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ABSTRACT Diabetic Retinopathy (DR) - a complication developed due to heightened blood glucose levels-
is deemed one of the most sight-threatening diseases. Unfortunately, DR screening is manually acquired by
an ophthalmologist, a process that can be considered erroneous and time-consuming. Accordingly, automated
DR diagnostics have become a focus of research in recent years due to the tremendous increase in diabetic
patients. Moreover, the recent accomplishments demonstrated by Convolutional Neural Networks (CNN)
settle them as state-of-the-art for DR stage identification. This paper proposes a new automatic deep-
learning-based approach for severity detection by utilizing a single Color Fundus photograph (CFP).
The proposed technique employs DenseNet169’s encoder to construct a visual embedding. Furthermore,
Convolutional Block Attention Module (CBAM) is introduced on top of the encoder to reinforce its
discriminative power. Finally, the model is trained using cross-entropy loss on the Kaggle Asia Pacific
Tele-Ophthalmology Society’s (APTOS) dataset. On the binary classification task, we accomplished (97%
accuracy - 97% sensitivity - 98.3% specificity - 0.9455, Quadratic Weighted Kappa score (QWK)) compared
to the state-of-the-art. Moreover, Our network showed high competency (82% accuracy - 0.888 (QWK))
for severity grading. The significant contribution of the proposed framework is that it efficiently grades
the severity level of diabetic retinopathy while reducing the time and space complexity required, which
demonstrates it as a promising candidate for autonomous diagnosis.

INDEX TERMS Diabetic retinopathy, convolutional neural networks (CNN), attention mechanism, deep
learning.

I. INTRODUCTION
Diabetes Mellitus is a chronic metabolic disease character-
ized by elevated blood glucose levels or (Hyperglycemia),
which over time affects the blood vessels in the human body
on both micro and macro scales. According to the World
Health Organization (WHO), the number of diabetic people
hiked to 422 million in 2014, with an expectation to reach
700 million by 2045 [1], [2]. One of the long-term diabetic
micro-vascular effects is diabetic retinopathy, a progressive
abnormality revealed and detected through ocular patholo-
gies, which leads to blocking and bleeding of the retinal
capillaries. Fortunately, early detection can prevent vision
impairment. However, without frequent screening, it may
induce irreversible damage. International Diabetes Federa-
tion (IDF) affirmed that 93 million diabetics suffer from
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eye damage, yet only 200,000 ophthalmologists are available
worldwide [3]. Grading inconsistency, critical deficiency in
the available number of ophthalmologists as well as the labo-
rious process remains hindering factors for diabetic retinopa-
thy detection. Therefore, automating retinopathy diagnostics
is desired to reduce the high strain on health care systems.
Motivated by this, significant efforts have been directed
to enhance Computer-aided medical diagnosis (CAMD)
systems.

DR grading systems can be categorized into two clusters:
segregation of diabetic retinas from healthy ones (binary-
classification task) and severity estimation (multi-class clas-
sification task) of affected retinas from class 0 (healthy)
to class 4 proliferative DR (PDR). Traditional Machine
Learning (ML) algorithms are Artificial Intelligence (AI)
techniques that learn through experience by being exposed to
data. They were employed for detecting diabetes type based
on patient attributes by Nagaraj et al. [4], they utilized the
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Artificial Flora Algorithm (AFA) [5] for feature selection in
addition to using Gradient Boosted Trees (GBT) [6] as a clas-
sification model. Furthermore, exploited by Gharaibeh et al.
in [7] and [8] by employing feature engineering process, then
applying Support Vector Machines (SVM) as a classifier for
DR detection [9]. ML algorithms need personalized expe-
rience and domain knowledge to find the most informative
representation despite its effectiveness.

Deep Learning (DL) has gained a foothold in various
fields by representing the world as a nested hierarchy of
concepts, with each concept defined through its relation
to simpler concepts [10]. Convolutional Neural Networks
was the standout DL architecture in the late nineties. Since
then, it has been used extensively for processing data such
as images and time series. Moreover, it has demonstrated
outstanding performance in practical applications such as
Natural Language Processing (NLP) [11], [12] and Computer
Vision (CV) problems [13]–[15].

