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ABSTRACT The application of low probability of detection (LPD) in underwater acoustic communication
is challenging due to the limited bandwidth and frequency band available that allows simple interception
using energy detection. Confronting that, recent LPD schemes offer to disguise the communication signal
as a vocalization of a marine mammal. This way, the signals can be transmitted at high power, while the
interceptor believes these are biological sounds. In this paper, we propose a first interceptor tailored to
distinguish between anthropogenic and biological sounds. Our main assumption is that, due to limitations on
the dump-off factor of the acoustic projector, the phase of a real whistle would be much more diverse than
that of a disguised whistle-like signal. We therefore propose as a classification measure the randomness of
the signal’s phase. The phase is calculated by a phase-locked-loop, while the phase’s randomness is measured
by entropy. Our results show that the approximate and sample entropies, which both uncover regularities in a
signal, are good classification metrics. Analysis of data obtained from two sea experiments and from a large
database of tagged dolphins’ whistles, shows that our interception scheme can well distinguish between real
and biomimicked signals.

INDEX TERMS Low probability of detection, underwater acoustic communications, biomimicking, phase
locked loop, entropy analysis.

I. INTRODUCTION
The extensive usage of underwater acoustic communica-
tions (UWAC) in security-related applications has led to
the development of low probability of detection (LPD)
schemes. LPD communication is relevant to a wide range
of security-based applications, including search and survey
by submarines [1], report-back communication by scuba-
divers [2], and communication with deployed autonomous
vehicles [3]. Such applications often require the commu-
nication to be concealed such that transmissions are not
detected by an interceptor. Common LPD communication
approaches achieve covertness by hiding the emitted sig-
nal below the ambient noise’s floor or by disguising the
signals as noises that are characteristic of the environ-
ment. Then, by sharing a secret methodology between
the transmitter and receiver to detect the LPD signal,
a processing gain is achieved such that the minimum
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signal-to-noise ratio (SNR) still managed by the receiver is
below that of the interceptor.

A widely used approach for LPD UWAC is direct-
sequence-spread-spectrum (DSSS) [4]. In DSSS, a spreading
sequence is multiplied by the modulation signal such that it
spreads across the frequency domain. The signal’s bandwidth
is then expanded according to the length of the spreading
sequence and the signal is received below the noise floor.
The spreading sequence is chosen such that it is hard to
1) identify the signal through e.g., cyclostationary analysis
and 2) reproduce it for interception through e.g., a bank of
matched filters. The first attribute calls for a narrow auto-
correlation response of the spreading sequence, while the
second requires a non-linear operation during the generation
of the spreading sequence [5]. While DSSS is widely used
for LPD communications (e.g., in [6] and [7]), their spectral
usage is low and so is the data rate [8]. Other spreading
approaches are orthogonal-frequency-division-multiplexing
(OFDM) [9], or the use of chirp signals whose frequency
changes over time [10]. In both cases, the transmitted signals
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have narrow auto-correlation and high processing gain, and
can thus tolerate extensive multipath [11]. To overcome the
data rate limitation, [12] uses a chaotic sequence modulation
that, even for high power level, makes the received signal
appear similar to ambient noise. Other approaches hide the
communication signal by means of frequency hopping [13]
or by spatial focusing using acoustic arrays or time interval
techniques [14]. However, these approaches are sensitive to
noise and their decoding performance is poor for low power
SNR [15]. Further, using noise-like signals for underwater
LPD communications faces a main limitation as the source
of the transmission can be traced by an interceptor to a
single location, e.g., by means of beamforming, whereas
the ambient noise is assumed to be isotropic [16]. Here,
in the context of underwater acoustic LPD, opportunity lies
in bio-mimicking.

