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ABSTRACT The diagnosis of social anxiety disorder (SAD) is of great consequence not only due to its
impacts on the individual and society but also the expenditures to the national health systems. There is yet
a deficiency of objective neurophysiological information to assist the present clinical SAD diagnosis. The
main objective of this study is to analyze the electroencephalogram (EEG) complexity of 88 SAD subjects,
subdivided into 4 balanced groups (22 severe, 22 moderate, 22 mild, and 22 healthy controls (HCs) using
Fuzzy Entropy measure (FE) and machine learning algorithms. In addition, this study aimed at designing
a computer-aided diagnosis system to identify the severity of SAD (severe, moderate, mild, and HC) in
different EEG frequency bands (delta, theta, alpha, and beta). The experimental results showed that among
the HC and the three considered levels of SAD, SAD patients in fast-waves exhibited significantly less FE
values in resting-state compared with HCs (p≤ 0.05). The EEG complexity analysis showed a discriminatory
neuronal activity over the frontoparietal and occipital regions between SAD patients and HCs. Additionally,
the FE values measured in the resting-state were positively correlated with Social Interaction Anxiety
Scale (SIAS) scores in fast-waves (beta and alpha), indicating that the regional FE measures are putative
biomarkers in assessing the clinical symptoms of SAD. Also, the classification results demonstrated that
the proposed method outperformed the state of the art methods with an accuracy of 86.93 %, sensitivity
of 92.46%, and specificity of 95.32% with the Naive Bayes (NB) classifier. This study emphasizes the
viability of quantitative FE measures and the specific combinations involving the chosen classifiers could
be considered as an alternative biomarker for future clinical SAD recognition.

INDEX TERMS Social anxiety disorder (SAD), fuzzy entropy, machine learning classification, naive bayes
(NB), electroencephalography (EEG), neurofeedback.

I. INTRODUCTION
Social anxiety disorder (SAD) is a common mental disor-
der caused by an overwhelming fear of negative evaluation
by others in social situations. SAD is an intense persistent
fear with a current lifetime prevalence between 18% and
36 % [1]. SAD has been associated with a general trepidation
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and avoidance of social situations [2]. In particular, SAD
correlates with negative conditions and behaviors, such as
substances abuse, insomnia disorder, depression, mood dis-
order, and even suicidal behavior [3], [4]. Generally, SAD
is found to affect physical and psychological behaviors of
individuals [5]. Thus, early detection and recognition of
SAD is a crucial element in different domains such as
characterizing the level of individuals’ mental and physi-
cal states, recognizing the emotional states, and quantifying
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stress levels in social situations. To strengthen research in
SAD recognition and provide effective therapy for individu-
als with SAD, researchers and clinicians attempted to have
effective evaluation instruments for characterizing the dis-
order in terms of its diagnostic basis. Different biomarkers
including electrocardiogram (ECG), physiological alterations
between sequential heartbeats, electrodermal response, and
neuro-electrophysiological signals have been used in litera-
ture to assess the severity of SAD [6]–[8].

Functional neuroimaging studies have been reported to
provide quantitative information about brain activity and
mental states of patients with SAD [9]. Among these tech-
niques, Electroencephalography (EEG) is the most com-
monly non-invasive technique used to measure the electric
field potentials generated by various neural activities of the
brain. EEG sensors are mounted on a specific region of the
scalp to capture the synchronized activities (electric poten-
tials) generated by thousands of neurons. With the help of a
high temporal resolution in the scale of milliseconds, EEG
has emerged as an important mechanism for investigating the
instant changing patterns of brain activity and is applied in
the clinical evaluation of mental health conditions. EEG tech-
nique has shown its potential in detecting different emotions,
stress, depression, and different brain disorders [10]–[12].

Recent research in neuroscience has proven that SAD
affects the neural activities within the human brain, [19].
An extensive review of the major frequently deliberated EEG
biomarkers related to SAD is summarized in this recent
article [20]. EEG reveals potential patterns to identify alter-
ations in brain oscillations as an outcome of SAD. There
are many justifications for this; the first being that SAD is a
cortical-based mental illness [21] and, thus, alterations to the
neuroelectrical activities resulted from SAD can be reflected
on EEGs. Therefore, the utilization of signal processing
methods to extract neural features from EEG may assist in
the identification of the brain changes that are associated with
SAD state. In fact, several EEG features found to be aberrant
in SAD patients, where a transfer of the power spectrum to
smaller oscillations, a reduction of connectivity in cortical
areas, and abnormal synchrony have been observed [22].
Despite these results, there is a need for applying new feature
extraction methods for further study of SAD using EEG.
In particular, entropy algorithms estimating complexity in
EEG signals could be beneficial to capture distinctive alter-
ations in brain activity caused by SAD states.

EEG Entropy is a nonlinear indicator that represents the
severity of the disorder, allowing it to be applied for the
investigation of brain dysfunctions [23]. Fuzzy Entropy (FE)
is a new index of time series regularity developed for the
identification of surface electrophysiological signals (EEG
and EMG). Fuzzy Entropy is extremely sensitive to data irreg-
ularity and is insensitive to data noises [24]. Fuzzy Entropy
measures, extracted from EEG signals, are used for the auto-
matic diagnosis of abnormality of the EEG signals [25].
It has been found that FE–based methods were superior to the
sample entropy-based measures in the classification of brain

seizures [26]. Fuzzy Entropy also has been applied in differ-
ent prospects of mental illness and neuroscience application
such as seizure detection [26], person authentication [25],
schizophrenia [27], Alzheimer’s disease [28], and depression
evaluation [29]. The FE-based method is believed to preclude
the limitations of the previous entropy algorithms and pro-
duce steady results for various parameters and robust anti-
noise (noise reduction) ability.

Thus for, to the author’s best knowledge, this is the first
analysis that addresses the issue of estimating the EEG signal
complexity in patients with SAD. In this study, the main
objective is to investigate whether FE of brain signals is
detectable across SAD patients (severe, average, mild, and
HC) in a big set of clinical-EEG data at different frequencies
(delta, theta, alpha, and beta). It is hypothesized that FE mea-
sures could recognize differences between the complexity of
EEG signals from three SAD groups and HCs, and that these
differences could be used to help in the classification of EEG
signals. The quality of the classification has been assessed
using five types of machine learning classifiers K-nearest
neighbour (KNN), linear discriminant analysis (LDA), naive
bayes classifier (NBC), decision tree (DT), and support vector
machine (SVM). The central contributions of this research
are:
• We quantified the severity of SAD using FE algorithm,
which increases the prediction accuracy compared with
the existing features.

• We presented a multi-class classification model of SAD
based on the cortical complexity of EEG signals in
resting-state.

The remaining parts of the paper are structured as follows.
Section II presents entropic measure types for uncertainty
quantification of EEG complexity. The III describes the data
pre-processing procedure that is applied to raw EEG data,
along with an explanation of the mechanism behind the
computation of the FE matrices that assists the measurement
of the complexity of EEG signals. The methodology for
the extraction of features is also presented in this section.
Section IV explains the proposed features extraction meth-
ods, statistical analysis along with classification models. The
experimental discussion are presented in Section V, and the
final conclusion is presented in Section VI.