Exploiting convolutional neural networks’ power for a
medical domain has developed more robust solutions, specif-
ically in the DR domain. [16] and [17] demonstrated
the effectiveness of such a technique for retinal vessel
segmentation. Similarly, by leveraging Generative Adver-
sarial Networks (GANs), Zhao et al. [18] could synthesize
fundus images. Dai et al. [19] utilized multi-sieving con-
volutional neural network and image to text mapping for
Micro-aneurysms (MA) early detection. [20] evaluated the
performance of three recognized CNN architectures: VGG16,
VGG19, and InceptionV3 [21], [22] by employing transfer
learning and fine-tuning for binary and multi-class classi-
fication. Zeng et al. [23] introduced Siamese-like architec-
ture [24] trained with transfer learning to classify fundus
images into two grades. Kassani et al. [25] used a Multi-
Layer Perceptron (MLP) as a classification head on top of
the modified Xception network [26] by concatenating differ-
ent feature maps from different convolutional layers. Four
Inception models were utilized [27] for multi-class classi-
fication, each fundus image was sliced into four quadrants,
and each quadrant will be classified by one of the four
models. [28] exploited blended models to enhance data rep-
resentation, Gangwar et al. [29] investigated a new hybrid
model inherited from Inception and ResNet architectures.
Al Antary et al. [30] designed ResNet architecture integrated
with a Multi-Scale Attention mechanism (MSA) to enhance
the representational power of the encoder. Moreover, they
employed a multi-level approach for feature reuse for more
improvements. Since our focus in this paper is to enhance the
grading system both on binary and multi-class classification
tasks, we observed drawbacks related to the aforementioned
algorithms despite their success ranging from high time and
space complexity to drop out mitigating the severe data
imbalance inherited.

DR severity grading remains a challenging task due to three
factors: (i) Data rarity. Acquiring massive labeled data is
a crucial issue for DL and more significant in the medical
domain due to the data privacy issues or/and having costly

devices to get high-quality images. (ii) Implicit stochasticity.
Retinal fundus images experience large variations caused
by different devices and environmental conditions regarding
color, contrast, illumination, and size. As a result, the model’s
decision may be distorted. (iii) Fading classes’ disparity. The
threshold chosen for image classification between two closely
distributed classes (e.g., mild and moderate in the APTOS
dataset) is blurry, as will be shown in Section III.C, due to
the dependence on microscale ocular pathologies. To solve
the problem of fading disparity, large CNN architectures
were employed in the literature to extract more informative
features, data augmentation and preprocessing were used to
enhance CNNs’ generalizability. Finally, transfer learning
was exploited to overcome data shortage.

In this paper, we investigate the efficacy of light-weight
deep learning architecture for fast and robust severity grad-
ing of diabetic retinopathy. Our framework is based on
a modified version of DenseNet [31] with integrating an
attention mechanism with the former architecture for more
feature refinement. Furthermore, we observe the effect of
data imbalance on the model performance and mitigate
such an effect by using an imbalanced learning technique.
As shown in Fig.1, we first pass and preprocess the reti-
nal image for quality enhancement, afterward, the images
were passed to the DenseNet encoder C for feature extrac-
tion, then the features are sent to the attention module A
for more improved representation. We train our model by
freezing Densnet’s encoder, trained on the ImageNet [32]
dataset for the model’s convergence acceleration by using the
pre-trained weights θC and training only the attention module
and the classification head using APTOS data in a supervised
approach to update θA & θM . Our main contributions are as
follows:

1) We developed a modified architecture to reduce the
time needed for training and inference while enhancing
DR severity grading by using a relatively small model
with 8.5 million parameters compared to 10.8 million
in the previous work.

2) We exploited the effect of using an attention mecha-
nism as a supplementary module for feature refinement
which led to an increase in accuracy while preserving
low model complexity.

3) We tested the effect of using an imbalanced learning
approach to alleviate the impact of data imbalance on
the model’s performance and proved its efficiency in
enhancing the overall metrics.