In bio-mimicking LPD communication, the transmitted
signal is structured to resemble a biological sound, such that
a possible interceptor cannot distinguish between that and
a real bio-vocalization. The modulation signal is similar in
structure to (or recorded from) the vocalization of a marine
mammal. These vocalizations can be dolphin clicks or whis-
tles, whale calls or seal sounds; all with the common feature
of having a complex and diverse structure. In [17], dolphin
clicks are used as modulation signals for a pulse-position-
modulation (PPM), where the information is encoded in
the position of the high-frequency clicks. Similarly, [18]
uses sea lion clicks as an information carrier and utilizes
the intra-pulse rate for modulation. For higher transmission
rates, complex signals such as dolphins’ whistles are used.
A simple method of mapping the information bits to whistles
is described in [19], where an alphabet of whistles is used
for symbol modulation. Another mapping method generates
the modulation signal as a synthetic chirp with a non-linear
curve to resemble a dolphin’s whistle [20]. An on-off-keying
(OOK) modulation based on the codas of Humpback whales
is used in [21]. Other methods use the biologic signal as a
strong signal to hide another signal. In [22], a DSSS signal
is embedded on top of a dolphin’s whistle, and [23] uses
Humpback whale calls to hide active sonar signaling. The
main advantage of the bio-mimicking UWAC is that they
can be transmitted with high SNR. This way, assuming the
interceptor detects the signal but refers to it as a biological
sound, the communication can be of high data rate but still be
LPD. The spectrograms in Figs. 1 and 2 show an example of
how similar real and biomimicked signals are, respectively.

While there exist interceptors for UWAC LPD signals,
these focus on detecting a signal under the noise floor and
not necessarily on discriminating one signal from another
to intercept biomimicking communications. In particular,
as the biomimicked signals are deliberately transmitted at
high SNR, it is not the problem of detecting a weak signal.
For example, multiband energy detectors can detect signals
spread in frequency by some pseudo-random sequence or
via frequency hopping [24], but would not suffice for dif-
ferentiating between biological signals and artificial ones.

FIGURE 1. A time-frequency spectrogram of a real dolphin’s whistle.

FIGURE 2. A time-frequency spectrogram of a synthetic whistle-like
signal.

Other interception approaches that use feature analysis to,
e.g., discover fluctuations in time [25] or detect a signal’s
pattern [26] may also fail because the signal is made to be
very similar to real bio-vocalization. Further, since both the
biomimicked signal and the real biological signal stem from
a single source, interception by tracking or localization to
separate a single source from an isometric noise will not
assist in the signal’s discrimination. Instead, the challenge of
designing an interceptor for biomimicking communication is
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in its classification. That is, once a biological-like signal is
detected, the goal is to classify it as originating from either a
real biological source or from an artificial one.

Given the high potential of biomimicking as an LPD
approach and its usages for UWAC, in this work we explore
the question how to intercept biomimicking UWAC signals.
This should not only serve as a counter measure for such
an elusive communication technique, but can also serve as a
benchmark to prove the efficiency of these LPD approaches.
The main challenge we see is, regardless of the communi-
cation protocol, to find a metric that can separate between
real signals and mimicked ones. We focus on the interception
of biomimicking techniques that use dolphins’ whistles for
modulation. Still, our method supports the detection of a wide
range of biomimicking techniques ranging from synthetic
mammal-like vocalization to playback of such signals.

Our approach is developed from our intuition that the
diversity in the signal’s phase is much greater for real biologi-
cal signals compared to biomimicked signals. Due to the lim-
ited dump-off factor of the acoustic hardware [27], we argue
that the above assumption holds also for the playback of
biological signals. As such, we rely on the statistics of the
signal’s phase as a clustering metric. Our approach uses a
prior detection procedure such as PAMGUARD [28], which
produces a time-window of samples containing a detected
whistle-like signal. Assuming the signal is transmitted at high
power, we ignore the error probability of the detector and
further assume that the detected whistle occupies the entire
time window. Then, using a phase locked loop (PLL), we esti-
mate the phase of the signal and calculate its approximate
entropy [29] as a metric to quantify the phase’s random-
ness. To the best of our knowledge, ours is the first inter-
ception technique that can separate between biomimicked
UWAC signals and real biological ones. Our contribution is
three-fold:

1) a first attempt to distinguish between a real dolphin
whistle and a bio-mimicked whistle-like signal;

2) a low complexity interception test that can be operated
in real time;

3) a method to evaluate the randomness of an acoustic
signal by measuring the entropy of the signal’s phase.

