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ABSTRACT A linear system can be solved more efficiently by quantum computing. However, previously
known quantum algorithms provide only a quantum state as the solution; consequently, we cannot obtain
the value of each component of the solution. We propose a method to extract the component values of
the solution, and we present an application to linear multiple-input multiple-output (MIMO) detections.
In the proposed algorithm, we demonstrate a concrete method that applies a quantum linear system algorithm
(QLSA)when the components of a solution have binary variables, quaternary variables, or roots of a complex
number. Whereas the conventional method requires an additional process to read out the values of the
components, the proposed algorithm does not need any post-procedure. Instead, our method uses a QLSA
iteratively, and the number of uses is logarithmic in the size of the linear system. Thus, our method maintains
the runtime with the quantum advantage, but the conventional approach increases the runtime significantly.
Furthermore, the application of the proposed method shows that quantum computing can collaborate with
communication systems for large-scale MIMO systems.

INDEX TERMS Linear MIMO detection, quantum computing, quantum linear system algorithm.

I. INTRODUCTION
Quantum computation has developed into a rising field of
research for the last twenty years. Along with physical
realizations of quantum computing, quantum algorithms,
which run on realistic quantum devices, have been stud-
ied deeply. Many quantum algorithms have been proposed
that achieve computational speed-ups compared to classical
algorithms [1]. For example, Grover’s algorithm provides a
quadratic speed-up for unstructured search [2], and Shor’s
algorithm can solve the factoring problem exponentially
faster than the best classical algorithm [3]. Such quantum
speed-ups indicate that we can utilize quantum computing to
solve existing problems efficiently.

Systems of linear equations are used in various fields.
Even though a linear system can be solved in polynomial
time, we need more efficient algorithms to find a solution
for practical use. A quantum linear system algorithm (QLSA)
was first proposed by Harrow, Hassidim and Lloyd [4]. The
Harrow–Hassidim–Lloyd (HHL) algorithm can compute the
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solution of a linear system in time O(log(N )κ2/ε) for N ×
N sparse matrices with condition number κ , where ε is the
desired error parameter. The HHL algorithm has an expo-
nential speed-up over the fastest known classical algorithm,
which can obtain the solution in time O(Nκ log(1/ε)) for
sparse matrices [5]. The dependence on κ and ε was sub-
sequently improved [6], [7]. Recently, several QLSAs for
densematrices have been proposed [8]–[11]. In particular, the
block-encoding framework is applied in [9], and the quantum
column iteration method is used in [11].

Although a QLSA can solve a linear system much
faster than classical algorithms, it has an intrinsic problem.
We obtain the solution |x〉 as a quantum state after applying
the algorithm. This means that we cannot obtain any knowl-
edge of the solution, unless the state is measured. It does not
matter when we want to have the solution as a quantum state.
For example, we can consider a QLSA as a subroutine of a
larger algorithm so that we use the state as an input of the next
procedure. However, when we need classical information in
the solution state, in particular, the component values xj of the
solution x, we may need to measure the solution state from
which we extract some information.
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It is possible to apply the quantum amplitude estima-
tion (QAE) algorithm [12] as a post-procedure when the
information we want to obtain is the amplitudes in |x〉. More
generally, A method was proposed to obtain the overlap
between |x〉 and |φ〉 for an arbitrary state |φ〉 [13]. This
method also uses the QAE algorithm after solving the linear
system.Unfortunately, the extra process increases the runtime
complexity significantly, and the QAE algorithm of the above
methods consists of mainly controlled-U gates, where U is
the unitary gate implementing the whole QLSA. This makes
the construction of the algorithm extremely complicated in a
practical sense. We remark that several algorithms based on
the QAE have been introduced that can be used to approxi-
mate the norm ‖x‖ [14], the absolute value |xj| of a compo-
nent xj [15], and the real-valued xj [16].

Many quantum-assisted solutions have been presented
to solve optimization problems in wireless communica-
tions [17], [18]. Especially, the authors in [18] have proposed
two quantum-assisted methods for MIMO-OFDM systems
with maximum likelihood detection. Most of those works
have shown the potential performance gain and attainable
complexity reduction using quantum search algorithms based
on Grover’s algorithm [2]. Moreover, the proposed algorithm
in [16] can be used as a linear MIMO detector, but it can
estimate only real components xj, and its QAE process sub-
stantially increases the computational complexity.

A. CONTRIBUTIONS
In this paper, we take into account a multiple-input
multiple-output (MIMO) system withM -ary phase-shift key-
ing (MPSK) signals in communication systems, and we
present an application of a QLSA to the MIMO detection
problem. More generally, we propose a QLSA capable of
extracting the values xj from the solution state when the
solution has binary variables, quaternary variables, or roots of
a complex number. The proposed algorithm does not need any
additional procedure to extract classical information except
the final measurement step. Instead, we modify the original
equations, and then apply a QLSA. In particular, the modi-
fied equations do not increase the runtime complexity. Then,
while exploiting the quantum advantage of a QLSA, we can
obtain the values xj of the solution.

Moreover, the proposed method can be used to read out a
given quantum state under the same condition. This implies
that for any MIMO detector that can be executed by a quan-
tum algorithm, the proposed technique can be applied to
extract the values of the obtained quantum state. Indeed, the
application to MIMO systems shows that we can efficiently
solve the detection problem in large-scale MIMO systems
using quantum computing techniques.

B. PAPER STRUCTURE
The remainder of this paper is organized as follows.
In Section II, we briefly introduce a QLSA and the QAE
algorithm, as well as quantum computing. In Section III, we
present our proposed QLSA to extract classical information.

In Section IV, we show how to reduce the condition number
and the runtime complexity. In addition, we compare the pro-
posed algorithm with the method using the QAE algorithm.
Then, we give an application to the MIMO detection problem
and the performance results of our method in Section V.
Finally, we conclude our results in Section VI.