II. ENTROPY MEASURES FOR UNCERTAINTY
QUANTIFICATION OF EEG COMPLEXITY
The quantification of brain complexity of perceived
time-series EEG data allows for a better comprehension of the
characteristics of neural networks organization. The entropic
uncertainty is one of the most efficient metrics to estimate the
complexity of brain signals. Various entropic measures have
been utilized and investigated in biomedical EEG signals,
as reported in [30], including Shannon entropy [31], Tsallis
entropy [32], Sample entropy [33], Permutation entropy [34],
Approximate entropy [35], and Transfer entropy [36]. All of
these algorithms have been utilized to different levels in the
estimation of cognitive mental conditions and sleep disorders
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TABLE 1. A comparison of different entropy measures for EEG complexity quantification.

using EEG data [26]. In comparison with other entropy mea-
sures, FE is more applicable in biomedical signals for its high
quality in fast computation and simple conceptualization.
Furthermore, it is not specific to a certain type of signal
but is viable to different types of signals (e.g., deterministic,
chaotic, stochastic, stationary, or nonstationary). Therefore,
we do believe that the application of FE approach is capable
to overcome the limitations associated with the other entropic
measures. A comparative review is presented in table 1 to
discuss different types of entropy measures that have been
actively applied in EEG signal analysis.

Machine learning-based classification methods advance
and enhance the decision-making processes in different
domains of mental health care, including prognosis, dis-
ease monitoring, and diagnostic testing. Nevertheless, FE is
believed to be applied for better feature extraction with dif-
ferent classifiers [37]. The feature selection based on FE is
found to minimize noise and thus elevate the classification
accuracy [38]. Several studies have achieved high classifica-
tion accuracy by using FE features as input using different
classifiers [39].

III. MATERIALS AND METHODS
A. CLINICAL ASSESSMENT
Social interaction anxiety scale (SIAS) assesses the approx-
imated panic of social interaction according to the Social
Phobia-Circumscribed DSM-III-R definitions [40]. It has
been found to reveal high inner uniformity levels and pre-
cision for testing-retests analysis. SIAS has the ability to
segregate between different types of anxiety such as social
phobia, agoraphobia, and simple samples of phobia [41].
Moreover, the SIAS scale is observed to be precise, effective,

adequate, and easily scored for clinical and research needs
[42].The respondents were segregated into four groups: HC
(SAIS score < 20), mild (SIAS score < 40), moderate
(SIAS score < 60), and severe (SIAS score ≥ 60). The
selected participants have been interviewed by clinical spe-
cialized psychiatrist, and were diagnosed with SAD using
the DSM-IV-based Composite International Diagnostic Inter-
view [43]. Table 2 represents the demographic data and par-
ticipants’ characteristics.

B. PARTICIPANTS
Eighty-eight participants were selected from 417 registered
respondents (35 females and 54males; 18–24 years old (mean
(M) = 22.32, standard deviation (SD) = 1.48) (M = 23.30,
SD = 1.73)). All participants have reported that they are
mentally healthy, right handed, have normal vision or cor-
rected to normal vision, and had no history of neurological,
psychotropic medication, or surgical disabilities. A single
sheet including all study details and a waiver of written
informed consent was provided to all chosen participants with
an honorarium to compensate them for their time and coop-
eration. It should be noted that this procedure is coordinated
with the Helsinki Declaration [44]. The procedure for this
study has been closely reviewed, endorsed, and approved by
the Medical Science Ethics Committee of the Royal College
of Medicine of Perak, Kuala Lumpur University) with code
number (UniKLRCMP/MREC/2019/065).

C. EEG RECORDING
The EEG data were recorded during a three-minute baseline
term using a referential 32-channel shielded cap (ANTNeuro,
Enschede, Netherlands). Thirty electrodes (FP1, FP2, FPz,
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TABLE 2. Demographic data and group characteristics.

FIGURE 1. Topographical placement of 32 regions of interest (electrodes)
using the extended international system 10-20, indicating the distribution
of the electrodes on the cortical scalp. Note. LF, Left Frontal; RF, Right
Frontal; LC, Left Central; RC, Right Central; LP, Left Parietal; RP, Right
Parietal, O, Occipital.

F7, F8, F3, F4, FC5, FC1, FC2, FC6, Fz, Cz, T8, P7, P8,
C3, C4, C3, CP2, CP4, CP1, CP6, CP5, P3, P4, PZ, O1,
O2, and POz) were mounted to the cerebral cortex with a
constant spatial arrangement according to the international
10–20 system, referenced to CPz and grounded at AFz. The
impedance of all electrodes was maintained below 10 k�
using a conductive gel. During the EEG data acquisition, all
participants were asked to close their eyes, calm down, let
their minds wander freely to obtain as many artifact-free EEG
data as possible.

D. EEG PREPROCESSING AND FUZZY
ENTROPY IMPLEMENTATION
The obtained EEG signals were pre-processed offline using
EEGLAB toolbox and custom script developed in our pre-
vious studies [45]–[47]. To eliminate the high-frequency
electrocortical artifacts, signal noise, and low-frequency
deflections, we applied a band-pass filter to acquire the
superlative segments between the frequency range of
0.4 and 50 Hz. Artifacts such as eye motions, breathing,
power interference, and cardiac movements were visually
inspected and automatically discarded using Spatial filters
based on artifact detection and correction and brain sig-
nal topographies provided by EEGLAB toolbox [48]. The
data then downsampled to 256 Hz from the original sample
recorded rate of 2048 Hz. The clean EEG data were then

segmented into short data epochs (3-seconds) for further
complexity analysis. Based on the previous literature, we con-
sidered 7 asymmetrical distributed regions of interest (ROI)
as shown in Fig. 1, and the averaged EEG data within each
region was considered for FE analyses: left frontal (FP1, F3,
F7, FC3, and FC5), right frontal (FP2, F4, F6, FC4, and FC6),
left central (C3, CP1, and CP5), right central (C4, CP2, and
CP6), left parietal (P5, P7), and right parietal (P6, P8), and
occipital (O1, POz, O2).The EEG complexity of the resting
state over 30 electrodes was computed and analyzed by the
FE algorithm.

FE is an improved algorithm based on SE for overcoming
the drawbacks of it [49]. Fuzzy Entropy offered better noise
resistance using the fuzzy membership function. It uses the
Gaussian function to measure the similarity of two vectors
instead of the Heaviside function. The FE not only takes
the advantages of SE but also has less dependence on the
length of time series and possesses better robustness to the
signal’s noise. It is more suitable than the SE as a measure
of time series complexity. The calculation algorithms of AE,
SE, and FE are clearly defined in [46]. Additionally, for
the FE index gradient n, we set n = 2 and t = 1 after
applying several iterations. Fuzzy Entropy can be computed
using the following equations: For a time series of N4 length,
the algorithm is expressed as [u(1), u(2),, u(N)].