We evaluate the performance of our method by analyzing
a database of real whistles, and by emitting biomimicked
signals in a sea experiment. The experiment included trans-
missions of synthetic whistle-like signals and playbacks of
real recorded dolphin whistles. A false alarm, in terms of
detecting a biomimicked signal, is evaluated by running the
interceptor over the real dolphin’s whistles. The results show
that our method can distinguish well between the real and
biomimicked whistles. For reproducibility, we share both our
interception code and our database of real dolphin whistles.

The rest of this paper is organized as follows. In Section II,
we present our system model, the main assumptions, and
preliminary discussion about detection of dolphin whis-
tles. Section III describes our proposed interception method

in detail. Performance evaluation is provided in Section IV,
and conclusions are drawn in Section V.

II. SYSTEM MODEL
A. SYSTEM SETUP
Our system comprises a single omni-directional acoustic
modem transmitting a sequence of signals that, as a test case,
resemble the whistle sounds emitted by dolphins. The signals
are detected by a receiver who is aware that the whistle-
like signals are biomimicked UWAC symbols. A modulation
scheme agreed by the transmitter and receiver but unknown
to the interceptor allows the receiver to decode the symbols.
Since the LPD feature hides the symbols as dolphin whistles,
the signals are transmitted at high power so that the commu-
nication is expected to be well received.

Stationed within the range of detection, the interceptor
overhears and detects the transmitted whistle-like signals.
The interceptor is not aware of the transmitter’s or receiver’s
existence and is thus not certain if the detected signals are
real dolphin whistles or biomimicked ones. The interceptor
then makes a binary decision whether the detected signals
are biomimicked or real whistles. Our model is of a simple
interceptor, e.g., an omni-directional single hydrophone, and
thus solutions in the form of localization or source tracking
(cf. [30]) to classify the source by e.g., its motion pattern, are
not considered here.

B. MAIN ASSUMPTIONS
We make the assumption that either a long whistle or more
than one whistle is transmitted. This assumption enables us
to obtain enough statistics about the entropy of the received
signal’s phase at the interceptor. However, we do not limit
the communication scheme and allow any protocol that uses
dolphin signals as a modulation signal. For example, the
symbols can be drawn by a fixed alphabet of real dolphin
whistles that are played back in the water [19]. Alternatively,
the symbols can be modulated on top of a synthetic whistle-
like signal such as the onewe show in Fig. 2. Other options are
phase modulation [20], or time-difference modulation [17].
Knowing the structure of the communication, the receiver
can detect the signals by a matched filter. Alternatively, the
interceptor performs detection by looking for whistle pat-
terns in the raw acoustic data. In the following preliminaries,
we provide some options for such detection. We assume the
signals are received at SNR high enough for a successful
detection. The outcome of this detection at the interceptor is
a time-synchronized sequence of either a dolphin’s whistles
or a whistle-like communication symbol.

Our key assumption is that a real dolphin’s whistle holds
stochastic characterizations and should thus include more
random characteristics than a playbacked or a synthetic whis-
tle. Specifically, we focus on the continuity of the whis-
tle’s phase. While a marine mammal like a dolphin holds
a remarkable capability to emit signals of fast temporal
changes [31], acoustic projectors and power amplifiers have
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built-in limitations in the form of a low dump-off factor [27].
As a result, signals produced by acoustic instruments require
a low peak-to-average power ratio (PAPR) and their phase
is expected to be much more continuous than that of a real
dolphin’s whistle.We thus use the phase of the received signal
as an indicator to the source of the signal being real biological
or biomimicked. Note that this conclusion holds for both
synthetic and playback whistles.