4) We utilized transfer learning only by freezing
the convolutional encoder without extra fine-tuning
which led to relatively low number of learnable
parameters (150K).

The paper is divided as follows. The related work
is presented in Section II. In Section III, the methodol-
ogy is presented. In Section IV, the results and discus-
sions are demonstrated. Finally, conclusions are provided in
Section V.
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FIGURE 1. In the scheme of our proposed approach, In the network training step (upper), we pass a batch of labeled preprocessed images X to
our convolutional encoder C for feature extraction, then an attention mechanism A for feature refinement. Finally, in the testing phase (lower),
we directly pass the data to the network to predict the image class.

II. RELATED WORK
Deep learning has been deployed extensively in DR due
to the rising of the transfer learning paradigm that offers
fast convergence and performance enhancement while reduc-
ing the need for massive data and computational resources.
This has opened the door for more robust algorithms in
the medical domain. Wang et al. [33] developed Lesion-
Net; the main aim of the network was to aim was to add
lesion detection to severity grading to reinforce the rep-
resentational power of the encoder. The architecture was
built on InceptionV3, which was trained and validated
using a private dataset. An ensemble stacking approach
was investigated by Qummar et al. [34] by using five
reputable architectures (Resnet50, InceptionV3, Xception,
DenseNet121, DenseNet169) in order to improve produced
feature maps. Furthermore, they used the Kaggle EyePACS
dataset to assess the model. A hybrid deep learning model
introduced by Cortes et al. [35] was built using InceptionV3
encoder for feature extraction and then training Gaussian Pro-
cess (GP) regressor to get uncertainty of the prediction using
EyePACS and Messidor-2 datasets, for DR binary classifi-
cation task. The EfficientNet-B3 architecture was deployed
by Sugeno et al. [36] for both binary and severity classifi-
cation using APTOS dataset. Furthermore, they developed a
method for lesion detection and validated with ground truth
exploiting DIARETDB11 dataset. Meta-Plasticity, a bio-
inspired phenomenon, was artificially implemented at CNN’s

1https://www.it.lut.fi/project/imageret/diaretdb1/

back-propagation path to reinforce less common occurrences
during the learning process by Boix et al. [37] for perfor-
mance enhancement. Moreover, they deployed this technique
in different deep learning architectures, using APTOS data
for binary and severity grading tasks. Zhang et al. deployed
a Source-Free Transfer Learning (SFTL) [38] model for
referable DR, which utilized the unlabelled retinal images
to alleviate the challenges of medical data annotation and
privacy. They applied their algorithm to APTOS dataset for
binary and multi-class classification tasks.

III. METHODOLOGY
In this section, we present the details of our framework.
First, we introduce APTOS data, followed by data prepro-
cessing, then data augmentation, balancing, and analysis.
Finally, we introduce our architecture, training settings, and
evaluation metrics.

A. DATASETS
In 2019 (APTOS) dataset2 was released on the Kaggle web-
site3 as a part of public competition for DR detection. The
main aim of using fundus imaging was to classify disease
severity by producing a probability that an image located
in one of five clusters: No DR, Mild, Moderate, Severe,
and Proliferative DR. This data was collected by Aravind
Eye Hospital in India, 13,000 (approximately) images were

2https://www.kaggle.com/c/aptos2019-blindness-detection
3https://www.kaggle.com/
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FIGURE 2. In visual comparison between (a) Raw fundus image and
(b) Pre-processed fundus image, we observe the removal of the black
side borders, by removing the black pixels and applying a Gaussian filter,
the clarity of blood vessels and other bio-markers enhanced significantly.

provided at this competition; however, we had only access to
the ground truth labels of 3662 images.

