining the Integrated Super frame
Duration (ISD) comprising of three slots, one for each net-
work so only one network is active in a slot and the appro-
priate scheduling of periodic and non-periodic data of each
IWSN to ensure coexistence.

In [103], coexistence from the perspective of 6G (sixth gen-
eration) networks comprising of massive scale IoT networks
is discussed. To fulfill the spectral and QoS requirements of
6G, the latest NR-U uses the shared spectrum for radio access.
Such dense deployment and shared spectrum use would
give rise to inter cell and intra cell interference. Consider a
dense IoT scenario in which a massive number of 6G MNOs
(mobile network operators) are coexisting with multiple WiFi
APs. A Coordinated multi-point (CoMP) server is envisioned,
that connects to all MNOs and performs synchronization and
coordination. The subspace occupied by WiFi is estimated
and a spatial LBT (listen before talk) is used to ensure the
MNOs and WiFi transmissions are spatially separated. MNOs
then engage in joint beam forming to maximize their through-
put on a global level.

NR-U also includes for the use of 60 GHz millimeter wave
(mmWave) unlicensed band that was previously considered
unideal for transmission due to high losses. NR-U overcomes
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the shortcomings of mm wave signals by using antenna arrays
and beamforming. In [104], a coexistence framework for
WiGig (802.11ay) with mmWave NR-U has been proposed.
The WiGig AP performs BFT (beam forming training) by
sending beacon frames via different sectors. Each WiGig
user perform SNR estimation to the AP and then trains its
sectors by sending SSW (sector sweep) frames containing
the best SID (sector identification) i.e. the identifier of the
highest SNR WiFi AP. The AP acknowledges and the most
optimal beam for the AP and the user is identified. User
grouping occurs on the basis of best SID reported by the
users. Hence inter-WiGig system interference is managed
by semi orthogonal MIMO allocation. Beam refinement is
done by analyzing WiGig user channel feedback and beam
forming (BF) vector calculation. NR-U AP also studies the
BF vector for interference channel estimation and performs
scheduling and adaptive power control to keep interference
caused by NR-U within limits.

In [105], Carrier Sense Adaptive Transmission (CSAT) has
been used for time scheduling LTE and WiFi transmissions
that would otherwise interfere with one another due to shared
spectral occupancy. CSAT is a time division technique that
splits time into frames. For x duration of the frame, LTE
is enabled while WiFi is allocated to the remaining frame
duration. To ensure fairness and throughput efficiency of
both systems, a central control (CC) authority supervises the
time scheduling by adaptively configuring airtimes as per
traffic loads. The LTE and WiFi frame requests are modelled
as an M/M/1 queue and optimal airtimes are found using
Q-learning.

In [106], coexistence between WiFi and LTE is achieved
using software defined network (SDN) controller and net-
work function virtualization (NFV) based entities. All LTE-U
BS report status to vVNB (virtual LTE-U eNodeB) entity and
the WiFi APs report status to vAC (WiFi access controller)
entity. The NFV entities perform traffic load estimation of
each technology using markov models and assigns the unli-
censed bands to each technology as per traffic load.

Table 5 presents a summary of all the techniques discussed
in this section.

C. ROUTING BASED MECHANISMS

These techniques involve routing solutions such as multipath
routing protocols to route traffic around interference affected
areas.

Geographical routing protocols utilize node location infor-
mation to send packets to the hop which is geographically
closest to the destination node. While these protocols are
highly scalable, they require careful management of inter-
ference. Particularly in indoor environment, nodes will be
blind to nearby walls, furniture and BL and WiFi interferers.
Proposed routing algorithm in [108] uses node location as
well as interference levels as the routing metric yielding
promising improvements in presence of interferers.

Urban-X [109] proposes a coexistence aware framework
for wireless mesh nodes facing interference from PNs
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TABLE 5. Hardware based coping techniques.