C. NOTATIONS
The notations used in this paper are as follows:

A A matrix
A∗ The complex conjugate of a matrix A.
AT The transpose of a matrix A.
A† The Hermitian conjugate of a matrix A.
IN The N × N identity matrix.
a A (column) vector.
aj The jth component of a vector a.
|ψ〉 A quantum state, equivalently, a unit (column) vector.
〈ψ | The Hermitian conjugate of |ψ〉.
|i〉 The unit (column) vector having 1 only in the (i+ 1)th

entry.
|a〉 The normalized vector of a vector a.
‖a‖ The Euclidean norm of a vector a.
O(·) Big O notation.
�(·) Big Omega notation.
dae The ceiling function of a real value a.

II. PRELIMINARIES
A. QUANTUM COMPUTING
Aquantum state |φ〉 is represented by a unit vector in aHilbert
space. Let

|φ〉 =
∑
i

ai|i〉, (1)

where ai ∈ C with
∑

i |ai|
2
= 1, and |i〉 are orthonormal

states. Then the state |φ〉 is in a superposition of states |i〉.
We note that |·〉 is the bra-ket notation to denote quantum
states in quantum physics. The dynamics of a quantum state
is governed by a unitary operator. This means that the inner
products of quantum states are preserved, and quantum com-
putation is a reversible process. Unlike classical objects, a
quantum state can be observed only through a measurement
process, and the measured state can differ from the previous
state. For example, let

|ψ〉 =
1
√
2
|0〉 +

1
√
2
|1〉. (2)

Measuring |ψ〉 in the computational basis {|0〉, |1〉}, we
obtain |0〉 with probability 1/2 and |1〉 with probability 1/2.
We can say that the superposition in (2) collapses due to the
measurement.

In particular, a two-level quantum state is called a qubit.
A qubit is the quantum analog of a classical bit and a basic
unit in quantum computing. A quantum circuit consists of
quantum gates. There are quantum gates similar to classical
gates, including the Pauli gates X , Y , and Z ; the Hadamard
gate H ; the controlled-NOT gate CNOT; the swap gate
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SWAP; and the Toffoli gate T. A measurement procedure is
crucial to quantum computing because we can obtain classi-
cal information only by measuring the state in the final step.
Conversely, we must prepare a quantum state as the initial
state of a quantum algorithm. In other words, we need a
translation step from a quantum state to a classical state, and
vice versa.

B. QLSA
Since the HHL algorithm was introduced in [4], there have
been proposed several variants that employ slightly different
techniques. We here review the HHL algorithm.

The HHL algorithm is utilized to solve a system of linear
equations

Ax = y, (3)

where A is an N × N Hermitian matrix, and y is an
N -dimensional unit vector. The solution is given as a quantum
state proportional to A−1y.
Let

A =
N∑
j=1

λj|uj〉〈uj| (4)

in the spectral decomposition form, where λj and |uj〉 are the
eigenvalues and eigenstates of A, respectively. Then |y〉 can
be written in the form

|y〉 =
N∑
j=1

αj|uj〉, (5)

where
∑N

j=1 |αj|
2
= 1. The initial state of the HHL algorithm

is

|0〉|y〉 =
N∑
j=1

αj|0〉|uj〉, (6)

where |0〉 is in an n-qubit register, and |y〉 is a quantum state
representing y. We first apply the quantum phase estima-
tion (QPE) for a unitary operator e2π iA without measurement.
Then the state in (6) becomes

N∑
j=1

2n−1∑
x=0

αjβx|j|λx〉|uj〉, (7)

where βx|j = 1
2n
∑2n−1

k=0 e2π ik(λj−x/2
n) and λx = x/2n. Next,

we add an ancillary qubit |0〉 to which we apply the controlled
σy-rotation conditioned on the state |λx〉. We then obtain

N∑
j=1

2n−1∑
x=0

αjβx|j

(√
1−

c2

λ2x
|0〉 +

c
λx
|1〉

)
|λx〉|uj〉. (8)

Here, c is chosen to beO(1/κ), where κ is the condition num-
ber of A. Finally, we perform the inverse QPE to uncompute
the state |λx〉, and then measure the ancillary qubit.

When the QPE is done perfectly, βx|j = δx,2nλj , and so the
state in (8) becomes

N∑
j=1

αj

(√
1−

c2

λ2j
|0〉 +

c
λj
|1〉

)
|0〉|uj〉. (9)

If the measurement outcome of the ancillary qubit is 1, we
obtain the state

|x〉 =
1√∑N

k=1 |αk |
2/λ2k

N∑
j=1

αj

λj
|uj〉 =

A−1|y〉∥∥A−1|y〉∥∥ , (10)

which represents the solution of the linear system Ax = y.
The running time complexity of finding the solution |x〉 is
O(log(N )κ2/ε) for a sparsematrixA, where κ is the condition
number ofA, and ε is the desired error. A detailed explanation
is presented in [4].

We note that the assumptions for A and y can be relaxed.
When y is not a unit vector, we rescale the linear systemAx =
y so that y becomes a unit vector. Indeed, let

A′ =
A
‖y‖

and y′ =
y
‖y‖

. (11)

We then solve A′x = y′, giving the same solution. When A is
non-Hermitian, let

A′ =
(
O A
A† O

)
and y′ =

(
y
0

)
. (12)

Then the solution of A′x′ = y′ is

x′ =
(
0
x

)
, (13)

and the HHL algorithm outputs the state

|x′〉 = |1〉|x〉. (14)

Thus, we can deal with any A and y. In the rest of this paper,
we implicitly assume that a linear systemAx = y is modified
in the above manner if necessary.

C. QAE ALGORITHM
Although a QLSA is exponentially faster than the best clas-
sical algorithm, we cannot know each value of the solution x
since the obtained solution |x〉 is a quantum state. We may
need an additional procedure, for example, measuring the
state |x〉 in a specific basis. In the method proposed by [13],
the QAE is used to extract each value of the solution. We here
introduce the QAE algorithm briefly.