B. DATA PRE-PROCESSING
The uninformative black areas on the sides of the images
were first trimmed then a circular crop was applied to have
a centered retinal image. Moreover, a filtering technique was
exploited [39] to enhance the clarity of visual bio-markers,
and described by the following equations:

X
′′

= α × X + β × X
′

+ γ (1)

X
′

= G(σx)*X (2)

X indicates the input data,G(σx) is a 2DGaussian kernel with
a standard deviation of σx = 15 in x-direction and ∗ is the
convolution operation. α, β, and γ were chosen empirically
to be 5, −4, and 70, respectively. Finally, each image was
normalized to be in the range of [0, 1], resized to (256×256)
using bilinear interpolation, and decoded to a 32-bit floating-
point. Fig.2 represents the input and output from the pre-
processing step.

C. DATA AUGMENTATION, BALANCING & ANALYSIS
Investigating APTOS data revealed severe class imbalance,
i.e., 49.29%, 10.1%, 27.28%, 5.27%, 8.05% belonging to
normal, mild, moderate, severe, and proliferative DR grades.

FIGURE 3. 2D representation for APTOS data, class 0 forms dense clouds
in low dimensional feature space while having scattered representation
for other classes due to data shortage.

Furthermore, by its projection in lower-dimensional feature
space, using Principle Component Analysis (PCA) to lower
the data dimensionality to 500-D followed by applying the
t-Distributed Stochastic Neighbor Embedding (t-SNE) algo-
rithm to analyze data distribution across different classes [40],
Intuitions were developed by exploiting Fig.3:
• Class 0 forms feature clusters all over the 2-D space,
making it one of the easiest classes to be detected.

• Classes (1-4) have acute overlapping, which generates
a challenging task for the algorithm to fit a proper
hyperplane.

• We artificially clustered the data to form only two
regions (infected and healthy), and we observed that DL,
based on our understanding, is robust enough to solve the
binary classification problem.

Thus, to mitigate such effect, we used an Inverse Number
of Samples (INS) learning approach where each class is
weighted inversely proportional to its distribution in the orig-
inal dataset as described in (3) and (4):

W =
1
Si

(3)

W =
W

(
∑N

i=1Wi)× N
(4)

W , Si are 1-D array that contains weights for each class and
the total number of samples per class. N is the total number
of classes and i is the class index. As a consequence, we used
the updated version of the Categorical Cross-Entropy loss
function (CCE):

Jcce = −
1
M

N∑
i=1

M∑
m=1

wi × yim × log(hθ (xm, i)) (5)
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FIGURE 4. Proposed network architecture for DR severity grading.

FIGURE 5. Convolutional block attention module illustration.

where

• M number of training samples
• N total number of classes
• wi weight for class i
• yim target label for training example m for class i
• xm input image for training example m
• hθ model with learnable parameters θ

Random horizontal, vertical flipping, and rotation were
applied to reduce overfitting and improve the model’s gen-
eralizability. Furthermore, it was employed using the on-fly
augmentation technique, which means it was utilized as a
layer in our network to perform the transformations men-
tioned during the training phase.

D. ARCHITECTURE
Our algorithm consists of a backbone model (convolutional
base) and an attention module. First, the backbone network
is used as a feature extractor for the input fundus image, and

then features are refined using Convolutional Block Atten-
tion Module (CBAM) for data representation enhancement.
Afterward, converting them to a one-dimensional array by
averaging each featuremap generated by the attentionmodule
using Global Average Pooling (GAP) followed by classifica-
tion head. Fig.4 demonstrates an illustration of our network.

1) DenseNet
DenseNet was used as the main backbone for the proposed
approach. Huang et al. [31] demonstrated the robustness of
the architecture against the vanishing gradient problem while
reducing the number of parameters and reducing over-fitting
for smaller datasets. The main idea was to connect CNN
layers using a dense connectivity pattern such that each layer
has a concatenated input of all preceding feature maps:

Xl = Hl([X0,X1, . . . ,Xl−1]) (6)

where [X0,X1, . . . ,Xl−1] is the concatenated feature maps to
the l th layer, Hl(.) is a hidden layer that exploits consecutive
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TABLE 1. Network architecture.

operations: batch normalization (BN) [41], followed by a
rectified linear unit (RELU) [42], and convolution operation
to have a non-linear transformation of the input. Architecture
design allows feature reuse based on routing the previous
feature maps to the next convolution layer. For pooling,
Transition Block (TB) was integrated, consisting of batch
normalization, 1× 1 convolution, and 2× 2 average pooling.