Method Signal Classes Dataset Dl]t)alils f\:/loeillrllagnisms Performance ?X:;?:;d Year
A Centralized Industrial Real simulations using SSU (Ettus NFSC CCP based Resource CCP helper 2017
Cooperative WLAN USRP N210 and RFX2400), AP resource Calculation time node
SNMP-based BPSK interferer | (Phoenix Contact FL WLAN 5100) allocation (1 ms) required
Coexistence and Clients (Siemens Scalance
Management W784-1RR)
Approach for
Industrial BPSK interferer generated using
Wireless Systems VSG
[98]
Resource Wireless Synthetic data generated using DNN Spectral resource 98% prediction CCP helper 2018
Allocation for a Communication | GNU radio allocation based accuracy node
Wireless system and on DQN required
Coexistence Interferers ( DDQN
Management WLAN
System Based on | Wireless
Reinforcement HART)
Learning [99]
Coexistence WiFi Real data generated using a NA WSN aware WiFi | WSN good put Low latency | 2013
Aware Clear WSN modified WiFi based on Wireless CCA (Energy (Increased) hardware
Channel open-Access Research Platform Detection based platform
Assessment (WARP) SDR and WSN nodes CCA and required
Fron; theory to Matched Filter
practice on an
FPGA SDR based CCA)
platform [100]
Clearing the RF WiFi Real WiFi data generated using NA Modified MIMO 14 times MIMO 2011
Smog: Making MWO iperf with commercial WiFi WiFi Receiver reduction in receiver
802.11 Robust to Analog baby module, USRP based WiFi and using a dual Packet Loss requirement
Cross- monitor TIMO enabled USRP based WiFi antenna USRP2
Technology DSSS cordless in presence of real interferes radios
Interference [101] phone
Collaborative Wireless HART | Simulation done using OPNET and | NA CCP based Real-time CCP node 2019
Coexistence ISA100.11a openZB [107] networks’ message delay required
Management WIA-PA scheduling remained under
Scheme the allowable
for Industrial limits
Wireless Sensor
Networks [102]
Joint 6G NR-U Simulation environment not NA CoMP server System data rate CoMP node | 2021
Beamforming WiFi specified based spatial LBT | (Increased) required
Coordination and and coordinated
User Selection beamforming
for CoMP
Enabled NR-U
Networks [103]
Millimeter-Wave | mmWave NR-U | Simulation environment not NA MIMO user Spectral NR-U AP 2021
NR-U and WiGig specified grouping, efficiency modification
Coexistence: WiGig (IEEE coordinated beam | (Increased)
Joint User 802.11ay) forming and
Group'lng,'Beam power control %ntra/mter—RAT
Coordination and interference
Power Control (Reduced)
[104]
Coexistence of LTE-U Simulation environment not NA Markov decision - Central 2021
LTE-Unlicensed | WiFi specified and Q learning control
and WiFi: based CSAT time entity
A Reinforcement scheduling required
Learning
Framework [105]
A Delay LTE-U Simulation done using MATLAB NA Markov model Access delay SDN 2021
Balanced WiFi based load (Reduced) controller
Adaptive Channel estimation and with vNB
Allocation channel allocation | Fairness and vNC
Mechanism for (Increased)
LTE-U
and WiFi Blocking
Coexistence probability
Systems [106] (Reduced)
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(primary nodes) such as 802.11 access points (APs) as well
as Bluetooth and ZigBee devices resulting in an interference
aware Cognitive mesh networks (CMN). CMNs exchange
channel allocations with all neighbors. Each CMN periodi-
cally measures workloads for all available channels, the chan-
nel with the highest capacity and which is the least utilized by
a node’s neighbors (to prevent inter system interference) is
selected. A multipath routing algorithm is also used to route
packets based on the varying paths condition.

Heterogeneous wireless networks create interference with
respect to routing resulting in rapid network changes and
nodes becoming isolated due to interference. Interference
generation time and volume is dynamic hence HIADR
(HI-Aware Dynamic Routing) protocol [110] takes the inter-
ference status of nodes into account and reroutes/scatters
packets through nodes that are weakly/not affected. It is
motivated from the theory of potential in classical physics.
RSSI measurements in presence of no interference, WiFi
and Microwave were done to find their respective thresholds
which is then used as the HI (Heterogeneous Interference)
value alongside other metrics. Results show an increase in
PRR (Packet Reception Rate) and FPA (Forwarding Packets
Amount). The routing protocol is resilient to interference
but at the expense of increased APL (Average Path Length)
because packets are rerouted around interfered links.

Routing in cognitive radio ad hoc network (CRAHNGS) is
complex due to CR’s opportunistic transmission nature. The
use of radio tomography i.e. creation of spectral map of
an area using signal/interference measurements would give
a visual clue about the spectral holes at a given time thus
identifying potential routes. Proposed spectrum map empow-
ered opportunistic routing (SMOR) [111] uses a quantized
spectrum map for small scale CRAHNs containing the spec-
tral occupancy state (0,1) of each block in spectrum map
so that occupied blocks be avoided while routing. For large
scale CRAHN:S, a regular radio map is used where the exact
interference levels at each point is known. By estimating
the required minimum power to transmit without causing
interference to PUs (Primary Users), high spectral efficiency
is achieved.