To explore the differences we expect in the phase of real
and biomimicked signals, we show in Figs. 3 and 4 an exam-
ple of the phase of real and synthetic whistle-like signals,
respectively. The phase was measured by a PLL as described
below.We observe a significant difference between the phase
of the two signals. Specifically, we observe that while the
phase of both signals concentrates around 0.5 (normalized
phase), the phase of the real whistle experiences transients
whose gradient is far greater than that of the synthetic whistle
signal. An intense analysis of the phase’s randomness is
shown in our results below for a large database of manually
tagged real whistles.

FIGURE 3. Calculated phase of a real dolphin’s whistle.

C. PRELIMINARIES: DETECTION OF DOLPHIN’S WHISTLES
To calculate the signal’s phase, we rely on a preliminary
whistle detection algorithm. Themost commonwhistle detec-
tor is the PamGuard toolbox [28]. PamGuard is an open
source passive acoustic monitoring software. It includes three
phases: 1) energy summation, 2) spectrogram analysis, and
3) matched filtering. The first step performs an energy detec-
tor to identify a signal within the assumed bandwidth of the
whistle (commonly, 5 kHz-20 kHz). The second step involves

FIGURE 4. Calculated phase of a synthetic whistle-like signal.

estimating the contour of the detected whistle by analyzing
the spectrogram matrix for spectral positions of high inten-
sity. The third step focuses on validating the detected signal
to be a whistle by correlating the evaluated contour line with
templates of whistles. Other approaches for whistle detection
follow the contour of the signal to evaluate the likelihood of
it being a whistle [32], or use an entropy detector followed by
a time correlator [33]. In [34], whistles are characterized by
having maxima in the signal’s contour, and in [35] a filter
is used to track time-varying dominant frequencies in the
contour curve. Other pattern recognition approaches are used
to obtain a posterior estimate over the contour trace [32].

III. METHOD
A. KEY IDEA
Our scheme includes two steps: 1) phase measurement and
2) signal classification. The first step begins after a whistle-
like signal has been detected by a preliminary detector. Phase
measurement is performed by analyzing the error term of
the voltage-controlled-oscillator (VCO), which is part of a
PLL (see formalization below). Since the whistle-like signal
is frequency and time varying, the signal’s energy and phase
are time-frequency dependent. In these conditions, to effec-
tively track the phase of the signal the PLL must be of high
frequency relative to the bandwidth of the signal. This can be
guaranteed through passband modulation. Filtering the signal
using a time-frequency mask obtained through contour track-
ing, e.g., [33], [36] may also help,1 but may be unnecessary
when the SNR is high.

1An example for such a time-frequency contour is marked in red in Fig. 1.
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Once the time-domain set of the measured phase is
obtained, the second step of signal classification is executed.
Here, soft-decision classification is based on quantifying the
randomness of the normalized phase components. Finally,
since both real dolphins’ whistles and biomimicked ones are
expected to arrive in a sequence, we combine the randomness
metrics from each whistle-like symbol and threshold it to
make a binary decision: a real or a biomimicked whistle. The
above scheme is illustrated in the block diagram in Fig. 5, and
the steps of the algorithm are described in detail in the next
section.

FIGURE 5. A block diagram of the biomimicked interception scheme.

B. MEASURING THE SIGNAL’S PHASE
Once a whistle-like signal is detected, we calculate a time
series of the signal’s phase. While the signal is expected to
change in the time-frequency domain, it is still expected to be
continuous with a smooth transition between time-frequency
bins. We therefore evaluate the signal’s phase using a PLL.
A survey about PLL techniques can be found in [37]. Here,
we give our implementation to the process. A PLL is a closed-
loop module which tracks the instantaneous frequency of a
given signal, vin(n) n = 0, . . . ,N where N is the number of
samples of the detected signal. As illustrated in Fig. 6, this is
an iterative process that involves the modulation of the input
signal with an output sinewave, vout(n), produced by a VCO
module. The frequency, Fout(n), of this sinewave is set by

Fout(n) = Fc + Kv · e2(n), (1)

where Fc is the center frequency of the VCO, Kv [Hz/V] is a
sensitivity measure, and e2(n) is the VCO input. Hence,

vout(n) = Av · cos(2πFcn+ 2πKv

∫ n

0
e2(x) dx)

= Av · cos(2πFcn+8out(n)), (2)

where Av is the VCO amplitude gain, and 8out(n) is the
estimated phase.