2) CONVOLUTIONAL BLOCK ATTENTION MODULE (CBAM)
CBAM has proved its success in more curated feature gener-
ation and performance enhancement [43]. It consists of two
sub-modules:
• Channel Attention Module.
• Spatial Attention Module.

The attention module is used to infer two feature maps:

Fatt = (Ms(Mc(F)⊗ F))⊗ (Mc(F)⊗ F) (7)

Fatt ∈ RH×W×C is the refined features, F ∈ RH×W×C is
CBAM’s input,Ms ∈ RH×W×1 is a 2-D spatial attention map,
⊗ denotes element wise multiplication and Mc ∈ R1×1×C is
1-D channel attention map:

Mc(F) = σ (MLP(GAP(F))+MLP(GMP(F)) (8)

where σ (.) is Sigmoid function, MLP is shared network with
hidden units ∈ RC/r×1×1, C is the number of channels, r is a

Algorithm 1 The Implementation of DenseNet+CBAM
Model
Input: Pre-trained DenseNet encoder C with Imagenet

weights θC , labelled data (X ,Y ), α, β, γ , batch size B,
class weightsW .

Output: θA for the attention mechanism A, θM for the clas-
sification head.
Initialisation : Learning rate lr

1: Apply preprocessing X ′ = Ftransform(X , α, β, γ )
2: for epoch = i from 1 to N do
3: for each mini-batch do
4: for image k in mini-batch b do
5: Apply on-fly Keras augmentation
6: Extract & refine the features

z = hθA (hθC (X [k]
′))

7: Encode flattened features z′ = hθM (z)

8: Compute ŷk = argmax( ez
′
k∑N

j=1 e
z′j
)

9: end for
10: UpdateMLP via θM ←−Adam(∇θM (JCCE ), θM ,W ,

lr );
11: Update A via θA←− Adam(∇θA (JCCE ), θA, W , lr )
12: end for
13: end for

compression ratio and GAP (Global Average Pooling), GMP
(Global Maximum Pooling) were applied across spatial axes.

Ms(F
′

) = σ (K 7×7([SpAvgpool (F
′

); SpMaxpool (F
′

)])) (9)

F ′ ∈ RH×W×C is channel’s attention module output, KH×W

is a convolution kernel with one filter applied to concate-
nation of SpAvgpool and SpMaxpool , where both of them are
employed across the channel axis. Fig.5 shows an illustration
for CBAM.

3) PROPOSED IMPLEMENTATION
DenseNet169 was selected from the DenseNet family after
comparing different reputable pre-trained models. It demon-
strated robust performance across all classes due to its nature;
as discussed in Section III.D.1, the flow of information from
low-level features to the upper layers allowed the model to
exploit as many features as possible. A series of experiments
were made to choose the best depth to check if we need this
high complexity while achieving the best performance, and
we decided to reduce the number of convolutional blocks
in the fourth dense block to be 12 instead of 32. Exploiting
attention mechanisms offer more flexibility to DL algorithms
to focus more on the vital information related to the target and
discard those not related. CBAM has provided that it is capa-
ble of enhancing the model’s representational power without
increasing the complexity, so we tried different positions for
CBAM in our modified DenseNet, and we observed that the
best performance is accompanied by positioning CBAM on
top of the convolutional encoder plus reducing the training
time significantly due to the decrease in spatial dimensions.
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TABLE 2. DR severity grading results on APTOS dataset. The best, second best, and third best are marked by italics, boldface, and underline, respectively.
M:million.

TABLE 3. Binary classification results on APTOS dataset. The best, second best, and third best are marked by italics, boldface, and underline, respectively.

TABLE 4. Statistics for training and validation datasets.

Four trials were investigated to show the gradual increase in
performance:
• Baseline DensNet169.
• DenseNet169 + INS.
• DenseNet169 + CBAM.
• DenseNet169 + CBAM + INS.