Improved Urban-X for CMNs is a cross layer net-
work architecture that intelligently adapts itself to the
dynamic channel characteristics as proposed in [112]. It pro-
vides network adaptation on three levels i.e. frequency
change, path/route change and load division. The architec-
ture comprises of Mesh Clients (MCs) connected to Mesh
Routers (MRs) that form a central backbone and provide
connectivity to IMG (Internet Mesh Gateway). The network
function virtualization (NFV) and SDN proves to be a much
easier and effective implementation of Urban-X.

Interference Aware Heuristic Routing Protocol (IAHR)
[113] is an energy conserving routing protocol to extend the
lifetime of a WHAN (Wireless Home Automation Networks)
which are subject to interference from WiFi, Bluetooth, smart
meter, cordless phones, and microwave ovens. Sensor Nodes
(SN) periodically send residual energy, location information
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and link information to neighbor SNs. Base Station (BS)
that are full function devices broadcast their location to SNs.
Multiple BSs are connected to a GS (Gateway Server). IAHR
finds out the most optimal path between SNs and BS using
local distance (the distance traversed to reach current node
from source node), global distance (estimated Euclidean dis-
tance b/w SN and BS), Longevity factor/node energy and LQ
(link quality) value i.e. a weighted value as per interference
levels (below threshold (100), above high threshold 6 dB (0),
otherwise (High thresh-SNR)).

In M20 (Many to One) source routing protocol, multi hop
routing is done i.e. RREQ (Route Request) messages are sent
and multiple routes to one destination nodes exist. Routes are
ranked by a cost value that depends upon the successful trans-
mission probability (p,) which varies with time due to hidden
node problem, external interferers etc. An optimized route
selection procedure is proposed in Unicast Round Ribbon
(U-RR) [92] by modifying the ZigBee link cost estimator for
multi hop transmissions. The improved link cost calculator
uses regular link state (LS) as well as unicast packets to
calculate p, Results show U-RR performs better than LQI
(Link Quality Indicator) and LS based cost calculators.

In [114], Cognitive radio Adhoc networks (CRAHNs) and
Primary Users (PUs) coexistence is discussed. CRAHNS are
cognitive radio (CR) based networks that can assess their
environment in real time and reconfigure their transmission
parameters to optimize network performance. A PU is a
licensed band user while the Secondary User (SU) is an
unlicensed band user that can opportunistically transmit in
the licensed band if PU stops its transmissions. A cross layer
routing protocol is proposed i.e. the CRAHN nodes perform
spectrum sensing to find idle channels and adjust their param-
eters accordingly. Moreover spectrum occupancy information
is also considered in the routing process to avoid PUs.

In the coexisting WiFi and WSN networks in [115], the
WSN network paths are divided into trees and different chan-
nels are used in different trees. On encountering interference,
the channel within a tree is switched. If channel switching is
inadequate, rerouting is done to avoid the interference.

A comparative analysis of the above techniques is summa-
rized in Table 6.

D. CLUSTER HEAD BASED MECHANISMS

Cluster head (CH) based techniques modify the traditional
CH by making it interference aware and manage interference
on a cluster level.

In the CH based network of [117], a channel hopping
based interference mitigation is proposed. On detection of
packet errors exceeding a threshold, the CH performs energy
detection and decides the presence of interference based
on thresholds. It then alerts all cluster members to switch
from ST (Single channel transmission) to MT (Multi-channel
Transmission) via MT beacon. The nodes communicate with
the CH using via a predetermined channel hopping sequence.
The CH monitors the link conditions of all hopping channels
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TABLE 6. Routing based coping techniques.