Given a unitary transformation U on a Hilbert spaceH and
a subspaceH1 ofH, let |0〉 be the initial zero state. Then U |0〉
can be decomposed as

U |0〉 = a|ψ〉 + b|φ〉, (15)

where |ψ〉 ∈ H1, |φ〉 ∈ H⊥1 , and |a|
2
+ |b|2 = 1. The QAE

algorithm estimates the value α ≡ |a|2.
The initial state is prepared in

|0〉 ⊗ U |0〉, (16)
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where the first register is in anM -dimensional quantum state
|0〉. We first apply the quantum Fourier transform FM on an
M -dimensional quantum system to the first register, and then
perform the controlled-unitary operation 3M (Q) defined by

3M (Q) : |i〉|x〉 → |i〉Qi|x〉 (0 ≤ i < M ), (17)

where

Q = −US0U−1SH1 , (18)

the operator S0 flips the phase of the state |0〉, and the oper-
ator SH1 flips the phase of states in H1. We next apply F−1M
to the first register. Finally, measuring the first register, we
obtain the outcome |w〉, fromwhich we can find the estimated
value α̃ = sin2 (πw/M ).

For any k ∈ N, we obtain the estimated value α̃ such that

|α̃ − α| ≤ 2
√
α(1− α)

kπ
M
+

(
kπ
M

)2

(19)

with probability at least 8
π2 for k = 1 and with probability

greater than 1− 1
2(k−1) for k ≥ 2. In particular, when α = 0,

α̃ = 0 with certainty, and when α = 1 and M is even,
α̃ = 1 with certainty. We can observe that the value k
determines the probability of obtaining the estimated value,
and the value M determines the error bound of the estimated
value for a fixed k . For the right-hand side of (19), let ε be a
multiplicative error such that

2
√
α(1− α)

kπ
M
+

(
kπ
M

)2

≤ εα. (20)

Then we can find a lower bound ofM :

M ≥
kπ
ε
√
α

(√
1− α +

√
1− α + ε

)
(21)

for α > 0 [19]. Since the QAE uses the given unitary
U repetitively to obtain the amplitude α, from (17), (18),
and (21), the number R of applications of U is

R = 2M − 2 (22)

≥
2kπ
ε
√
α

(√
1− α +

√
1− α + ε

)
− 2 (23)

≥
2kπ
√
ε
− 2. (24)

Thus, we can conclude that the computational complexity of
the QAE algorithm is �

(
k/
√
ε
)
times the complexity of the

unitary U .

III. PROPOSED METHOD TO EXTRACT
CLASSICAL INFORMATION
Let us consider a system of linear equations

Ax = y, (25)

where A ∈ CN×N , x = (x1, . . . , xN )T , and y =

(y1, . . . , yN )T . We assume that the unknowns xj are binary
variables, quaternary variables, or roots of a complex num-
ber. Such a situation can occur in various fields, including

FIGURE 1. Block diagram of the proposed algorithm for binary variables.

computer science, statistics, binary integer programming, and
MIMO channel detection in communication systems [20].

The proposed algorithm consists of three steps: matrix
modification, quantum linear system solver (QLSS), and
measurement as shown in Figs. 1 and 2. We modify a given
linear system for xj, in order that the solution obtained by a
QLSS contains classical information associatedwith xj. Then,
by measuring the solution state, we can obtain the value of xj.
Especially, we execute the process in parallel to obtain the
values of all xj simultaneously. We state our result as follows:
Theorem 1: Let Ax = y be a system of linear equa-

tions. Suppose that the unknowns xj are (i) binary variables,
(ii) quaternary variables of the form s+ it , where s and t are
binary variables inR, or (iii) Mth roots of a complex number.
Then the proposed quantum algorithm determines the values
of xj almost certainly by applying a QLSS O(logN ) times in
parallel.

A. CASE OF BINARY VARIABLES
We now present the proposed method for the case of binary
variables in detail. Assume that the unknowns xj have two
distinct values a and b in C, where |a| ≤ |b|. In the first
step, wemodify a given linear system by adding the following
equations:

xj + α−1(b− a)xN+1 = b,

xj + α−1(a− b)xN+2 = a, (26)

where xN+1 and xN+2 are new variables, and α ∈ C is chosen
later. Then we obtain the modified linear system

Ã(j)x̃(j) = ỹ, (27)

where

x̃(j) = (x1, . . . , xN , xN+1, xN+2)T , (28)

ỹ = (y1, . . . , yN , αb, αa)T . (29)

From (26), the solution x̃(j) is

x̃(j) =
(
x1, . . . , xN , α

b− xj
b− a

, α
xj − a
b− a

)T
, (30)

where the first N components are the solution of the original
linear system Ax = y.
In the second step, we apply a QLSS to the modified linear

system in (27). Then we obtain the solution in (30) as a
quantum state:

|x̃(j)〉 =
‖x‖√

‖x‖2 + |α|2
|x〉 +

α√
‖x‖2 + |α|2

|xj〉, (31)
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FIGURE 2. Block diagram of the proposed algorithm for quaternary
variables.

where

|x〉 =
1
‖x‖

N−1∑
i=0

xi+1|i〉, (32)

|xj〉 =
b− xj
b− a

|N 〉 +
xj − a
b− a

|N + 1〉. (33)

In the third step, we measure the state |x̃(j)〉 in the com-
putational basis. Note that |xj〉 = |N 〉 if xj = a, and that
|xj〉 = |N + 1〉 if xj = b. Thus, we can decide the value of xj
when we obtain |xj〉 after the measurement.
The probability of obtaining |xj〉 is

|α|2

‖x‖2 + |α|2
. (34)

Because we apply a QLSS in parallel to extract the values of
xj, the probabilityP of obtaining |x1〉⊗· · ·⊗|xN 〉 from |x̃(1)〉⊗
· · · ⊗ |x̃(N )

〉 is

P =
(

|α|2

‖x‖2 + |α|2

)N
. (35)

We now choose α = m|b|N for m > 0. Since ‖x‖2≤|b|2N ,
the probability P becomes

P =
(

m2
|b|2N 2

‖x‖2 + m2|b|2N 2

)N
(36)

≥

(
m2N

1+ m2N

)N
≡ lm(N ). (37)

We note that lm(N ) is decreasing for N , and that it converges
to e−1/m

2
as N grows large. Thus, the probability P of obtain-

ing all |xj〉 is at least e−1/m
2
.