The phase 8out(n) is determined by the phase-detector
(PD), which generates

e1(n) = vin(n) · vout(n), (3)

Denote the difference between the true frequency of vin(n)
and Fc as 1F , we obtain

vin(n) = Ac · sin(2πFcn+ 2π1Fn)

= Ac · sin(2πFcn+8in(n)), (4)

where Ac is the input gain, and for simplification, Ac = 1.
Plugging (4) into (3), we have

e1(n) = Av · sin(2πFcn+8in(n)) · cos(2πFcn+8out(n)),

(5)

Using trigonometric identities and after the low pass fil-
ter (LPF) we are left with

e2(n) =
1
2
Av · sin(8in(n)−8out(n)), (6)

When the frequency of vin(n), Fin, is closed to Fout, During
its iterative procedure, the true frequency of vin(n) becomes
closer to Fc, and

vout(n) = Av · cos(2πFcn+ 2π1Fn+8err(n)), (7)

where 8err(n) is an error phase shift. We then have

8out(n) = 2π1Fn+8err(n), (8)

and

e2 =
1
2
Av · sin(−8err(n)). (9)

When Fin = Fout,

Fout = Fc + Kve2 = Fc + Kv
1
2
Av · sin(−8err(n))

= Fin = Fc +1F . (10)

Here,

Kve2 = Kv
1
2
Av · sin(−8err(n)) = 1F, (11)

and

8err(n) = − arcsin [
21F
KvAv

]. (12)

Since 1F is unknown and, after locking onto the frequency
8out is constant, for the purpose of randomness evaluation
we settle with the output of the LPF, e2 from (9), as a signal
corresponding to 8in.

Since the absolute value of the argument within the arcsin
function must be smaller than 1, we get from (12) the maxi-
mum frequency deviation that the PLL can lock onto:

1F ≤
1
2
KvAv. (13)

Thus, to allow a |1F | of ±15 kHz, we perform a passband
modulation by multiplying the signal with a cosine signal
to yield Fc = 60 kHz. Additionally, since e2 in (9) should
contain only low frequency content, we down-sample the
output of the PLL processing, and perform the analysis in
baseband for efficiency.
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FIGURE 6. A block diagram of a PLL [37].

1) METRICS FOR EVALUATING RANDOMNESS
Once e2(n) n, 0, . . . ,N is determined, we continue to evaluate
its randomness. Metrics to evaluate the randomness of a sig-
nal can be found in the Kolmogorov-Smirnov (KS) test [38],
conditional heteroscedastic models [39], and entropy eval-
uation [40]. The first is a nonparametric test to associate a
sample with a probability distribution function (PDF), the
second is a measure of the uncertainties within the signal,
and the third metric is a quantification of the amount of
information encapsulated within the signal. In this work,
we focus on the entropy metric since we are interested in
measuring the randomness of the signal rather then evaluating
its distribution.

Among the many forms of entropy metrics (cf. [40],
we focus on the Approximate-entropy (ApEn) and its mod-
ified version the Sample-Entropy (SampEn), both fit for
examining the information within short time-series. We also
explore the use of the Tsallis entropy (TsEn) that describes
the complexity of the time-series. In all three cases, a normal-
ization of the input signal, e2(n), is required. The calculation
is performed for each of the k = 1, . . . ,K detected whistle-
like signals to yield a measure Rk . These measures are then
summed up by

S =
1
K

K∑
k=1

wkRk , (14)

where wk are weights set to reflect the reliability in the
phase estimation of the kth whistle-like signal. Specifically,
we provide lower weight to complex signals for which it is
harder for the PLL to lock onto; and higher weight to signals
of longer duration for which more samples are available.
Here, complexity of the signal is attributed to the shape of the
signal, which wemeasure by the number,Nk , of the inflection
points within the time-frequency contour of the kth signal. Let
Lk be the duration of the kth whistle-like signal. Then,

wk = α
Nk
K∑
q=1

Nq

+ (1− α)
Lk∑K
q=1 Lq

, (15)

where α ≤ 1 is a control user-defined parameter. Finally,
measure S in (14) is compared to a threshold that can be
determined by a constant false alarm test that evaluates the
distribution of real dolphin whistles from databases such as
the one we share in [41].