Carry out phase space reconstruction of the original time
series and define the dimensionm(m 5 N−2) of phase space.
After reconstruction, as shown in formula 1,

Xmi = [u(1, u(i+ 1), . . . , u(i+ m− 1− 1))] (1)

i = 1, 2, . . . ,N − m + 1,U0(i) is the average, and the
formula is shown in formula 2

U0(i) =
1
m

m−1∑
j=0

u(1+ j) (2)

The distance dmij is recognized as the maximum difference
between the corresponding elements of vector Xmi and vector
Xmj , that is,

d[Xmi ,X
m
j ] = maxp=12,.,m([u(i+ p− 1)

− u0(i)]− [u(j+ p− 1)− u0(j)])

(i, j = 1, 2, .,N − m+ 1, j 6= i) (3)

The similarity between vector Xmi and vector Xmj is defined
by the fuzzy membership function (dijm , n, r) as shown in
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FIGURE 2. Block diagram for the EEG data analysis module to identify the parameters of FE values and perform classification methods..

formula 5:

(Dijm ) = u(dijm , n, r) = exp (
−(dijm )

n

r
) (4)

u(dijm , n, r) are are exponential functions; n and r are
the gradient and the width, respectively, of the exponential
functions.
φm(n, r) is shown in formula 6:

(φm(n, r)) =
1

N − m

N−m∑
i=1

((
1

N − m− 1
)
N−m∑
j=1,j6=i

Dimj ) (5)

By including dimension m + 1, the φm(n, r) function is
obtained:

(φm+1(n, r)) =
1

N − m

N−m∑
i=1

((
1

N − m− 1
)
N−m∑
j=1,j6=i

Dimj + 1)

(6)

The Fuzzy Entropy is

FE(m, n, r) = lim
N→∞

ln(φm(n, r)− ln(φm+1(n, r) (7)

However, the length of the time series N is limited in the
actual operation, and the FE is estimated as follows:

FE(m, r,N ) = ln(φm(n, r)− ln(φm+1(n, r) (8)

Fuzzy Entropy values were computed from 30 differ-
ent nodes in the brain (captured by 30 electrodes). The

output Fuzzy values rely substantially on the selection of
the input parameters such as (length of data and tolerance
value). To restrain non-stationary disruption, we epoched
the data into approximately stationary nonoverlapping short
time-series segments. We selected segment lengths of 3s
to achieve a balance between the stationarity and the FE
parameters. For our analysis, we found that shorter epochs
(1–2 s) negatively influenced the performance of machine
learning classification and FE algorithms. Thus, each 3-sec
(256 samples/second) segment gives one FE matrix,which
collectively yields M matrices of FE over the 30 channels
for 1 subject in this study. Specifically, the FE measurement
calculation will result in a balanced matrix of 30 (channels)×
20 (epochs)× 88 (subjects)). The overall process of the EEG
analysis is elucidated in Fig. 2.

E. CLASSIFICATION PERFORMANCE
This section explains classification methodology applied to
characterize SAD groups from a healthy group. To iden-
tify the complexity of EEG signals in four different classes
of SAD, we applied five classifiers namely, KNN, linear
discriminant analysis (LDA), naive bayes classifier (NBC),
decision tree (DT), and SVM. The tuning parameters for
these classifiers can be found in our previous studies [50],
[51]. These classifiers are picked due to their high ability
and effectiveness in the classification performance in the
field of neuroscience as they can execute both linear and
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non-linear classification. In all the classification models,
we have applied 10 fold cross validation to evaluate the
classification precision of different SAD states and to min-
imize the variation of a random segmentation of the dataset.
The EEG dataset of 80% of the participants is applied for
training classifiers, and the remaining EEG data of 20% of
the participants are utilized as testing data. The mean clas-
sification accuracies and standard deviations corresponding
to the proposed methods of EEG analysis at the four fre-
quency bands in four classes of SAD are respectively com-
puted. To present an enhanced instinctive performance and
understandable method to calculate the prediction quality and
building an effective machine learning model, the following
three different parameters are used to examine performance
quality:

Accuracy =
TP+ TN

TP+ FP+ TN + FN
× 100 (9)

Sensitivity =
TP

TP+ FN
× 100 (10)

Specificity =
TN

TN + FP
× 100 (11)

The specificity is estimated as a true negative (TN) rate
and calculates the probability of a test to correctly preclude
the disease (not identify the disease) when the disease is
absent. The sensitivity is also called a true positive (TP) rate
calculates the probability of a test to identify the disease
when the disease is present. In our analysis, sensitivity is
the probability of a false positive (FP) diagnosis of SAD,
while specificity represents the ability of a false negative (FN)
diagnosis. Accuracy is estimated as the number of all correct
diagnoses divided by the sum number of the datasets.

F. STATISTICAL ANALYSIS
The distribution of the FE measurements was assessed with
the univariate ANOVA test, and the statistical findings are
reported by F value and significant values (P). All the statis-
tical findings were presented as the mean ± standard devia-
tion. The analysis of mean variances in our study included
two independent variables (Group: severe, moderate, mild,
and control) ∗ (Regions; FP1, FP2, CP3, O1 . . .) ∗ and one
dependent variable (FE values)); therefore, a one-way Uni-
variate ANOVA and Tukey’s HSD post-hoc test for different
comparisons (p < 0.05) was performed to evaluate the main
differences between the self-similarity of time series data of
SAD groups. The effect size of the magnitude of mean differ-
ences between the SAD groups is represented by Cohen’s d
values (η2). The SPSS software (version 25.0.0.0, IBMCorp.,
Armonk, NY) was used for all the statistical analyses.

IV. RESULT
A. CLINICAL ASSESSMENT RESULT
In this study, clinical assessments of the SAD patients and
HCs were conducted based on a clinically relevant scale
which is SIAS. According to the SIAS scores, there are
22 severe subjects (M = 22.52 years, SD = 2.48), 22

TABLE 3. The mean values of FE and the related test results in four SAD
groups in alpha frequency band.

moderate subjects (M= 23.01, SD= 1.25), 22 mild subjects
(M = 22.94, SD = 2.74), and 22 HCs (M = 23.11 years,
SD = 1.93). Age did not exhibit any significant differences
between the groups, F (1, 87) = 3.457, p = 062, η2 = 0.089.
No significant differences were found in gender ratio and age
between SAD patients and HCs, F (1, 87) = 1.271, p = 0.8,
η2 = 0.032. As predicted, patients with SAD reported higher
symptom severity indicated by SIAS (severe 67.75 ± 14.34;
moderate 48.12± 12.51; mild 31.82± 15.21) compared with
(HC 11.03 ± 9.22), (all p’s < 0.05). A significant difference
between the SAD groups in SIAS scores was found, F (1,
87) = 7.67, p = 0.001, η2 = 0.361. Table 5 summarizes The
Statistical analyses over the 7 regions of interest in patients
with SAD and control subjects.