B. CASE OF QUATERNARY VARIABLES
For the case of quaternary variables, we assume that the
unknowns xj are of the form

xj = sj + itj, (38)

where sj has two distinct values a and b in R, tj has two
distinct values c and d in R, and i =

√
−1. Moreover, we let

|a| ≤ |b| and |c| ≤ |d |.
As shown in Fig. 2, we extract the real part sj and the imag-

inary part tj of xj separately. First, we describe the procedure

to obtain the value of sj. In the first step, we modify a given
linear system by adding the following equations:

A∗ (xN+1, . . . , x2N )T = y∗,

xj + xN+j − 2(a− b)α−1x2N+1 = 2b,

xj + xN+j + 2(a− b)α−1x2N+2 = 2a, (39)

where α ∈ C is chosen later. Then we obtain the modified
linear system

Ã(sj)x̃(sj) = ỹ, (40)

where

˜x(sj) = (x1, . . . , x2N+2)T , (41)

ỹ =
(
y1, . . . , yN , y∗1, . . . , y

∗
N , 2b, 2a

)T
. (42)

From (39), the solution is

x̃(sj) =
(
x1, . . . , xN , x∗1 , . . . , x

∗
N , α

sj − b
a− b

, α
a− sj
a− b

)T
.

(43)

In the second step, by applying a QLSS to the modified
linear system in (40), we obtain the quantum state of the
solution in (43):

|x̃(sj)〉 =

√
2 ‖x‖√

2 ‖x‖2 + |α|2
|φ〉 +

α√
2 ‖x‖2 + |α|2

|sj〉, (44)

where

|φ〉 =
1

√
2 ‖x‖

N−1∑
i=0

(xi+1|i〉 + x∗i+1|N + i〉), (45)

|sj〉 =
sj − b
a− b

|2N 〉 +
a− sj
a− b

|2N + 1〉. (46)

In the third step, we measure the state |x̃(sj)〉 in the compu-
tational basis. We then extract the value of sj by noting that
|sj〉 = |2N 〉 if sj = a, and that |sj〉 = |2N + 1〉 if sj = b. The
probability of obtaining |sj〉 from |x̃(sj)〉 is

|α|2

2 ‖x‖2 + |α|2
. (47)

Similarly for the value of tj, we first modified a given linear
system by adding the following equations:

A∗ (xN+1, . . . , x2N )T = y∗,

xj − xN+j − 2i(c− d)α−1x2N+1 = 2id,

xj − xN+j + 2i(c− d)α−1x2N+2 = 2ic. (48)

Then the modified linear system

Ã(tj)x̃(tj) = ỹ, (49)

where

x̃(tj) = (x1, . . . , x2N+2)T , (50)

ỹ =
(
y1, . . . , yN , y∗1, . . . , y

∗
N , 2id, 2ic

)T
, (51)
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has the solution

x̃(tj)=
(
x1, . . . , xN , x∗1 , . . . , x

∗
N , α

tj − d
c− d

, α
c− tj
c− d

)T
. (52)

Next, a QLSS solves the modified linear system, giving the
following state:

|x̃(tj)〉 ≡

√
2 ‖x‖√

2 ‖x‖2 + |α|2
|φ〉 +

α√
2 ‖x‖2 + |α|2

|tj〉, (53)

where

|φ〉 =
1

√
2 ‖x‖

N−1∑
i=0

(xi+1|i〉 + x∗i+1|N + i〉), (54)

|tj〉 =
tj − d
c− d

|2N 〉 +
c− tj
c− d

|2N + 1〉. (55)

Finally, wemeasure the state |x̃(tj)〉 in the computational basis.
The probability of obtaining |tj〉 from |x̃(tj)〉 is

|α|2

2 ‖x‖2 + |α|2
. (56)

From (47) and (56), the probability P of obtaining all |sj〉
and |tj〉 is

P =
(

|α|2

2 ‖x‖2 + |α|2

)2N

. (57)

Let us choose α = 2m
√
(|b|2 + |d |2)N for m ∈ C. Since

‖x‖2 ≤ (|b|2 + |d |2)N ,

P =
(

4m2(|b|2 + |d |2)N 2

2 ‖x‖2 + 4m2(|b|2 + |d |2)N 2

)2N

(58)

≥

(
2m2N

1+ 2m2N

)2N

≡ lm(N ). (59)

We observe that lm(N ) is decreasing for N , and that it con-
verges to e−1/m

2
as N grows large. Thus, we can conclude

that the probability of obtaining all the values of xj is at
least e−1/m

2
.

C. CASE OF ROOTS OF A COMPLEX NUMBER
We consider the case when the unknowns xj are theM th roots
of a complex number. AnM th root z of a complex number z0,
whereM is a positive integer, is a complex number satisfying

zM = z0. (60)

Let us assume that the unknowns xj are of the form

xj =
√
reiθj , (61)

where r > 0,

θj = ϕ +
2π
M
k, (62)

ϕ ∈ [0, 2π/M ), M = 2m, m is a positive integer, and k =
0, 1, . . . ,M − 1. Then xj are theM th roots of rM/2eiMϕ .