Where our baseline has only DenseNet169’s modified
encoder without attaching CBAM as a supplementary mod-
ule, moreover as well as not deal with the class imbalance
inherited in APTOS data. For the second trial, we demon-
strated the effectiveness of using cost-sensitive learning to
penalize our model when dealing with minor classes and
vice-versa. CBAM was added to DenseNet without using
INS to investigate its effectiveness in the third trial. Finally,
we investigated the enhancements added by CBAM and INS
together. The four experiments had followed the same settings
by freezing DenseNet’s encoder and using transfer learning
to accelerate the training of CBAM and Softmax layers. Fine-
tuningwas not used in contrast to the conventional framework

when we have a different data domain compared to ImageNet
data, and we took our decision based on the interesting results
provided by [44], where ImageNet weights demonstrated its
robustness as a feature extractor for retinal disease detec-
tion. A reduction ratio (r = 32) and kernel size (K 7×7) at
channel and spatial modules, respectively for CBAM. Due
to its performance, our fourth trial was compared to other
state-of-the-art techniques. Detailed information regarding
our architecture is demonstrated in Table.1.

E. TRAINING SETTINGS
Our splitting policy was 90% to 10% of our dataset to
form a training and validation set. A stratified data splitting
technique was exploited to preserve the same distribution
to ensure the classes’ distribution consistency between the
aforementioned subsets and the original set. Table.4 demon-
strates the training and validation data statistics. Furthermore,
K-fold validation was implemented to have more robust
results, and due to the size of the dataset, we used 5-folds
to train on 80% and test using 20% of the original dataset
at each trial. Furthermore, the maximum number of epochs
was limited to 400 while using an early stopping callback to
avoid overfitting by saving the best weights corresponding
to the minimum validation loss. Finally, we used the exact
stratified data splitting mechanism to ensure the same class
distribution at each fold.

Our algorithm was implemented using TensorFlow [45]
and trained on Tesla V100 GPU provided by Google Co-lab.
We trained four networks for 1000 epochs, and with a small
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batch size of 32 images, the RGB images are passed to the
network after being preprocessed. Furthermore, using Adam
optimizer with learning rate 3×10−4, β1 = 0.9, β2 = 0.909,
andweighted CCE that was demonstrated at (5) as a loss func-
tion. Specifically, we exploited Sparse (CCE) based on the
label encoding found in the dataset. All layers in CBAMwere
initialized by He normal initializer [46], Dropout layer was
set with a rate equal to 0.5 to improve generalizability, and
Softmax as a final layer [47]. For severity grading, the high-
est probability represents the level of the sample, whereas,
for binary classification, the output was thresholded at 0.5.
We introduce the overall training process of our proposed
approach in Algorithm 1.

F. EVALUATION METRICS
Five common metrics were used to evaluate the model’s
performance.

1) ACCURACY (ACC)
The percentage of correct predictions that a model can
achieve. Accuracy is defined as

Acc =
TP+ TN

TP+ TN + FP+ FN
(10)

2) SENSITIVITY (SENS)
is the percentage of positive cases that is classified as actual
positive. Identified as follows

Sens =
TP

TP+ FN
(11)

3) SPECIFICITY (SPEC)
is the percentage of negative cases that are detected as actual
negative. Identified as follows

Spec =
TN

TN + FP
(12)

4) F1-SCORE (F1)
is the harmonic mean of precision and recall and is identified
as

F1 =
TP

TP+ 1
2 (FN + FP)

(13)

5) KAPPA-SCORE
to assess the agreement between our model and the original
rater. Identified as follows

k = 1−

∑
i,j wi,jOi,j∑
i,j wi,jEi,j

(14)

where true positives (TP) are the classes classified correctly
by the algorithm, true negatives (TN) are samples predicted
correctly as negative, false positives (FP) are samples that are
miss-classified as a positive class, and false negatives (FN)
are samples miss-classified as negative class. Oi,j is the
observed matrices, and Ei,j is the expected one.