B. FUZZY ENTROPY RESULTS
Figure 2 shows the topographical representation of the
normalized FE complexity values across the scalp in all
the frequency bands for all SAD groups. The obtained
results showed that the complexity level varies across
all SAD groups. The severe and moderate SAD group
showed the highest complexity at the occipital, left central
(fronto-parietal), and right parietal region in delta and theta
bands. In addition, in the beta frequency band, the LF and
RF regions and LC showed the highest complexity compared
to other regions.Meanwhile, themild group has shown deficit
activity in the frontal cortex in delta and theta frequency
bands, HC group has shown greater EEG complexity at the
parietal side in delta and alpha bands. Likewise, the HC
group showed different complexity levels within each of
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the frequency bands. In delta band, the complexity level is
relatively small within the occipital, temporal, central and
parietal regions compared to the other different groups. Sta-
tistically, We did not find any significant differences between
the 7 brain regions in delta, theta, and beta. By iterated
computations analysis of variance (ANOVA), we found a
major significant difference between the SAD groups in alpha
frequency band over the Left central and occipital regions
F (1, 2) = 17.55, p = 0.001, η2 = 0.934. and F (1, 2) =
14.632, p= 0.002, η2 = 0.971, respectively. Table 3, showed
the statistical analysis between the selected 7 brain regions
between SAD groups in alpha frequency band. Contrarily,
HC subjects have shown the highest values of complexity
(FE), (0.660 ± 0.198), (0.629± 0.271), (0.727± 0.253), and
(0.840± 0.303) for beta, alpha, theta, and delta, respectively.
We did not find any significant differences between the FE
values of SAD groups in the LF, RF, RC, LP, and RP regions
in alpha band, F (1, 5) = 0.125, p = 0.94, η2 = 0.03; F (1,
5) = 0.011, p = 0.998, η2 = 0.002, F (1, 2) = 0.116, p =
0.116, η2 = 0.004, F (1, 2) = 3.76, p = 0.116, η2 = 0.059,
F (1, 2) = 0.083, p = 0.966, η2 = 0.236, respectively.

C. RELATIONSHIP BETWEEN SYMPTOM SEVERITY
SCORES AND FUZZY ENTROPY VALUES
We investigated the correlation analysis between the
self-report SIAS scores and the normalized averaged FE
measures of all participants in the four SAD states for all
the frequency bands. In beta band, all participants in all SAD
groups have shown strongly significant positive correlation,
r (1, 21) = 0.67, p < 0.001; r (1, 21) = 0.39, p < 0.07; r
(1, 21) = 0. 71, p < 0.002, r (1, 21) = 0.62; p < 0.002, for
HC, mild, moderate, and severe, respectively. All correlations
in delta have shown less correlation between SIAS and FE
values in most of the SAD conditions, r (1,21) = 0.39,
p < 0.07; r (1,21) = - 0.19, p < 0.43; r (1, 21) = 0. 05, p <
0.81, r (1, 21) = 0.06; p < 0.77, for HC, mild, moderate, and
severe, respectively. A complete compression of correlation
is shown in Fig 4. There was no significant correlation found
between the SIAS scores and the normalized theta FE values
in all SAD groups except for the mild group, r (1, 21)= 0.62,
p < 0.002.

D. CLASSIFICATION PERFORMANCE RESULT
Machine learning is used to advance computer-aided diag-
nostic methods for clinical implementations and examine the
pathophysiological mechanisms of diseases. We assessed the
performance of the proposed FE feature extraction method
using five different classifiers KNN, LDA, NBC, DT, and
SVM. The mean classification accuracies, sensitivities, and
specificities with the ± SD through different SAD classes in
all frequency bands are summarized in Table 4. The classifi-
cation performance in identifying these classes with NB and
LDA classifier at the beta band are (accuracy 87.10 %, sensi-
tivity 95.34 %, and specificity 96.20 %), (accuracy 85.91%,
sensitivity 94.23 %, and specificity 95.43 %), respectively.
From table 4, we obtain the following significant points:

• For all types of classifiers, the classification accuracies
correlated with fast frequency rhythms (beta and alpha)
are higher than the ones in the slow frequency waves
(delta and theta) in all classifiers using FE values.

• For the applied features (FE), NB outperforms the
other classifiers in our analysis methods. Therefore,
we restricted our discussion to the findings acquired by
NB classifier.

V. DISCUSSION
This paper is amodest contribution to the ongoing discussions
on the influence of SAD on electrocortical brain complexity.
In this study, we proposed to utilize the EEG complexity
measured by FE to classify the severity of SAD in resting-
state. In our analysis, we found that SAD patients have
shown less irregularity of brain fluctuations compared to the
HCs. In addition, our analysis has shown positive correlations
between the severity symptom scores and EEG complexity
in fast-frequency bands (alpha and beta), but less correlation
in slow-frequency bands(delta and theta). Furthermore, using
the complexity of EEG signals (FE) as features, we achieved
the highest classification accuracy in high-frequency bands
as shown in Table 4. To the best of our knowledge, this is the
first study to use FE features to categorize the SAD severity
using machine learning methods.

A. FUZZY ENTROPY ESTIMATION
In this paper, the FE values were quantified in four frequency
bands to measure brain signals complexity. In general, the
complexity of EEG signals of SAD patients is smaller than
those of HCs in resting-state. These results are consistent
with the previous studies that found severe SAD individuals
exhibited relatively less cortical activity during resting-state
EEG [57]. The EEG signals of patients with SAD were more
regular, and thus, have smaller FE compared to the EEG
signals of HCs. It also has been found that patients with
depression and schizophrenia showed significantly different
FE values from HCs [58]. Conventionally, the enhancement
in FE values demonstrates that, a group of neurons involved
in the information processing of SAD states. The increment in
the functional complexity is associated with an enhancement
in the number of synchronously active regions reflecting
the system’s degree of freedom. Compared with the SAD,
the brain activity of HCs is found to be more vigorous and
aroused, the possibility of generating new patterns of EEG
signals is higher, and the irregularity of EEG is also higher
[59]. Moreover, HCs have shown greater EEG complexity
in occipital and left central lobes.While the increment of
central lob (covered by C3, CP1, and CP5) EEG activity in
resting-state may indicate the maintenance of self-focused
awareness [60]. The increment of occipital complexity may
reflect some of the features of attention, such as vigilance,
expectations, and the state of emotional transformation [61].

From that we could confirm that the two hemispheres of
the human brain are not identical. Comparative functional
differences between the left and the right hemispheres of the
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FIGURE 3. Topological maps of the normalized averaged Fuzzy Entropy for all three SAD groups and HCs in four different frequency bands in resting-state
(eyes closed). The topographies maps have shown similar spatial distributions of the EEG complexity in delta, theta, and beta frequency bands across all
ROIs. These topographies are prominently showing distinctive patterns in the alpha band at two regions only, LC (left frontal cortex) and O (occipital
cortex). The red color indicates a higher complexity of the EEG signals, and the blue color indicates less complexity.

brain have been proven in several cognitive functions. The
frontoparietal network is crucial for our potency to coordinate
behavior in a immediate, accurate, and resilient goal-driven
system [62]. Cognitive control is not accomplished by a
singular brain area or singular brain network, but rather by
various broadly non-overlapping brain networks, each involv-
ing of a comparatively major set of anatomically distributed
neurons.

B. CORRELATION BETWEEN BRAIN COMPLEXITY AND
CLINICAL ASSESSMENT
In this analysis, we found that normalized FE measures in
the cortical activity exhibited positive correlations with SIAS

scores in high-frequency bands as shown in Fig 4. Greater FE
values and greater SIAS scores reveal a more serious mental
disorder [45]. These results proved that the smaller com-
plexity of EEG signals is correlated with the higher severe
clinical syndromes in high frequency bands (beta). Similar to
our result, previous researches have also demonstrated that
the neurophysiological data and cognitive conditions of the
brain can be investigated using EEG complexity measure-
ments [63]. These findings suggested that EEG irregularity
could be a valuable marker to reveal the neurophysiologi-
cal states of the brain and clinical assessments. We did not
find any significant correlations between the SIAS scores
and normalized FE in the low-frequency band (delta) in all
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FIGURE 4. The correlation between SAD severity scores and the complexity of brain signals EEG (FE measures) in the four different frequency bands.