Given Ax = y, for s = 0, . . . ,m − 1, we let Ã(j)
s ∈

C2s+1N×2s+1N and ỹs ∈ C2s+1N as follows:

for m ≥ 2, Ã(j)
s = |0〉〈0|⊗�+

2s+1−1∑
t=1

|t〉〈t|⊗AR�

+

2s+1−2∑
t=1

|t + 1〉〈t|⊗Y�, (63)

for m = 1, Ã(j)
s = |0〉〈0|⊗�+

2s+1−1∑
t=1

|t〉〈t|⊗AR�, (64)

ỹs = |0〉 ⊗
N−1∑
i=0

|i〉 + |1〉 ⊗ y, (65)

where

� = IN + (α−1 − 1)|j− 1〉〈j− 1|, (66)

R = IN + (
√
r − 1)|j− 1〉〈j− 1|, (67)

Y = −y 〈j− 1| , (68)

and the value of α ∈ C is chosen later. The solution of
Ã(j)
s x̃(j)s = ỹs is

x̃(j)s = α

2s+1−1∑
k=0

(eiθj )k |k〉

 |j− 1〉

+

∑
t 6=j−1

|0〉 + xt+1 2s+1−1∑
k=1

(eiθj )k−1|k〉

 |t〉, (69)

and a QLSS gives the state |x̃(j)s 〉 of the following form:

|x̃(j)s 〉 =
N∑
t=1

ct |ψ
(s)
t 〉|t − 1〉 ∈ C2s+1

⊗ CN , (70)

where

cj =

√

2s+1α√
2s+1|α|2 +

(
r(2s+1 − 1)+ 1

)
(N − 1)

, (71)

|ψ
(s)
j 〉 =

1
√

2s+1

2s+1−1∑
k=0

eikθj |k〉. (72)

We next measure the second register of the state |x̃(j)s 〉 in
the computational basis. Then, with probability

Ps ≡
2s+1|α|2

2s+1|α|2 + (r(2s+1 − 1)+ 1)(N − 1)
, (73)

we obtain |j− 1〉, and the state in the first register becomes
|ψ

(s)
j 〉, which can be written as

|ψ
(s)
j 〉 = |x

(s)
j 〉|x

(s−1)
j 〉 · · · |x(0)j 〉 ∈ C2(s+1), (74)

where

|x(k)j 〉 =
1
√
2

(
|0〉 + ei2

kθj |1〉
)
, k = 0, . . . , s. (75)
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We now define the modified matrices in the first step. Let

Ã(j)
≡

m−2⊗
s=0

(
Ã(j)
s

)⊗2m−2−s
⊗ Ã(j)

m−1, (76)

ỹ ≡
m−2⊗
s=0

ỹ⊗2
m−2−s

s ⊗ ỹm−1. (77)

Thenwemeasure the (quantum) solution |x̃(j)〉 of Ã(j)x̃(j) = ỹ,
and obtain |xj〉 with a certain probability:

|xj〉 =
m−2⊗
s=0

|ψ
(s)
j 〉
⊗2m−2−s

⊗ |ψ
(m−1)
j 〉, (78)

which can be rewritten as

|xj〉 =
m−1⊗
s=0

|x(s)j 〉
⊗2m−1−s . (79)

We observe that letting k = km−1km−2 · · · k0 in binary
notation,

2sθj = 2s
(
ϕ +

2π
M

m−1∑
t=0

2tkt

)
(80)

≡ 2sϕ + π
m−1−s∑
t=0

2t−(m−1−s)kt (mod 2π). (81)

Then

|x(s)j 〉 =
1
√
2

(
|0〉 + ei(2

sϕ+φs)|1〉
)
, (82)

where

φs = π

m−1−s∑
t=0

2t−(m−1−s)kt . (83)

We note that the state |x(s)j 〉 is one of the 2
m−s possible states,

which are 2m−1−s pairs of two orthogonal states.
In the third step, we measure each state |x(s)j 〉 in certain

bases using its 2m−1−s copies. We then decide the value of
xj from the measurement outcomes. For s = m − 1, the
state |x(m−1)j 〉 has two possible states, which are orthogonal.

By measuring |x(m−1)j 〉 in the basis{
1
√
2

(
|0〉 + ei2

m−1ϕ
|1〉
)
,

1
√
2

(
|0〉 − ei2

m−1ϕ
|1〉
)}
, (84)

we can decide the value of k0. Then, for s = m− 2, the state
|x(m−2)j 〉 has four possible states, which are two pairs of two
orthogonal states. We measure two copies of the state in the
bases{

1
√
2

(
|0〉 + ei2

m−2ϕ
|1〉
)
,

1
√
2

(
|0〉 − ei2

m−2ϕ
|1〉
)}
, (85){

1
√
2

(
|0〉 + iei2

m−2ϕ
|1〉
)
,

1
√
2

(
|0〉 − iei2

m−2ϕ
|1〉
)}
. (86)

The outcome from the former basis is the value of k1 when
the value of k0 is 0, and the outcome from the latter basis is

FIGURE 3. Flowchart of the proposed method for roots of a complex
number.

the value of k1 when the value of k0 is 1. We then determine
the value of k1 from the previously obtained value of k0.
By continuing this measurement procedure, we determine all
values of k0, k1, . . . , km−1, i.e., the value of θj. The procedure
presented above is depicted as a flowchart in Fig. 3.

The probability P of obtaining all |xj〉 can be close to 1.

Suppose that we choose α = u
√
(1+ r)M/2N for u ∈ N.

Then

Ps >
u2MN

u2MN + 2
(87)

and

P =

(
Pm−1

m−2∏
s=0

P2
m−2−s

s

)N
(88)

>

(
1+

2
u2MN

)−MN/2
= lu(N ). (89)

Thus, the probability P of obtaining all |xj〉 is at least e−1/u
2

as noted in (59).

IV. EFFICIENCY OF THE PROPOSED METHOD
A. CONDITION NUMBER AND RUNTIME COMPLEXITY
The condition number of a given matrix is an important
parameter in a QLSA, and it affects the runtime of a QLSS.
Because we modify a given linear system in the proposed
method, it may increase the condition number significantly.
For a matrix norm ‖·‖, the condition number κ(M) of a matrix
M is defined by κ(M) ≡ ‖M‖

∥∥M−1∥∥. Typically, the spectral
norm is used in a QLSA. Let us consider Ã(j) in (27). It is
straightforward to show that κ(Ã(j)) ≥ Nκ(A) with respect
to the max norm and Frobenius norm in the worst case. Then
the additional factor N eliminates the exponential speed-up
of a QLSS.
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We here present how to reduce the condition number. First,
let us consider the case of binary variables. GivenAx = y, we
add the following equations:

xj + (b− a)xN+1 = b,

xj + (a− b)xN+2 = a. (90)

Then we obtain the modified linear system

Bx(0) = ỹ, (91)

where

x(0) = (x1, . . . , xN , xN+1, xN+2)T , (92)

ỹ = (y1, . . . , yN , b, a)T . (93)

The matrix Ã(j) in (27) can be decomposed into matrices
having small condition numbers:

Ã(j)
= BPn, (94)

where

P = IN ⊕
1
2
I2 (95)

and n = dlog |α|e.
We solve BPnx̃(j) = ỹ by applying a QLSS to each matrix

in the decomposed form of Ã(j). After applying aQLSS (n+1)
times, we get the same solution as in (31). It is not hard to
show that κ(B) = O(κ(A)) and κ(P) = 2, and so the each
runtime of a QLSS does not increase. Since we choose α =
m|b|N for m > 0 in our proposed method, the number of
QLSSs used is

dlog (m|b|N )e + 1. (96)

Therefore, the runtime increases by a factor of O(log (N )),
and hence the proposed method maintains the quantum
speed-up of a QLSS.