Method Signal Classes Dataset Routing Metrics Thresholds Performance Year
Interference-aware WSN Real data Link Quality(Receive - PDR increased by 60% as 2009
Geographical WLAN (802.11n/g) generated using power threshold) compared to GPSR
Routing for MTM-CM3000
Sensor-nets in based WSN Distance to destination Energy consumption nearly
Indoor and N200UA halved as compared to GPSR
Environments [108] WLAN adaptor
Cognitive Multi- WiFi Synthetic data Channel having highest - Throughput increased(double 2010
Radio Mesh ZigBee generated using channel capacity and least than that of DCA)

Networks on ISM BL ns-2 reused by neighboring
Bands: A Cross- CMNs
Layer Architecture
[109]
Avoiding WSN Real dataset Min Depth/hop count no PRR (Packet Reception Rate) 2013
Heterogeneous Microwave generated using MAX PE interference increased
Interference Wi-Fi MICA platform Min HI Intensity (-90 dB)
through Dynamic and real Wi-Fi (-60 APL (Average Path Length)
Routing in Wireless interferers dB) increased due to rerouting
Sensor Networks microwave (-
[110] 85 dB)
Spectrum Map CRAHN Simulation Spectral occupancy - End to end delay (Reduced) 2014
Empowered fading
Opportunistic link service rate
Routing
for Cognitive Radio
Ad Hoc Networks
[111]
Toward network WiFi Simulated in ns-2 | Channel having highest - Throughput increased from 2015
function PN interferer channel capacity and least previous implementations
virtualization for reused by neighboring
cognitive wireless CMNs
mesh networks: a
TCP case
study [112]
An Interference WHAN with Simulated in Local distance - PDR(15% increased) 2016
Aware Heuristic interferers Omnet+ Global distance Remaining Energy increased
Routing Longevity factor/node Network Lifetime (Available
Protocol for energy for more rounds)
Wireless Home LQ value calculation Routing Overhead(Less
Automation control packets required as
Networks [113] interference is quantized
beforehand instead in real-
time)
Average Packet Delay
decreased
Improving Route WSN Simulated in ns-3 | Modified link cost - Retransmission under WiFi 2019
Selections in WiFi calculation using LS and (Reduced by 20%)
ZigBee Wireless Unicast packets
Sensor Networks
[116]
Spectrum-aware CRAHN Simulated in ns-2 | Channel capacity - Increased throughput 2020
cross-layered PUs Number of PUs
routing protocol for Reduced end-to-end delay,
cognitive radio channel switching, and
adhoc networks interference to PU
[114]
Joint Channel WSN Simulation in Channel switching - Packet arrival ratio (Increased) | 2021
Allocation and WiFi QualNet 7.1 Re-routing
Routing for
ZigBee/Wi-Fi
Coexistent
Networks [115]

using acknowledgment (ACKs) and eventually hand offs to

the best channel i.e. in ST mode.

CRSN (Cognitive Radio Sensor Network) use CR as WSN
nodes making the most optimal use of spectrum that is
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unused by PUs. Resulting network is an interference aware
self-configuring network that provides good performance in
comparison to highly congested ISM band. CogLeach [118]
is the cognitive form of LEACH protocol. LEACH’s CH
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TABLE 7. Cluster head based coping techniques.

Cluster Head Intra Cluster Technique
Method Signal Classes Dataset Election Performance Year
Interference WSN . . Channel hopping in Throughout increased
Mitigation in [IEEE WiFi Slmulatlon presence of interference
environment not Normal . 2011
802.15.4 Networks specified only Energy Consumption
[117] decreased
CogLEACH: A CRSN (Cognitive Simulation CH with the TDMA and DSSS Throughput increased 2014
Spectrum Aware Radio Sensor environment not highest number of
Clustering Network) specified idle channels
Protocol for
Cognitive Radio
Sensor Networks
[118]
Frequency hopping | WSN Real dataset Normal Channel hopping PDR increased by 38% 2018
in IEEE802.15.4 to WiFi collected using (FH)
mitigate IEEE 6LoWPAN Non overlapping channel
802.11 interference Sensinode Devkit selection for FH PDR increased by 10%
and fading [119] , 802.11 NIC and (FH and channel
Multi-Generator selection)
(MGEN) software
Intelligent CRAHN Simulated using Normal SCF based PU/SU/Noise Cluster lifetime 2021
Cognitive Radio PUs C++, MATLAB detection increased by 30%
Ad-Hoc Network: and Tensor Flow
Planning, Q learning based network
Learning and reconfigurations
Dynamic
Configuration [120]

election process is made spectrum aware by choosing vacant
channel as the metric.