TABLE 4. The classification performance using FE features in different frequency bands with five different machine learning classifiers.

TABLE 5. Comparison of the proposed technique with recent machine learning techniques.

SAD groups. It is assumed that, the slow-frequency bands
are less sensitive to cortical activities because they mainly

oscillate from the sub-cortical brain regions (e.g., amygdala,
insula) [64].
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FIGURE 5. Normalized confusion matrix of the best classifier (NB) accuracies using the FE features for all SAD groups and HCs. The top left is
representing the confusion matrix for delta band, the top right is representing the confusion matrix for theta band, the bottom left is representing the
confusion matrix for alpha band, and the bottom right is representing the confusion matrix for beta band.

C. CLASSIFICATION PERFORMANCE
The application of different machine learning classifiers is
assisting in creating the most appropriate classifier for mental
health state diagnosis (e.g., SAD). The features extracted
from FE measures have successfully classified the severity
of SAD by categorizing its grading to (severe, moderate,
mild, and HC) with high accuracy. Fuzzy Entropy features
showed classification accuracy above 86% in fast-waves
(beta) and above 70% in slow-waves (delta and theta) using
NB and LDA classifiers as summarized in Table 4. Mean-
while, the previous investigation in classifying two classes
of SAD (anxious and HCs) had achieved 72.0% using SVM,
we have achieved higher classification accuracy in four dif-
ferent classes of SAD [52]. Furthermore, Pantazatos et al,
achieved accuracy with 88.0% in classifying 16 SAD patients
and 19 HCs using functional connectivity features [65].

Although other classifiers exhibited quiet equivalent accu-
racies, NB outperformed the other classifiers in all the fre-
quency bands as mentioned earlier [66]. Basically, NB is
a probabilistic method that is based on Bayesian theorem
with assumptions of a feature of a particular group that is
independent of any other features. The NB classifier requires
less training data for the classification and it’s based on
maximum likelihood [67]. Similarly, in our analysis, both
the averaged specificity and sensitivity computed by the NB
classifier using FE (95.32% and 92.46%, respectively) were
significantly greater than those computed using the other
classifiers. The prediction performance of the NB classifi-
cation is summarized by the confusion matrices in Fig 5.
Table 5 is presenting a comparison of the current study and
related classification literature. Taking into consideration the
difficulty of classifying 4 classes in one state (resting-state),
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the current results have shown high identification precision
and are convenient for research into the classification of the
severity of SAD. Future work should include different types
of entropy measures to validate the SAD findings such as
sample and multi-scale entropy. It is recommended to select
the most active regions which are highly involved in the
active SAD network such as default mode network [68],
[69], occipital cortex, and salience network (SN), in order to
improve the accuracy performance [68]. In addition, combin-
ing EEG with different modalities (e.g., fNIRS and fMRI) is
believed to better study both temporal and spatial brain activ-
ities of SAD [70]–[73]. Though we achieved a satisfactory
classification performance using traditional machine learning
algorithms, the application of deep learning classifiers in
future studies may improve the SAD diagnosis accuracy.
The general perceived patterns of these results motivates
the implementation of the modern diagnosis of EEG signals
and other neuroimaging modalities to study human mental
disorders (e.g., SAD, stress and depression).

VI. CONCLUSION
In summary, FE values were utilized to extract the non-linear
features of EEG signals under resting-state, concentrating on
the alterations in the irregularity of EEG signals between
SAD groups and HCs. We found that the EEG complexity
of patients with SAD was less than those of the normal
control in all frequency bands. The increment in FE mea-
sures revealed an enhancement in the eventuality of the time
series generating new characteristics in the brain. From the
perspective of EEG complexity, the increase in FE values
indicates greater activity and vigilant states in human brain.
The empirical findings exhibited that features extracted from
FE measures can achieve higher classification performance.
Thus, the complexity of brain signals is believed to mediate
the symptoms of SAD and can be considered as a potential
target for clinical diagnosis and future research.

VII. DISCLOSURE STATEMENT
The authors declare no competing interests.

ACKNOWLEDGMENT
The authors would like to thank the Centre of Graduate
Studies of Universiti Teknologi PETRONAS, for provid-
ing EEG dataset and also would like to thank the medical
research ethics committee in Royal College of Medicine
Perak-Universiti Kuala Lumpur for their assistance in design-
ing the social anxiety experiment.

REFERENCES
[1] P. Jefferies and M. Ungar, ‘‘Social anxiety in young people: A preva-

lence study in seven countries,’’ PLoS ONE, vol. 15, no. 9, Sep. 2020,
Art. no. e0239133.

[2] M. B. Stein and D. J. Stein, ‘‘Social anxiety disorder,’’ Lancet, vol. 371,
no. 9618, pp. 1115–1125, 2008.

[3] R. C. Kessler, P. Stang, H.-U. Wittchen, M. Stein, and E. E. Walters,
‘‘Lifetime co-morbidities between social phobia and mood disorders in
the U.S. national comorbidity survey,’’ Psychol. Med., vol. 29, no. 3,
pp. 555–567, May 1999.

[4] A. Koyuncu, E. Ince, E. Ertekin, and R. Tükel, ‘‘Comorbidity in social
anxiety disorder: Diagnostic and therapeutic challenges,’’ Drugs Context,
vol. 8, pp. 1–13, Apr. 2019.

[5] B. von Dawans, A. Trueg, C. Kirschbaum, U. Fischbacher, and
M. Heinrichs, ‘‘Acute social and physical stress interact to influence social
behavior: The role of social anxiety,’’PLoSONE, vol. 13, no. 10, Oct. 2018,
Art. no. e0204665.

[6] A. Pittig, J. J. Arch, C. W. R. Lam, and M. G. Craske, ‘‘Heart rate and
heart rate variability in panic, social anxiety, obsessive–compulsive, and
generalized anxiety disorders at baseline and in response to relaxation
and hyperventilation,’’ Int. J. Psychophysiol., vol. 87, no. 1, pp. 19–27,
Jan. 2013.

[7] D. J. Stein, C. C. Lim, A. M. Roest, P. D. Jonge, S. Aguilar-Gaxiola,
A. Al-Hamzawi, J. Alonso, C. Benjet, E. J. Bromet, R. Bruffaerts, and
G. D. Girolamo, ‘‘The cross-national epidemiology of social anxiety dis-
order: Data from the world mental health survey initiative,’’ BMC Med.,
vol. 15, no. 1, pp. 1–21, Dec. 2017.

[8] J. P. Lorberbaum, S. Kose, M. R. Johnson, G. W. Arana, L. K. Sullivan,
M. B. Hamner, J. C. Ballenger, R. B. Lydiard, P. S. Brodrick,
D. E. Bohning, and M. S. George, ‘‘Neural correlates of speech
anticipatory anxiety in generalized social phobia,’’ Neuroreport, vol. 15,
no. 18, pp. 2701–2705, 2004.

[9] A. B. Bruehl, A. Delsignore, K. Komossa, and S. Weidt, ‘‘Neuroimaging
in social anxiety disorder—A meta-analytic review resulting in a new
neurofunctional model,’’ Neurosci. Biobehav. Rev., vol. 47, pp. 260–280,
Nov. 2014.