FIGURE 6. Normalized confusion matrices for (a) Baseline DenseNet169
(b) DenseNet + CBAM (c) DenseNet169 + INS (d) DenseNET169 + INS +

CBAM.

IV. RESULTS AND DISCUSSIONS
Fig.6 illustrates the performance of our four algorithms.
In Fig.6.a, we observe that without theweighted loss function,
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it is easier for our model to be distorted and have robust
behavior only in detecting major classes (0 and 2) and vice-
versa. As can be shown in Fig.6.b, attaching CBAM to our
encoder enhanced the detection of classes 1 and 3 by 63.3%
and 90.9%, while reducing class 2 only by 4.6%. Class imbal-
ance mitigation allowed better performance, as can be seen in
Fig.6.c, class 1,3 detection is enhanced by 43.3% and 236.4%
respectively, with respect to the baseline algorithm. Finally,
using CBAM with DenseNet169 while adding weighted loss
has demonstrated thriving performance across all classes.
Regardless of the reduction in class 2 by 14.63%, classes
(1,3 and 4) exhibit significant improvements by 44.2%,
43.24%, and 235%. An average QWK and accuracy values
of 0.8072 and 72.3% were achieved, respectively, using the
5-fold k-validation technique. As shown in Section III.E,
we trained our algorithm only for 400 epochs to reduce the
computational cost of training five different models, further
training will provide more intact results.

As shown in Table.2, the proposed method outperformed
the literature work on the severity grading task and showed
comparable results. Our model enhanced accuracy and QWK
by 0.4% and 24.9% while decreasing inference time by
cutting down the number of parameters by 83% compared
to [28]. We achieved almost the same accuracy as [29] while
reducing the model size. Our best trial had an increase in
accuracy of about 7% compared to the AM-InceptionV3 [37]
method. SFTL model achieved high accuracy at the severity
grading task. However, they did not tackle the problem of
data imbalance. EfficientNet-B3 [36] achieved higher accu-
racy but only for major classes, while we achieved compa-
rable accuracy in minor classes, and finally, We compared
our best trial with the MSA network without multi-level
feature reuse [30]. We had almost the same accuracy with
an increase in QWK by 3.6%. Furthermore, we achieved
a better confusion matrix across all classes than the litera-
ture while reducing time and space complexity by a 45%
reduction in parameters. Severity grading f1-score was not
mentioned in the literature. However, by using CBAM and
INS, an enhancement was established by 21.4% with respect
to the baseline DenseNet169.

Our algorithm demonstrated robustness against other deep
learning architectures for the binary classification task,
as shown in Table.3. Above all, the literature did not deal
with the class imbalance problem. Most of the algorithms
implemented did not consider its effect on quality metrics
which provided overestimated outcomes, as most of them
were predicting perfectly only for major classes due to ignor-
ing data inherited imbalance. Furthermore, as mentioned
in Section III.C, binary grading did not require complex
architectures to solve it, our algorithm with lower param-
eters achieved almost the same metrics compared to other
algorithms, plus when we artificially formed two clusters
(infected and normal), the classes were balanced which
helped literature algorithms to excel in such a task. More-
over, our algorithm exceeds the minimum limits provided
by English National Screening Program for sensitivity, and

specificity [48]. Finally, our model achieved low training
time (9 seconds/epoch) and relatively high inference speed
(1.166 seconds/32 images) compared to the MSA network
that achieved 5 seconds exploiting the same batch size.

V. CONCLUSION
In this study, we exploited a new CNN model based on
DenseNet169 architecture integrated with CBAM as an addi-
tional component to be added for representational power
enhancement. The proposedmethod demonstrated robust per-
formance and comparable quality metrics while reducing
the burden of space and time complexity. Furthermore, a
2-D Gaussian filter enhances fundus images’ quality. Finally,
we used INS to form our weighted loss function to tackle
the class imbalance to improve the model’s prediction across
all classes. For future research direction, we evaluate the
performance of different CBAM configurations. Moreover,
experimenting with different imbalanced learning techniques
and increasing the dataset sizewill lead to better performance.
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