Similarly, we can reduce the condition number for the case
of quaternary variables. By adding to Ax = y the following
equations:

A∗ (xN+1, . . . , x2N )T = y∗,

xj + xN+j − 2(a− b)x2N+1 = 2b,

xj + xN+j + 2(a− b)x2N+2 = 2a, (97)

we obtain a linear system

Sx(0) = ỹ, (98)

where

x(0) = (x1, . . . , xN , xN+1, xN+2)T , (99)

ỹ =
(
y1, . . . , yN , y∗1, . . . , y

∗
N , 2b, 2a

)T
. (100)

Then the matrix Ã(sj) in (40) can be decomposed as follows:

Ã(sj) = SPn, (101)

where

P = IN ⊕
1
2
I2 (102)

and n = dlog |α|e. Moreover, κ(S) = 2(κ(A)). We can also
decompose the matrix Ã(tj) in (49) similarly.

Finally, Ã(j) in (76) consists of Ã(j)
s ’s, and so it is sufficient

to consider only Ã(j)
m−1. This can be decomposed as

Ã(j)
m−1 = D1

(
M−1∏
i=2

QiDi

)
Jn, (103)

where

Di = IM⊗IN + |i〉〈i| ⊗ (AR− IN ), (104)

Qi = IM⊗IN + |i〉〈i− 1|⊗Y, (105)

J = IM⊗
(
IN −

1
2
|j− 1〉〈j− 1|

)
, (106)

n = dlogαe. (107)

We can easily show that κ(Di) = O (κ(A)), κ(Qi) is 3+
√
5

2 ,
and κ(J) = 2. Thus, Ã(j)

m−1 is decomposed into 2M+dlogαe−
3 matrices whose condition numbers are at most O (κ(A)).
When we choose α = u

√
1+ rN for some u, we can obtain

the values of xj with probability at least e−1/u
2
by applying

a QLSS O (log (N )) times. Therefore, the runtime of the
proposed method increases at most by a factor of log(N ) for
all the cases considered.

B. COMPARISON WITH THE METHOD USING THE QAE
We compare our proposed algorithm with the method using
the QAE for the case of binary variables. Let us recall the
QAE algorithm introduced in Section II-C. For a unitary
operator U , let

U |0〉 = a|ψ〉 + b|φ〉, (108)

where |ψ〉 and |φ〉 are orthogonal states. Then the QAE
algorithm estimates the value α ≡ |a|2, and the estimated
value α̃ is such that

|α̃ − α| ≤ 2
√
α(1− α)

kπ
M
+

(
kπ
M

)2

(109)

with probability at least 8
π2 for k = 1 and with probability

greater than 1− 1
2(k−1) for k ≥ 2. In particular, when α = 0,

α̃ = 0 with certainty, and when α = 1 and M is even, α̃ =
1 with certainty. Moreover, the operator U is used 2(M − 1)
times as a controlled operation.

Let ε be such that

|α̃ − α| ≤ 2
√
α(1− α)

kπ
M
+

(
kπ
M

)2

≤ εα. (110)

Thus, ε is a multiplicative error of the estimated value α̃.
We can then find a lower bound ofM :

M ≥
kπ
ε
√
α

(√
1− α +

√
1− α + ε

)
(111)

for α > 0 [19].
Let Ax = y be a linear system of equations with binary

variables xj, where A ∈ CN×N , x = (x1, . . . , xN )T , and y =
(y1, . . . , yN )T . For simplicity, we let the binary variables xj
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have the values 0 and 1, not all zero. Then a QLSS gives the
solution |x〉

|x〉 =
1
‖x‖

(x1, . . . , xN )T (112)

=
xj
‖x‖
|j〉 +

√
‖x‖2 − |xj|2

‖x‖
|φ〉, (113)

where |φ〉 is orthogonal to |j〉. The probability of obtaining |j〉
from |x〉 is 0 if xj = 0, and 1

‖x‖2
if xj = 1. Let U be a QLSA

for the above linear system. We note that a QLSA does not
include a measurement step, and hence it can be considered
as a unitary operator. Then U |0〉 = |x〉, the state to estimate
is |ψ〉 = |j〉, and the estimated value α is 0 or 1

‖x‖2
.

Since we can achieve a perfect estimation with certainty if
α = 0, let us consider when α = 1

‖x‖2
. From (21),

M ≥
kπ
ε
‖x‖

(√
‖x‖2 − 1
‖x‖

+

√
(1+ ε) ‖x‖2 − 1
‖x‖

)
(114)

≥
2kπ
ε

√
‖x‖2 − 1. (115)

Since ‖x‖2 has the range from 0 to N , M must satisfy the
following inequality:

M ≥
2kπ
ε

√
N − 1. (116)

In the method using the QAE, a QLSA U is applied 2(M −1)
times for estimating the value α = 1

‖x‖2
. By (116), the number

of U used is at least

4kπ
ε

√
N − 1− 2. (117)

We note that neither k nor ε depends onN . Indeed, ε = 1/2 is
enough to distinguish two possible values 0 and 1

‖x‖2
of α.