[10] W. Mumtaz, L. Xia, S. S. A. Ali, M. A. M. Yasin, M. Hussain, and
A. S. Malik, ‘‘Electroencephalogram (EEG)-based computer-aided tech-
nique to diagnose major depressive disorder (MDD),’’ Biomed. Signal
Process. Control, vol. 31, pp. 108–115, Jan. 2017.

[11] F. Al-Shargie, U. Tariq, M. Alex, H. Mir, and H. Al-Nashash, ‘‘Emotion
recognition based on fusion of local cortical activations and dynamic
functional networks connectivity: An EEG study,’’ IEEE Access, vol. 7,
pp. 143550–143562, 2019.

[12] F. Al-Shargie, T. B. Tang, N. Badruddin, and M. J. M. Kiguchi, ‘‘Towards
multilevel mental stress assessment using SVM with ECOC: An EEG
approach,’’Med. Biol. Eng. Comput., vol. 56, no. 1, pp. 125–136, 2018.

[13] M. A. Busa and R. E. A. van Emmerik, ‘‘Multiscale entropy: A tool for
understanding the complexity of postural control,’’ J. Sport Health Sci.,
vol. 5, no. 1, pp. 44–51, Mar. 2016.

[14] F. C. Morabito, D. Labate, F. L. Foresta, A. Bramanti, G. Morabito,
and I. Palamara, ‘‘Multivariate multi-scale permutation entropy for com-
plexity analysis of Alzheimer’s disease EEG,’’ Entropy, vol. 14, no. 7,
pp. 1186–1202, 2012.

[15] N. Kannathal, M. L. Choo, U. R. Acharya, and P. Sadasivan, ‘‘Entropies
for detection of epilepsy in EEG,’’ Comput. Methods Programs Biomed.,
vol. 80, no. 3, pp. 187–194, 2005.

[16] J. S. Richman and J. R. Moorman, ‘‘Physiological time-series analysis
using approximate entropy and sample entropy,’’ Amer. J. Physiol.-Heart
Circulatory Physiol., vol. 278, no. 6, pp. H2039–H2049, Jun. 2000.

[17] C.-S. Huang, N. R. Pal, C.-H. Chuang, and C.-T. Lin, ‘‘Identifying changes
in EEG information transfer during drowsy driving by transfer entropy,’’
Frontiers Hum. Neurosci., vol. 9, p. 570, Oct. 2015.

[18] H. Azami, P. Li, S. E. Arnold, J. Escudero, and A. Humeau-Heurtier,
‘‘Fuzzy entropy metrics for the analysis of biomedical signals: Assessment
and comparison,’’ IEEE Access, vol. 7, pp. 104833–104847, 2019.

[19] A. Al-Ezzi, N. Kamel, I. Faye, and E. Gunaseli, ‘‘Review of EEG, ERP,
and brain connectivity estimators as predictive biomarkers of social anxiety
disorder,’’ Frontiers Psychol., vol. 11, p. 730, May 2020.

[20] J. M. Bas-Hoogendam, H. van Steenbergen, R. L. M. Tissier,
J. J. Houwing-Duistermaat, P. M. Westenberg, and N. J. A. van der Wee,
‘‘Subcortical brain volumes, cortical thickness and cortical surface
area in families genetically enriched for social anxiety disorder—A
multiplex multigenerational neuroimaging study,’’ EBioMedicine, vol. 36,
pp. 410–428, Oct. 2018.

[21] J. A. Coan and J. J. B. Allen, ‘‘Frontal EEG asymmetry and the behav-
ioral activation and inhibition systems,’’ Psychophysiology, vol. 40, no. 1,
pp. 106–114, Jan. 2003.

[22] J. A. Clauss and J. U. Blackford, ‘‘Behavioral inhibition and risk for
developing social anxiety disorder: A meta-analytic study,’’ J. Amer. Acad.
Child & Adolescent Psychiatry, vol. 51, no. 10, pp. 1066–1075, 2012.

[23] M. Costa, A. L. Goldberger, and C.-K. Peng, ‘‘Multiscale entropy analysis
of complex physiologic time series,’’ Phys. Rev. Lett., vol. 89, no. 6,
Jul. 2002, Art. no. 068102.

39936 VOLUME 10, 2022



A. Al-Ezzi et al.: Complexity Analysis of EEG in Patients With SAD Using FE

[24] G. Srivastava, A. Tripathi, and P. Maurya, ‘‘Fuzzy entropy based seizure
detection algorithms for eeg data analysis,’’ in Smart Healthcare for Dis-
ease Diagnosis Prevention. Amsterdam, The Netherlands: Elsevier, 2020,
pp. 89–101.

[25] Z. Mu, J. Hu, and J. Min, ‘‘EEG-based person authentication using a fuzzy
entropy-related approach with two electrodes,’’ Entropy, vol. 18, no. 12,
p. 432, 2016.

[26] J. Xiang, C. Li, H. Li, R. Cao, B. Wang, X. Han, and J. Chen, ‘‘The
detection of epileptic seizure signals based on fuzzy entropy,’’ J. Neurosci.
Methods, vol. 243, pp. 18–25, Mar. 2015.

[27] J. Xiang, C. Tian, Y. Niu, T. Yan, D. Li, R. Cao, H. Guo, X. Cui,
H. Cui, S. Tan, and B. Wang, ‘‘Abnormal entropy modulation of the EEG
signal in patients with schizophrenia during the auditory paired-stimulus
paradigm,’’ Frontiers Neuroinform., vol. 13, p. 4, Feb. 2019.

[28] S. Simons, P. Espino, and D. Abásolo, ‘‘Fuzzy entropy analysis of the
electroencephalogram in patients with Alzheimer’s disease: Is the method
superior to sample entropy?’’ Entropy, vol. 20, no. 1, p. 21, 2018.

[29] F. Chen, L. Zhao, B. Li, and L. Yang, ‘‘Depression evaluation based on
prefrontal EEG signals in resting state using fuzzy measure entropy,’’
Physiolog. Meas., vol. 41, no. 9, Sep. 2020, Art. no. 095007.

[30] A. Namdari and Z. Li, ‘‘A review of entropy measures for uncertainty
quantification of stochastic processes,’’ Adv. Mech. Eng., vol. 11, no. 6,
2019, Art. no. 1687814019857350.

[31] D. Q. Phung, D. Tran, W. Ma, P. Nguyen, and T. Pham, ‘‘Using Shannon
entropy as eeg signal feature for fast person identification,’’ in Proc.
ESANN, vol. 4, no. 1. Princeton, NJ, USA: Citeseer, 2014, pp. 413–418.

[32] A. Capurro, L. Diambra, D. Lorenzo, O. Macadar, M. T. Martin,
C. Mostaccio, A. Plastino, E. Rofman,M. E. Torres, and J. Velluti, ‘‘Tsallis
entropy and cortical dynamics: The analysis of EEG signals,’’Phys. A, Stat.
Mech. Appl., vol. 257, nos. 1–4, pp. 149–155, Aug. 1998.

[33] M. U. Ahmed and D. P. Mandic, ‘‘Multivariate multiscale entropy: A
tool for complexity analysis of multichannel data,’’ Phys. Rev. E, Stat.
Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 84, no. 6, Dec. 2011,
Art. no. 061918.

[34] N. Mammone, J. Duun-Henriksen, T. Kjaer, and F. Morabito, ‘‘Differen-
tiating interictal and ictal states in childhood absence epilepsy through
permutation Rényi entropy,’’ Entropy, vol. 17, no. 12, pp. 4627–4643,
Jul. 2015.