2) DISCUSSION
Our approach relies on the assumed randomness in the phase
of a real whistle. Clearly, this assumption depends on the
type of emissions a dolphin makes, and thus we are exposed
to false positives when determining a smoothed real whistle
to be a biomimicked signal. Similarly, results are expected to
deteriorate when the SNR is too low and the PLL fails to track
the phase of the signal. We therefore have to limit our results
below to the dataset of real whistles we analyzed and shared.

IV. PERFORMANCE ANALYSIS
A. SETUP OF DATABASE
We explore the performance of our interceptor based on
three sets: 1) recordings of synthetic whistle-like signals,
2) recordings of real dolphin whistles, and 3) recordings of a
playback of real dolphin whistles. Without loss of generality,
the transmissions of the first two signal types followed the
biomimicking scheme in [20].

The first type of signal comprises a sequence of whistle-
like synthetic symbols, whose carrier frequency and duration
vary in the range of 5kHz to 24kHz and 200 ms to 2 sec,
respectively. The synthetic signal is made to resemble a real
dolphin whistle by structuring its time-frequency (TF) con-
tour based on a non-repetitive set of TF masks extracted from
real whistles. Guard intervals are placed between the symbols
to reduce the inter-symbol-interference. The duration of each
guard interval is randomly uniformly determined between
2 msec and 200 msec to break any structure in the signal.

Our dataset of real dolphin whistles is obtained from the
8th DCLDE Workshop [42]. This dataset includes a few
Terra Bytes of non-tagged whistles. As part of a civil science
project, we received help from high school students from the
‘‘Open School’’, in Haifa, Israel, to obtain a few hundred
tagged whistles. Each tagged whistle included the time win-
dow indication to mark the position of the whistle. Below we
show results for 243 tagged whistles.

To obtain a realistic dataset of biomimicked signals,
we performed two sea experiments where we transmitted
the above defined synthetic whistles and a playback of real
whistles. The transmissions took place in May 2020 and in
May 2021 roughly 5 km across the shores of Haifa, Israel,
at a water depth of 20 m. The sea level was roughly 2 and
the sound speed in water was measured to be 1530 m/s and
was roughly fixed along the water column. The transmit-
ting vessel was separated roughly 1000 m from a receiv-
ing vessel, and deployed at a depth of 10 m an EvoLogics
LF software defined modem from which the signals were
emitted at a calibrated source level of 175 dB//1uPa@1m.
In turn, the receiving vessel deployed at 10 m depth a self-
made acoustic recorder with a flat frequency response and a
linear phase along the corresponding frequency range. The
receiver continuously recorded throughout the experiment.
The result was 121 whistle-like signals and 104 playback
whistles, each of which received at an SNR exceeding 20 dB.
Each transmission was preceded by the transmission of
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a linear chirp signal at the frequency band of 7-17 kHz. This
chirp signal was used to time-synchronize the whistle-like
and the whistle playback signals. We also used the chirp
signal to evaluate the channel’s impulse response and found
that it included multiple significant taps with a delay spread
ranging between 2ms to 10ms. Since the underwater acoustic
channels for the real recorded dolphins was different than that
in the sea experiment, we explore performance by calculating
the histogram over all results obtained.

B. INTERCEPTION RESULTS
We start by demonstrating why for interception we rely on
the phase of the signal rather than on its raw acoustic sam-
ples. In Fig. 7, we show the histogram of the approximate
entropy [29] for the raw acoustic samples for the three types
of signals. We observe that, while the histogram for the
entropy of the synthetic whistle-like signals show that it is
more diverse, good separation by thresholding is not possible.
Since the reception was at high SNR, we argue that this is due
to the effect of the channel that induces randomness in the
received signals.