The effect of WiFi interference, Rayleigh and Rician fad-
ing are mitigated in [119] using FH (Frequency hopping). All
cluster nodes communicate with CH using FH. A timing syn-
chronization protocol is used to synchronize the CH with its
cluster member after which the hopping pattern is exchanged
and transmission occurs. Moreover, on the analysis of WSN
and WiFi channels, four WSN channels (15, 20, 25, and 26)
were found to not overlap with North America WiFi channels.
On intelligent selection of hopping channels, a further 10%
increase in PDR is achieved.

In [120], an improved cluster head based coexistence
scheme is proposed for CRAHNSs and PUs. The system com-
prises of member nodes (MNs) amongst which CH is selected
and several gateway nodes (GNs) interconnect multiple CHs.
Each CH asks MNs to perform spectrum sensing using SCF
(spectral correlation function) based CNN to detect the pres-
ence of PU, SU or Noise. Since the PU system changes
dynamically, the CHs adaptively reconfigure the network. All
nodes perform spectrum sensing and channel quality assess-
ment based on PU presence using Q-learning which is then
shared with other nodes for the next CH election procedure.

A summary of cluster head based mitigation techniques is
presented in Table 7.

VII. OPEN ISSUES

A variety of WII techniques and subsequent coping mech-
anisms have been proposed and validated to be providing
optimized performance.
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The implementation of interference detection or coexis-
tence mechanism is subject to node hardware constraints. For
instance, in the WSN COTS (commercial off the shelf) nodes
in particular, the energy sampling is not as fine grained as
compared to a sophisticated software defined radio (SDR)
hence resulting in sub-nyquist sampling [57]. This results
in envelope information loss and hampers the time and fre-
quency resolution of the signal. State of the art interference
detection techniques utilizing such spectrum information will
perform optimally on spectrum analyzers or SDR based plat-
forms, but their performance will be limited in WSN COTS
devices due to simple radio front ends and processing unit.
Hence there exists a requirement of ML models and tech-
niques that can perfectly decode the dependencies extracted
from the low resolution data supplied by low end network
nodes.

Machine learning models to be used for interference detec-
tion or interference coping must take into account node
memory. Trained deep learning models often require more
memory and would require node modification. A healthy
compromise between model complexity, accuracy and mem-
ory constraints need to be made. There exist potential in
exploring traditional pattern recognition algorithms alongside
deep learning algorithms to obtain the benefit of simpler yet
effective models.

Robust models with simpler data representations are
desired. Recent advances in Computer Vision have motivated
the use of spectrograms making WII an image classifica-
tion task. This data transformation yields unique observable
features that are otherwise concealed in raw data and offer
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good classification accuracies. Since most works use normal
spectrograms, there exist a potential in analyzing other time-
frequency analysis methods and transforms. Since FFT and
other frequency transforms require dedicated hardware and
are often incompatible with ordinary WSN nodes, there exist
the possibility of pushing these resource hungry sensing into
several sophisticated nodes instead of all network nodes. The
data gathering, sensing and coordination in such a hierarchal
architecture is to be explored further.

VIil. CONCLUSION

With the upcoming wireless communication trends, there is
an ever growing importance of the unlicensed bands. More-
over ISM bands will also be used by traditional licensed
band users (LTE) for traffic offloading purposes. Coexistence
management amongst all these heterogeneous technologies is
of paramount importance to ensure fairness and meet the QoS
requirements of all ISM users.

This survey gives an overview and comparison of the
main technologies that predominantly utilize and rely on ISM
bands. Moreover a step by step approach to Coexistence Man-
agement is also discussed. Firstly in this paper a comprehen-
sive survey of wireless interference identification techniques
is presented. Wireless Interference Identification (WII) is
important in order to recognize explicitly which technology
enabled devices are interfering with the ongoing transmis-
sions in order to implement technology specific coping mech-
anisms. WII can also be applied to spectrum monitoring to
monitor occupancy on large scale. Furthermore in this paper
analysis of RSSI/IQ based WII techniques that use raw radio
samples for detection and can be realized on most COTS
hardware is also presented. Also spectral based techniques
are discussed owing to a new paradigm of making WII an
image classification task. Spectral analysis techniques require
higher processing power and special nodes, however they
offer an interesting and visual way of WIL.

Also a comprehensive survey of proposed coexistence
techniques is also presented in the paper. These techniques
are categorized on the basis of software based techniques
that require protocol stack modification and hardware based
techniques that require additional helper nodes/ special anten-
nas to achieve coexistence. In the end, the paper discussed
interference management via interference aware routing and
improved clustering mechanism techniques.
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