Thus, the number of U used is in O(
√
N ), and so the method

using the QAE has the runtime complexity of

�(
√
N logN ). (118)

However, our proposed method has the same runtime com-
plexity as a QLSA, that is, O(logN ).

V. APPLICATION AND PERFORMANCE
A. APPLICATION TO THE MIMO DETECTION PROBLEM
We now introduce an application of the proposed algo-
rithm. In communication systems, MIMO is a technique that
employs multiple antennas to increase the channel capacity
and improve the communication performance. For example,
a user can transmit signals via multiple antennas, then the
base station receives the signals from multiple antennas.

A MIMO system can be described as a system of linear
equations. Let a MIMO system have N input antennas andM
output antennas, and let H ∈ CM×N be the associated matrix
of the MIMO channel. Then an input signal vector x ∈ χN

with alphabet set χ changes to the output signal vector y ∈
CM as follows:

y = Hx+ n, (119)

where n ∈ CM is the noise vector. The MIMO detection
problem is to recover the transmitted signal x reliably.
We consider two MIMO detectors: the zero-forcing (ZF)

detector and the linear minimum mean square error (MMSE)
detector [20]. These detectors provide the estimated vector x′

of the input signal vector x. Specifically, the ZF detector gives

x′ = H+y, (120)

whereH+ is the Moore–Penrose pseudoinverse ofH, and the
linear MMSE detector gives

x′ = (H†H+ µIN )−1H†y (121)

for some value µ. Thus, obtaining the estimated input signal
is equivalent to solving the linear system

Ax′ = y′, (122)

where A = H and y′ = y for the ZF detector, and A =
H†H + µIN and y′ = H†y for the linear MMSE detector.
In other words, the ZF andMMSE detectors can be performed
using a QLSA, and so we can call the proposed algorithm
a quantum ZF/MMSE detector. From now on, we assume
that the proposed method is quantum versions of the ZF and
MMSE detectors when we compare with the (classical) ZF
and MMSE detectors, respectively.

In particular, the proposed method can be effectively
exploited in large-scale MIMO systems [20], [21] because of
the quantum speed-up of a QLSA. Furthermore, we remark
that the proposed method can extract the values of a given
quantum state |ψ〉, which has roots of a complex number
when we let A = I and y = |ψ〉. Therefore, the proposed
technique can be appropriate for any other MIMO detectors
if the MIMO detection is performed by quantum computing
with a quantum speed-up.

The proposed method can be directly applied to the MIMO
detection problem with binary phase-shift keying (BPSK) or
quadrature phase-shift keying (QPSK) modulation. Indeed,
for the case of BPSK with χ = {1,−1}, we let a = −1 and
b = 1 in (26). Furthermore, we can apply this to MPSK
modulation. For the case of 8PSK with χ = {ei

π
4 k : k =

0, 1, . . . , 7}, we let r = 1, ϕ = 0, andM = 8 in (61). We note
that the proposed technique can be applied toM × N channel
matricesH by considering the modified one as shown in (12).
The noise of a channel induces a detection error. For the

ZF detector, the recovered vector x′ is

x′ = A+y (123)

= x+ ε, (124)

where ε ≡ A+y− x, and A = H is a MIMO channel matrix.
Similarly, the recovered vector x′ of the MMSE detector is

x′ = (A†A+ µI)−1A†y (125)

= x+ ε, (126)
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where ε ≡ (A†A + µI)−1A†y − x. Thus, the noise affects
the precision of the final state when we solve the problem
using a QLSA. We can present the solution state of a QLSA
in terms of the error term ε. Let us first consider the case of
BPSKmodulation.With the error term ε, the final state in (33)
becomes

|x ′j〉 =
(1− xj − εj)|N 〉 + (1+ xj + εj)|N + 1〉√

|1− xj − εj|2 + |1+ xj + εj|2
, (127)

where we set a = −1 and b = 1. Thus, a measurement error
when deciding the transmitted bit inevitably occurs. Then the
probability Pbpsk of error is

Pbpsk =
|εj|

2

|2xj + εj|2 + |εj|2
. (128)

Similarly, for the case of QPSK modulation, we can see that
the final states in (46) and (55) become

|s′j〉 =
(b− sj − pj)|2N 〉 + (sj + pj − a)|2N + 1〉√

|b− sj − pj|2 + |sj + pj − a|2
, (129)

|t ′j 〉 =
(d − tj − qj)|2N 〉 + (tj + qj − c)|2N + 1〉√

|d − tj − qj|2 + |tj + qj − c|2
, (130)

where xj = sj + itj and εj = pj + iqj. Then the probabilities
P1 and P2 of error for sj and tj are

P1 =
|pj|2

|2sj + pj|2 + |pj|2
, (131)

P2 =
|qj|2

|2tj + qj|2 + |qj|2
, (132)

respectively. Moreover, the state for the case of MPSK mod-
ulation in (82) becomes

|x ′(s)j 〉 =
1√

1+ |xj + εj|2
s+1

(
|0〉 + (xj + εj)2

s
|1〉
)
, (133)

where we choose r = 1 and s = 0, . . . ,m− 1.
We can obtain some information of a quantum state only by

quantummeasurement, andwe cannot distinguish nonorthog-
onal states without error. In other words, when we measure a
state in a certain basis to obtain a particular value, even a small
amount of noise can induce a nonzero probability of error.
To overcome this, we can measure sufficiently many copies
of a state, then we decide the binary value depending on the
majority of measurement outcomes. Specifically, wemeasure
2l + 1 copies of the final state, and we select the outcome
that appears more than l times. From now on, we call this
l-measurement, and we call the number l the order of mea-
surement repetition. For a probability P and l = 0, 1, 2, . . . ,

we define

P(l) ≡
l∑

t=0

(
2l + 1
t

)
P2l+1−t (1− P)t , (134)

P(∞)
≡


0 if P < 1/2
1/2 if P = 1/2
1 if P > 1/2

. (135)