[35] D.Abásolo, R. Hornero, P. Espino, J. Poza, C. I. Sánchez, andR. de la Rosa,
‘‘Analysis of regularity in the EEG background activity of Alzheimer’s
disease patients with approximate entropy,’’ Clin. Neurophysiol., vol. 116,
no. 8, pp. 1826–1834, Aug. 2005.

[36] A. Ekhlasi, A. M. Nasrabadi, and M. Mohammadi, ‘‘Classification of the
children with ADHD and healthy children based on the directed phase
transfer entropy of EEG signals,’’ Frontiers Biomed. Technol., vol. 8,
pp. 115–122, Jun. 2021.

[37] P. Luukka, ‘‘Feature selection using fuzzy entropymeasures with similarity
classifier,’’ Expert Syst. Appl., vol. 38, no. 4, pp. 4600–4607, 2011.

[38] O. Parkash, P. Sharma, and R.Mahajan, ‘‘Newmeasures of weighted fuzzy
entropy and their applications for the study of maximum weighted fuzzy
entropy principle,’’ Inf. Sci., vol. 178, no. 11, pp. 2389–2395, Jun. 2008.

[39] Y. Cao, L. Cai, J. Wang, R. Wang, H. Yu, Y. Cao, and J. Liu, ‘‘Characteri-
zation of complexity in the electroencephalograph activity of Alzheimer’s
disease based on fuzzy entropy,’’ Chaos, Interdiscipl. J. Nonlinear Sci.,
vol. 25, no. 8, Aug. 2015, Art. no. 083116.

[40] R. G. Heimberg, D. A. Hope, C. S. Dodge, and R. E. Becker, ‘‘DSM-III-R
subtypes of social phobia: Comparison of generalized social phobics and
public speaking phobics,’’ State Univ. New York, New York, NY, USA,
Tech. Rep. 172-9:178-3, Mar. 1990.

[41] J. K. Langer, N. A. Tonge, M. Piccirillo, T. L. Rodebaugh, R. J. Thompson,
and I. H. Gotlib, ‘‘Symptoms of social anxiety disorder and major depres-
sive disorder: A network perspective,’’ J. Affect. Disorders, vol. 243,
pp. 531–538, Jan. 2019.

[42] R. P. Mattick and J. C. Clarke, ‘‘Development and validation of measures
of social phobia scrutiny fear and social interaction anxiety,’’ Behav. Res.
Therapy, vol. 36, no. 4, pp. 455–470, 1998.

[43] A. P. Association, Diagnostic and Statistical Manual of Mental Disorders.
Richmond, VA, USA: American Psychiatric Publishing, 2013.

[44] W. M. Association, ‘‘World medical association declaration of Helsinki:
Ethical principles for medical research involving human subjects,’’ JAMA,
vol. 310, no. 20, pp. 2191–2194, Nov. 2013.

[45] A. Al-Ezzi, N. K. Selman, I. Faye, and E. Gunaseli, ‘‘Electrocortical brain
oscillations and social anxiety disorder: A pilot study of frontal alpha
asymmetry and delta-beta correlation,’’ J. Phys., Conf. Ser., vol. 1529,
no. 5, May 2020, Art. no. 052037.

[46] F. Al-Shargie, U. Tariq, F. Babiloni, and H. Al-Nashash, ‘‘Cognitive vigi-
lance enhancement using audio stimulation of pure tone at 250 Hz,’’ IEEE
Access, vol. 9, pp. 22955–22970, 2021.

[47] A. Al-Ezzi, N. Kamel, I. Faye, and E. G. M. Ebenezer, ‘‘EEG frontal theta-
beta ratio and frontal midline theta for the assessment of social anxiety
disorder,’’ in Proc. 10th IEEE Int. Conf. Control Syst., Comput. Eng.
(ICCSCE), Aug. 2020, pp. 107–112.

[48] A. Delorme and S. Makeig, ‘‘EEGLAB: An open source toolbox for
analysis of single-trial EEG dynamics including independent component
analysis,’’ J. Neurosci. Methods, vol. 134, no. 1, pp. 9–21, Mar. 2004.

[49] W. Chen, Z. Wang, H. Xie, and W. Yu, ‘‘Characterization of surface EMG
signal based on fuzzy entropy,’’ IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 15, no. 2, pp. 266–272, Jun. 2007.

[50] F. M. Al-Shargie, O. Hassanin, U. Tariq, and H. Al-Nashash, ‘‘EEG-based
semantic vigilance level classification using directed connectivity patterns
and graph theory analysis,’’ IEEE Access, vol. 8, pp. 115941–115956,
2020.

[51] M. Alex, U. Tariq, F. Al-Shargie, H. S. Mir, and H. A. Nashash, ‘‘Discrim-
ination of genuine and acted emotional expressions using EEG signal and
machine learning,’’ IEEE Access, vol. 8, pp. 191080–191089, 2020.

[52] M.Xing, J.M. Fitzgerald, andH.Klumpp, ‘‘Classification of social anxiety
disorder with support vector machine analysis using neural correlates of
social signals of threat,’’ Frontiers Psychiatry, vol. 11, p. 144, Mar. 2020.

[53] J. Liu, C. Zhang, and C. Zheng, ‘‘EEG-based estimation of mental fatigue
by using KPCA–HMM and complexity parameters,’’ Biomed. Signal Pro-
cess. Control, vol. 5, no. 2, pp. 124–130, Apr. 2010.

[54] O. Bălan, G. Moise, A. Moldoveanu, M. Leordeanu, and F. Moldoveanu,
‘‘Fear level classification based on emotional dimensions and machine
learning techniques,’’ Sensors, vol. 19, no. 7, p. 1738, Apr. 2019.

[55] Z. Li, X. Wu, X. Xu, H. Wang, Z. Guo, Z. Zhan, and L. Yao, ‘‘The
recognition of multiple anxiety levels based on electroencephalograph,’’
IEEE Trans. Affect. Comput., vol. 13, no. 1, pp. 519–529, Jan. 2022.

[56] K. Hilbert, U. Lueken, M. Muehlhan, and K. Beesdo-Baum, ‘‘Separating
generalized anxiety disorder from major depression using clinical, hor-
monal, and structural MRI data: A multimodal machine learning study,’’
Brain Behav., vol. 7, no. 3, Mar. 2017, Art. no. e00633.

[57] V. Miskovic, M. J. Campbell, D. L. Santesso, M. Van Ameringen,
C. L. Mancini, and L. A. Schmidt, ‘‘Frontal brain oscillatory coupling in
children of parents with social phobia: A pilot study,’’ J. Neuropsychiatry,
vol. 23, no. 1, pp. 111–114, Feb. 2011.

[58] J. Sun, R. Cao, M. Zhou, W. Hussain, B. Wang, J. Xue, and J. Xiang,
‘‘A hybrid deep neural network for classification of schizophrenia using
EEG data,’’ Sci. Rep., vol. 11, no. 1, pp. 1–16, Dec. 2021.

[59] R. J. Deligani, S. I. Hosni, S. B. Borgheai, J. McLinden, A. H. Zisk,
K. Mankodiya, and Y. Shahriari, ‘‘Electrical and hemodynamic neu-
ral functions in people with ALS: An EEG-fNIRS resting-state study,’’
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 12, pp. 3129–3139,
Dec. 2020.