FIGURE 7. Histogram of the approximate entropy of the raw acoustic
signals. Results show that separation is not possible.

FIGURE 8. Histogram of the approximate entropy of the estimated phase
of the signals. Results show that signal sources can be well separated.

Next, we analyze the distribution of the entropy measures
for the phase of the same signals. Results in Fig. 8 show
the histogram of the approximate entropy for the phase of

the inspected signals. Here, we observe that the three signals
can be well separated. As expected, the real dolphin whistles
show high entropy that is focused on a value close to 1.6.
The playback whistles also show high entropy, but much
lower than that of the real whistles with more diversity. Since
the transmitted playback whistles were the same as the real
whistles, and since, as were the playback whistles, the real
signals were also received by a human-made hydrophone,
we argue that the observed difference between the real and
playback signals is due to the projector’s hardware. Lastly,
while made to be confused with real whistles, the results in
Fig. 8 show that the synthetic whistle-like signals can be well
separated from the real whistles. Designed by a structured
modulation scheme and emitted by a man-made projector,
these signals experience low entropy that is roughly focused
around 0.5.

Due to their different distributions observed in Fig. 8, set-
ting a threshold to segment the three signals would yield a per-
fect precision-recall curve. Thus, to quantitatively compare
the histograms of the three signals we turn to the Kullback-
Leibler divergence (KLD) [43] as a metric to compare two
histograms, P and Q,

D(P||Q) =
∑

P ·
P
Q
, (16)

where D(P||Q) is a positive scalar whose value increases
as P and Q become more distinct. Another attribute of the
KLD is that the affect of bias is smoothed such that similar
distributions with different bias would still get a low KLD
value. Results in Table 1 show the KLDmatrix for separating
among the three histograms. We observe the high values of
the KLD measures that reflect on the differences between
the approximate entropy measures of the phase of the three
signal sources. Further, while the KLD is not a symmetric
measure, we observe that results are almost symmetrical. This
implies that identification is possible either of real whistles
from biomimicked ones or vise versa.

TABLE 1. KLD ranks between the evaluated histogram from Fig. 8.

Finally, to comment on the process that drives the differ-
ences between the phase of real and biomimicked signals,
we test the interception performance based on three entropy
measures. Results in Fig. 9 show the histograms of the
Approximate, Sample and Tesallis entropy measures for the
estimated phase of the real, playback, and synthetic whistle-
like signals. We observe that along with the already explored
Approximate entropy, the Sample entropy also separates the
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FIGURE 9. Histogram of three entropy measures over the estimated
phase of the three signal types. Results show that the Approximate
entropy and the Sample entropy are good metrics to separate the signals,
while separation performance of the Tesallis entropy measure is low.

three signals well. However, performance shows that, using
the Tesallis entropy measure, interception performance is
low. Since the Tesallis entropy gives more weight to higher
probabilities while the Approximate and Sample entropies
uncover regularities in the signal, we conclude that the phase
of the real whistles does not include significant patterns in the
time series.

V. CONCLUSION
In this work, we explored a new interception scheme to
identify a received dolphin’s whistle-like signal to be a real
dolphin whistle or a biomimicked one. By exploiting differ-
ences between the phase of the signals, our scheme classifies
three signal types: real whistles, playback whistles, and syn-
thetic whistle-like signals. In particular, assuming dolphins
can produce signals whose phase shows a higher random
attribute than signals produced by man-made acoustic pro-
jectors, we separate the signals by exploring the entropy of
the signal’s phase. The phase is obtained by a PLL, while
the entropy is calculated based on the phase of multiple
received signals. Exploring the performance of our intercep-
tor over 243 real whistles and 104 playback and synthetic
whistle-like signals, we conclude that the signal’s phase is a
good classification measure and that our interceptor can well
separate between the signal sources. Analyzing performance
for different entropy measures shows that the Approximate
entropy and the Sample entropy serve better for classification
than the Tesallis entropy, and thus we conclude that the phase
of real dolphin whistles does not include significant patterns.
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