Then, after applying l-measurement to the state in (127),
the probability of (one bit) error isP(l)bpsk , and the limit ofP(l)bpsk
as l grows is P(∞)

bpsk . For the QPSK modulation, the bit error

ratio P(l)qpsk with respect to l-measurement is

P(l)qpsk =
1
2

(
P(l)1 + P

(l)
2

)
, (136)

and the limit is

P(∞)
qpsk =

1
2

(
P(∞)
1 + P(∞)

2

)
. (137)

We finally consider the 8PSK. Let k = k2k1k0 be the phase
label of xj. It is not hard to show that the bit error ratio P(l)8psk
with respect to l-measurement is

P(l)8psk =
1
3

1∑
k ′2,k

′

1,k
′

0=0

P(l)k ′ Q
(l)
k ′ R

(l)
k ′ D(k

′), (138)

where

Pk ′ =
1
2
|(xj + εj)+ ei

π
4 (4k

′

2+2k
′

1+k
′

0)|2

1+ |xj + εj|2
, (139)

Qk ′ =
1
2
|(xj + εj)2 + ei

π
2 (2k

′

1+k
′

0)|2

1+ |xj + εj|4
, (140)

Rk ′ =
1
2
|(xj + εj)4 + eiπ (k

′

0)|2

1+ |xj + εj|8
, (141)

D(k ′) = (k ′2 ⊕ g2)+ (k ′2 ⊕ k
′

1 ⊕ g1)+ (k ′1 ⊕ k
′

0 ⊕ g0),

(142)

and g = g2g1g0 is the Gray code of xj. Then the limit is

P(∞)
8psk =

1
3

1∑
k ′2,k

′

1,k
′

0=0

P(∞)
k ′ Q(∞)

k ′ R(∞)
k ′ D(k ′). (143)

B. PERFORMANCE COMPARISON
We first present the system model, and then the performance
results of the proposed method. We consider a MIMO system
with N transmit and N receive antennas. The channel is
assumed to be block Gaussian fading, and the transmitted
vector x is drawn from the BPSK/QPSK/8PSK constellation.
Then the received vector is given by

y = Hx+ n, (144)

where H ∈ CN×N is the channel matrix whose entries
are independent and identically distributed (i.i.d.) CN (0, 1),
the noise vector n is additive white Gaussian noise whose
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FIGURE 4. BER performance comparison for 2 × 2 MIMO with ZF.

FIGURE 5. BER performance comparison for 2 × 2 MIMO with MMSE.

entries are i.i.d. CN (0,N0), and N0 is the power of noise.
We use the ZF and MMSE detectors, and we compare the bit
error rate (BER) performance of the proposed method with
the classical one for each signal-to-noise ratio (SNR) from
0 dB to 20 dB in steps of 1 dB. We execute the detection
algorithms one million times, and then evaluate the aver-
age value of the BERs. Although the proposed method can
be executed in a quantum computing device, its computing
ability has been insufficient to achieve good performance
so far. Thus, we start with the results obtained theoretically
by a QLSA.

We first present the BER performances of the classical ZF
detector and the proposed method associated with ZF for 2×
2MIMOchannels as shown in Fig. 4.We can see that the BER
performance of the proposed method gets close to that of the
classical one as the order l grows large. Indeed, the limit value
(when l = ∞) of the BER performance with l-measurement

FIGURE 6. BER performance comparison for MMSE in various sizes of
MIMO with BPSK.

almost coincides with that of the classical method. Fig. 5
shows the BER performances of the classical MMSE detector
and the proposed method associated with MMSE for 2 × 2
MIMO channels, and the results are the same as in the case of
the ZF. Remarkably, the performance of the proposed method
for QPSK is better than the others for both cases, and hence
it seems counter-intuitive. In fact, the proposed methods for
QPSK and MPSK can be viewed as generalizations of the
method for BPSK. Whereas we decide the phase of xj close
to the point of xj in the constellation diagram for MPSK, the
method for QPSK provides us the real and imaginary parts
of xj separately. For example, we perform measurements in
three axes for 4PSK to decide the phase label similar to a
binary decision, but we perform twomeasurements for QPSK
to obtain the real and imaginary values. We speculate that
the difference in the measurement process could make the
improved performance.

Fig. 6 shows the BER performances of the classicalMMSE
detector and the proposed method associated with MMSE
for various sizes of MIMO with BPSK. We choose different
l-measurements depending on the sizes of MIMO channel
matrices. We can observe that for the proposed method, the
larger the size of MIMO channel, the higher the value of l
required to obtain the same performance.

As shown in Figs. 4, 5, and 6, The results of the pro-
posed algorithm without repeated measurements are worse
than those of the classical method. However, the performance
approaches that of the classical method as the order l grows
large, and the quantum limit is almost the same as that of
the classical performance. We now present the rate of con-
vergence of the performance. For the proposed method with
a certain modulation, let P(l) be the bit error ratio with respect
to l-measurement, and let P(∞) be defined as before. Then the
rate of convergence for P(l) is defined as the limit value

lim
l→∞

Rl, (145)
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FIGURE 7. Numerical results for the convergence rate of the proposed
method in 2 × 2 MIMO with ZF, where the SNR is 10 dB.

FIGURE 8. Numerical results for the convergence rate of the proposed
method in 2 × 2 MIMO with MMSE, where the SNR is 10 dB.

where Rl =
|P(l+1)−P(∞)

|

|P(l)−P(∞)|
. Figs. 7 and 8 show that the rate of

convergence could be 1 for both cases. This means that the
sequence P(l) converges sublinearly to P(∞). In other words,
the sequence P(l) increases rapidly for low values of l, and
goes to the limit value P(∞) slowly for high values of l. Thus,
we can obtain a good performance using l-measurement with
a low value of l.

VI. CONCLUSION
In this paper, we have presented a proposed QLSA that can
be used to obtain classical information from the solution.
We explicitly construct the modified linear systems when
the solutions have binary variables, quaternary variables, or
roots of a complex number. In particular, our method does
not require any extra process to obtain classical information,

and so the proposed algorithm has a lower complexity than
the previous method using the QAE. Moreover, we show that
the proposed algorithm can be applied to solve the MIMO
detection problem, and we present and discuss the simulation
results of our method compared to those of classical linear
MIMO detectors.
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