[60] G. G. Knyazev, ‘‘EEG correlates of self-referential processing,’’ Frontiers
Hum. Neurosci., vol. 7, p. 264, Jun. 2013.

[61] W. Klimesch, M. Doppelmayr, H. Russegger, T. Pachinger, and
J. Schwaiger, ‘‘Induced alpha band power changes in the human EEG and
attention,’’ Neurosci. Lett., vol. 244, no. 2, pp. 73–76, Mar. 1998.

[62] S. Marek and N. U. Dosenbach, ‘‘The frontoparietal network: Function,
electrophysiology, and importance of individual precision mapping,’’ Dia-
logues Clin. Neurosci., vol. 20, no. 2, p. 133, 2018.

[63] A. Harrewijn, M. J. W. van der Molen, I. M. van Vliet, R. L. M. Tissier, and
P. M. Westenberg, ‘‘Behavioral and EEG responses to social evaluation:
A two-generation family study on social anxiety,’’ NeuroImage: Clin.,
vol. 17, pp. 549–562, 2018.

[64] D. J. L. G. Schutter and J. van Honk, ‘‘Salivary cortisol levels and the
coupling of midfrontal delta–beta oscillations,’’ Int. J. Psychophysiol.,
vol. 55, no. 1, pp. 127–129, Jan. 2005.

[65] S. P. Pantazatos, A. Talati, F. R. Schneier, and J. Hirsch, ‘‘Reduced
anterior temporal and hippocampal functional connectivity during face
processing discriminates individuals with social anxiety disorder from
healthy controls and panic disorder, and increases following treatment,’’
Neuropsychopharmacology, vol. 39, no. 2, pp. 425–434, Jan. 2014.

[66] J. D. C. Rodrigues, P. P. R. Filho, E. Peixoto, A. Kumar, and
V. H. C. de Albuquerque, ‘‘Classification of EEG signals to detect alco-
holism using machine learning techniques,’’ Pattern Recognit. Lett.,
vol. 125, pp. 140–149, Jul. 2019.

VOLUME 10, 2022 39937



A. Al-Ezzi et al.: Complexity Analysis of EEG in Patients With SAD Using FE

[67] S. Jawed, H. U. Amin, A. S. Malik, and I. Faye, ‘‘Classification of visual
and non-visual learners using electroencephalographic alpha and gamma
activities,’’ Frontiers Behav. Neurosci., vol. 13, p. 86, May 2019.

[68] A. Al-Ezzi, N. Kamel, I. Faye, and E. Gunaseli, ‘‘Analysis of default
mode network in social anxiety disorder: EEG resting-state effective
connectivity study,’’ Universiti Teknologi PETRONAS, Perak, Malaysia,
Tech. Rep. 4098, 2021.

[69] A. Al-Ezzi, N. Yahya, N. Kamel, I. Faye, K. Alsaih, and E. Gunaseli,
‘‘Severity assessment of social anxiety disorder using deep learningmodels
on brain effective connectivity,’’ IEEE Access, vol. 9, pp. 86899–86913,
2021.

[70] F. Al-Shargie, T. B. Tang, and M. Kiguchi, ‘‘Assessment of mental stress
effects on prefrontal cortical activities using canonical correlation analysis:
An fNIRS-EEG study,’’ Biomed. Opt. Exp., vol. 8, no. 5, pp. 2583–2598,
2017.

[71] F. Al-Shargie, M. Kiguchi, N. Badruddin, S. C. Dass, A. F. M. Hani, and
T. B. Tang, ‘‘Mental stress assessment using simultaneous measurement
of EEG and fNIRS,’’ Biomed. Opt. Exp., vol. 7, no. 10, pp. 3882–3898,
Oct. 2016.

[72] F. Al-shargie, T. B. Tang, N. Badruddin, and M. Kiguchi, ‘‘Simultaneous
measurement of EEG-fNIRS in classifying and localizing brain activation
to mental stress,’’ in Proc. IEEE Int. Conf. Signal Image Process. Appl.
(ICSIPA), Oct. 2015, pp. 282–286.

[73] F. Al-shargie, T. B. Tang, and M. Kiguchi, ‘‘Mental stress grading based
on fNIRS signals,’’ in Proc. 38th Annu. Int. Conf. IEEE Eng. Med. Biol.
Soc. (EMBC), Aug. 2016, pp. 5140–5143.

ABDULHAKIM AL-EZZI received the bachelor’s
and master’s degrees in biomedical engineer-
ing from Universiti Tun Hussein Onn Malaysia
(UTHM). He is currently pursuing the Ph.D.
degree with Universiti Teknologi PETRONAS.
Broadly, his research is focusing on the devel-
opment of emotion, emotion regulation, temper-
ament in patients with anxiety and depression
by using psychophysiological, neurobiological,
and behavioral measures. His research interests

include delineating cognitive endophenotypes of anxiety disorders and com-
putational neuroscience, with an affirmation on machine learning, deep
learning, and statistical analysis.

AMAL A. AL-SHARGABI received the master’s
and Ph.D. degrees fromUniversiti Teknologi Mara
(UiTM), Malaysia. She is currently an Assistant
Professor with the College of Computer, Qassim
University. Her research interests include program
comprehension, empirical software engineering,
and machine learning. She has been a recipient of
a number of Qassim University’s research grants,
since 2018. She was also a recipient of the Inven-
tion, Innovation and Design Exhibition (IIDX’16)

Award, Malaysia, and the Three Minutes Thesis competition (3MT’16)
Award, Malaysia.

FARES AL-SHARGIE (Senior Member, IEEE)
received the B.S. and M.S. degrees in biomed-
ical engineering from Multimedia University,
Malaysia, and the Ph.D. degree in biomedical engi-
neering from Universiti Teknologi PETRONAS,
Malaysia. He worked closely with several biomed-
ical engineering departments and companies,
including Hitachi Ltd., Research & Development
Group, Japan. He is the first author in more than
30 journals and conference papers, one book, and

one book chapter. His current research interests include assessment of mental
stress, vigilance, and emotions via, EEG, fNIRS neuroimaging modalities,
and eye tracking. He is a member of the Society of Functional Near-Infrared
Spectroscopy.

AMMAR T. ZAHARY (Member, IEEE) is
currently an Associate Professor in data commu-
nication and networking with the Faculty of Com-
puter and IT, Sana’a University, and an Associate
Professor in data communication and networking
with the University of Science and Technology,
Yemen. He was the Vice Chancellor of Azal Uni-
versity for Human Development, Yemen. He has
supervised more than 60 master’s theses and about
four Ph.D. theses. His research interests include

MANETs, VANETs, the IoT, and ubiquitous computing. In addition, he was
a member of the Steering Committee of the ACIT Conference for many years
and is currently an Editorial Board Member and a Technical Committee
Member of many journals, such as the International Journal of Computa-
tional Complexity and Intelligent Algorithms (Inderscience), and a Reviewer
with ISI Q1 journal, such as CMC-Computers, Materials and Continua
(Tech Science Press) and Scopus journal (Library High Tech) (Emarald).
In addition, he is one of the founders of IEEE Yemen Subsection and has
been the First Chair of the Subsection, since November 2018.

39938 VOLUME 10, 2022


